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ABSTRACT

Constituent-quark models formulated in the frame ' ork of nonrelativistic quantum
mechanics have been succcesful in accounting for the mass spectra of mesons and baryons.
Applications to elastic electron scattering require relativistic dynamics. Relativistic
quantum mechanics of constituent quarks can be formulated by constructing a suitabdle
unitzry representation of the Poincaré group on the three-quark Hilbert space. The mass
and spin operators of this representation specify the relativistic model dynamies. The
dynamics of fundamental quark fields, on the other hand, is specifield by a Euclidean
functional integral. In this paper I show how the dynamics of the fundamental fields
can be related in principle to the Hamiltonian dynamics of quark particles through the
properties of the Wightman functions.

1. Introduction

Nonrelativistic. constituent-quark models have been successful in accounting
for mass spectra of hadrons.’ ™ The wave functions of these models are
functions of relative coordinates, spin, flavor and color variables. They are
rigenfunctions of a mass operator (internal Hamiltonian) and the total spin, e
The relative coordinates are related by Fourier transform to internal momenta.
These wave functions are invariant under translations and independent of the
total momentum. They are thus frame independent. Eigenfunctions of the energy
and momentum are required for the calculation of the eleciromagnetic properties
of such models. Relativity requires that current matrix elements must satisfy

covariance conditions, which for spin-zero particles take the form

A* (9| I*(2) |p) = (Ap'| I*(A™72) |Ap) , (1)

where A is any Lorentz transformation. In nonrelativistic quantum mechanics
individval momenta of the constituents in an arbitrary frame are related to the
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internal momenta by Galilean boosts, and the eigenfunctions of the 2znerz; and
momentum are obtained by Galilean boosts from the eigenfunctions of "2 in
Hamiltonian and the spin. The Lorentz covariance relasions illustrated in Zq. {1,

ternal
. . . 3 . 4 . - 3 -

are then violated. Relativistic quantum mechanics,” which remedies <his defect

is based on the following observations.

1. Symmetries in Quantum theory are implemented by unitary transformations
of the Hilbert space of states.

2. In nonrelativistic quantum mechanics the Hilbert space of staies :s ‘the
tensor product of single-particle Hilbert spaces for both interaciing and
noninteracting systems. They differ by different unitary representaiion of
the time evolution in the same space of states.

3. The Hilbert space of single-particle states is the same for relativistic and
nonrelativistic particles.

4. Relativistic Particle dynamics is specified by the construction of a nontrivial
unitary representation of the Poincaré group on the tensor product of single-
particle Hilbert spaces, or on a direct sum of such tensor products.

5. Any internal Hamiltonian, which is invariant under translations, indepen-
dent of the total momentum, and commutes with a spin operator, can be
interpreted as the mass operator of a nontrivial unitary representation of the
Poincaré group. Together with a choice of the kinematic subgroup the mass
operator specifies the relativistic dynamics.

On the basis of these observations it is possible to obtain the electromagnetic
form factors of constituent quark models in a manner consistent with the require-
ments of Poincaré covariance.” This construction separates the reguirements
of relativistic invariance from the decisions on the degrees of freedom which, for
physical reasons, ought to be represented explicitly in the model.

This paper is an attempt to illuminate the connection between the relativistic
particle dynamics described above and the quantum theory of fundamental fields,
which specifies the dynamics by a functional integral in Fuclidean space-time. '

Fundamental fields are operator valued distributions.®  Products of the field
operators applied to the physical vacuum state span the Hilbert space of the
theory. The field operators transform covariantly under a unitary representation
of the Poincaré group. A connection between the fundamental fields and the
relativistic quantum mechanics of constituent quarks can be found if there is a
unitary map of a Poincaré invariant subspace of the Hilbert space of the field
theory onto the Hilbert space of the constituent-quark. The existence and the
properties of such a map depend on the properties of the Wightman functions,
which are determined in principle by the Lagrangean of the field theory.G’T
Conventional connections between quantum field theory and quantum mechanics



involve either static approximations appropriate only for sufficiently massive
particles, or the perturbative Fock space. Neither approach seems adequate for
constituent quarks. Time ordered Green functions and other matrix elements
of time ordered products of local fields are useful quantities directly related to
observable scattering amplitudes. However, they do not permit the reconstruction
of the Hilbert space of the field theory and provide therefore no access to relativistic
quantum mechanics of constituent particles.

In Sec. 2. I briefly review the relativistic quartum mechanics of constituent
quarks. For the general background and more details see refs. 4 and 5. In Sec. 3
I attempt a formal sketch of the relation to quantum field theory.

2. Relativistic Dynamics of Constituent Quarks

The bound-state wave function of a nucleon,

mN’j___,%(‘ilv‘fh @3, 1, B2y K3, T1) T2y T3), (2)
consisting of three constituent quarks is a symmetric rotationally invariant func-
tion of the internal momenta ¢;, subject to the constraint q; + ¢2 + g3 = 0, spin
variables, u; = :&.—.%, and the isospin variables, 7, = :i:%. The total spin operator
acting on these functions is

Y

Gl

M-

i=) HxgE+38) (3)
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By definition the operators §; are canonically conjugate to the internal momenta
gi, and they commute with the operators 3; associated with the spin variables u;.

The four-momentum operator, P is determined by the mass operator and three
kinematic components. The choice of three kinematic components of the four-
momentum implies the choice of the kinematic subgroup of the Poincaré group
and thus the “form of dynamics”.” Let n := {-1,7} be a null vector n? = 0.
If the kinematic subgroup leaves the null-plane z* := n.z = 0 invariant, the
null-plane momentum,

P := {P*:=n.-P,P, := P-#-P}, (4)
is covariant under the kinematie boosts,
Pt — e*P*, P, - P _+b P (5)

specified by the parameters —o0 < @ < oo and b, .



States in the three ~uark Hilbert space are thus represented by functions of the
kinematic components of the total four-momentum, the internal momenta, spin ,
and flavor variables, ¥(P, g1, ¢2, 43, 1, K2, U3, T1, T2, T3) With the scalar product

)? = / &P j dg, / de; / Pos 6@ + B + @)

X E Z |Q(P)“flsﬁyﬁ’ﬂlal‘%#%"'l,'f%"’:})lz y

H143,48 T1,T2,T8

(6)

where
&P = d2PL9(p+)dP+ /2Pt (7)

is invariant under the kinematic Lorentz transformations. By definition the spin
operator (3) commutes with the null-plane boosts (5). The ten generators of the
Poincaré group are determined by the mass operator, the three components of
the total spin, the three kinematic components of the four-momentum, and the
three generators of the null-plane boosts. An eigenfunction of the four-momentum
is constructed as a simultaneous eigenfunction of the mass and the kinematic
components of the four-momentum,

{pwvj) - 'I’pfv,j(P’ ‘fhih637,1'17"'2’[‘3771172,7'3)
= ¢mN,j(qlvﬁ’ﬁaﬂl’uh.“hflsTMTJ)&(P - pN)pRI .

(8)

Nowhere in this construction did I assume that the particles are free, or “approxi-
mately free”. However, noninteracting particles live in the same Hilbert space. In
that case the mass operator is

My= Y i+ @2 ®)

and the spin operator §; is equal to the canonical spin of the ith particle for
P = {M,,0,0,0}.

The “impulse approximation” for the current operators assumes that the
currerts can be approximated by a sum of one-body operators. In order to make
this precise it is necessary to consider temsor products of single-quark Hilbert
spaces. Vectors in a single-quark Hilbert space, H;, are represented by functions
g(p, A), with the scalar product

(9,9) = j #p Y lo(p, N (10)
A

where A is the component of the null-plane spin in the direction of 7. Given a mass
m the unitary representation of the Poincaré group is specified as described above.



The null-plane spin operator 3 are invariant under null-plane boosts. Vectors in
the temsor product M3 := H; x H; X 'Hi of three single-particle Hilbert spaces
are thus represented by functions

‘I’(pl,’\lap2,"\2sp3a)‘3) = ‘I"(P €1, 1 q1, 1y A1, €2, Q-,-,’\zafili(jti.“l.a'xii) y (11)

where
. p! - - = .
= Zp; , & = -I;.,ﬁ- , Gi. = pi. — &P, (12)
and
dé: déy de.

d3 d.’i da ‘=d3 =+ &s - 1
P167P2% Ps € & & G rGr&-l) (13)
X dqu.».JZQudzq,sJ((ﬁ; + g2, + f_—l‘s.L) .

In this representation the assumption of “ome-body” current operators can be
stated in the obvious manner,

<p'11 Alxsp',.h A{.’a PQ, Afs] Ip(x) ipf!, A3’ P2, ’\2a P1, A1> = <p'1 ’\Ill I“(z) %pli Al)
x 8(py — p2)86(AL — A2)6(ph — P2)8(A; — A2) +  permutations .
(14)
These operators are covariant only for free particles, where the Poincaré repre-
sentation on H; implies the product representation on H;. In general there must
be two- and three-body operators in order to satisfy the requirements of Lorentz
covariance and current conservation. It is possible, however, to assume with-
out inconsistency that only one-body currents contribute to the matrix elements
{p'ys AL, | T*(0) |py, Ay ), if the orientation of the null plane is chosen such that
t = p;' — p}, vanishes. These matrix elements are sufficient to obtain the elas-
tic form factors. In this context the “impulse approximation” is a possible model
assumption for the current.

There remains the task of establishing the nnitary equivalence of the function
spaces specified by (6) - (7) and (11) - (13) respectively. Thisis done by considering
the equivalence of the free-particle Poincaré representations in the two function
spaces. | note that

Y

where

m2+i~'i]

Z.d = & T
g = [Mg.f, T (16)

The canonical spin operators 3; are related to the null-plane spins 3; by Melosh
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rotations

i

;= Ry, 5 (17)

Ga)

The matrix representation of R,,,

1 m+ €My ~ 16 - (R X q.)
D:,A(RM) = + £y > ( s q; ] ) (18)
{(m +&Mo)? +q2}s 1,5

gives the relation between the spin variables 4 and A. -

Thus the functions ¥(P, g1, g2, g3, 41, 42, 43) Tepresent vectors in the tensor
product of three single-particle Hilbert spaces. As is the case in nonrelativistic
quantum mechanics states of interacting and noninteracting particles are repre-
sented by functions in the same space. The interaction dependence of the dynamic
Poincaré generators enters only through the mass operator. For interacting par-
ticles one could, of course, introduce an interaction dependence into the relations
between the functions {6) - (7) and (11) - (13). However, that would be inconsis-
tent with the physical assumptions underlying the impulse approximation which
imply that the one-body current operator should be the current of a free particle
of mass m, oblivious of the presence of other particles. As such it should not
depend on the interactions, or on the mass of the nucleon. The constituent-quark
mass appears in this picture as a parameter in the model assumptions specifying
the quark current.

3. From Furnidamental Fields to Constituent Quarks

In order to esta.blish a relation of the quantum mechanics of constituent quarks
described in the previous Section to the dynamics of fundamental fields I will start
with certain axiomatic a,ssurnptions.8 The objective is to find an isometric map
of the quantum mechanical Hilbert space into a Poincare invariant subspace of the
Hilbert space ‘M of the field theory.13 This map should provide a relation between
the field dynamics specified by the Lagrangean and the dynamics specified by the
unitary representation of the Poincaré group in the quantum mechanical Hilbert
space.

Let ¢(z) be the fundamental quark field. There is a unitary representation of
the Poincaré group in the Hilbert space H of the field theory such that the vacuum
state {1 is invariant,

UA ) = 0, (19)
and the field satisfies the covariance relations,
Ut(A, a)p(z)U(A, a) = S(A)p(A™'z + a) , (20)

where the matrix S(A) is the Dirac spinor representation of the Lorentz transfor-



mation A. I am suppressing color and flavor quantum numbers. Products of fields
folded with Schwartz functions [infinitely differentiable functions that decrease

faster than any power],12 h € S(R?), applied to the vacuum state generate state
vectors in the Hilbert space H, e.g.

¥ = P(h1)P(ha)d(hs)R - (21)
where :
B(h) : / Bo(z)h(z) . (22)

Linear combinations of such states span a subspace of baryon number one. The
scalar product of these vectors implies a scalar product for functions h(zj, z2, 1)
of three space-time points,

(hyh) = /d"x'l . /d‘zl R(zy, .. W(...,z4; 21, )h(...,23) 2 0,
| (23)

where W is the Wightman function,

W(z3, 25, 25 21, 22, 23) = (@, $(25)9(h)d(21)d(21)d(z2)d(23)Q) . (24)

Since the scalar product is not strictly positive the correspondence between the
functions and the states is many to one. It follows from the invariance of the
vacuum (19) and the covariance of the field operators (20) that the scala.r product
(23) is invariant under the transformations

h(z1,...) = S(A7) .- h(A(z1 ~ a),...) . (25)

We have thus a representation of states by equivalence classes of manifestly
covariant functions with a nontrivial scalar product specified by the Wightman
functions, which specify the dynamics of the field theory.

In order to to establish the connection to quantum mechanics I will generalize
to spinor fields results obtained by Schlieder and Seiler’® for scalar fields. The
objective is to obtain one-to-one mapping to a subspace of H of functions restricted
to the null plane £+ = 0. Let x be any point on the null plane z+ = 0, and let
f(x) be the Fourier transform of

f(p) = u(p,m)g(p) , (26)
wherg
ﬂm=(gwf“?), (27)
9(p* P, ~35



and the null-plane spinor amplitudes are

o m)‘_a.L-pJ.+ﬁm+p+l+aal+ﬁ m-7P, L+
Bom) = Jmpt 2 2 oympt! 2

where v# := Ba*, a® := 1. Note that no p- appears on the right hand side of Eq.
(28) because y*+* = 0. Here the functions g(p*, 5., =3 3) are Schwartz functions in
the space S(R?) defined in ref. 13. These functions are Schwartz functions that
vanish for p* = 0. [See Eq. (2.4) of ref. 13| They are a dense set in Hilbert space
H,, with the scalar product (10),

(28)

)= [ -j—;'}-— / &9 05" ) F(p)F(B) = (0, 9) - (29)

The mass m is a parameter in the definition of f(x), unrelated to the field ().
If the operators

B = / Pxp(x)f(x) - (30)

exist their products may provide the desired mapping from H; into H. It is
necessary that the norm |[4(f)2l| be finite and nonzero for all g. This norm
depends on the two-point Wightman function, Wy(z, ') := (2, ¥(z)¥(z')R),

Bl = [ &x [ @xfmaxx)s) (s1)

In order to show that the norm is finite and nonvanishing I assume that W, has
the Lehmann representa.tion“

Waa, = [ / dn20(p")8(p" + K[ A(s?) ~ B(x? Jyple’® =), (32)

- @y

It follows from Eq. (32) that the norm,

1A = [ @Y loe VP [ dtla(e) + mBGY,  (39)
A

is finite and positive for all non vanishing functions g if the integrals over x? are

finite,
/dn’A(n’) < oo  and /dnzB(nz) < oo, (34)

Let fi(x;) and fa(x;) be two functions with support on different null planes. In

iy e



general the scalar product,

GANFEN == [Ex [ ERhEWaEhE) . (65)
does not vanish. It is easy to verify with Eq.(32) that for any f; on the first null
plane there exists an f; on the second null plane such that the scalar product (35)
differs from zero. It follows that functions with support on a different null planes.
generate the same space of states. This space is therefore Poincaré invariant.

Foi a free field of mass m the functions 4(x?) and B(x?) would be proportional
to the delta function, §(x? — m?), -

A(k*) = mB(x*) = m §(x?* — m?), (36)
which yields the free-field Wightman function,
| 1 oy
Wasle —2') = s /d‘p 8(p°)6(p* + m?)[m — y-ple® =) . (37)

For confined quarks there is no delta-function singularity in A(x?) and B(x?).
The scalar product of states ¥ defined by

vi= / &’x; / d’x; j d*x3 P(xa)P(X2)P(x1)Qf (X1, X2, %5) ,  (38)

implies for the functions f the scalar product

(£, f) = /d3x1 /dsxz/d"‘xs J/dsx'l /d3x;/d3x§ (39)
X f(xh-xhx3)w(z3’32"”1;xlnxizvxg).f(x;)x'zax'l) ’

The six-point Wightman function in this expression is a sum of products of
two-point functions and truncated 4-point functions plus the truncated six-point
function. Under suitable restrictions on the truncated Wightman functions
this s~alar product is strictly positive, and the space spanned by the states
(38) is Poincaré invariant. "The covariant Wightman functions thus specify the
representation of the Poincaré group in the function space, where the scalar
product is given by restriction of the Wightman function to a null plane. Since
this restriction provides a nonsingular Hilbert-space measure the space is related
to the quantum mechanical Hilbert space H3 by a similarity transform. ‘

The fundamental Lagrangean determines the Euclidean functional integral.
The moments of this functional integral (Schwinger functions) determine the
Wightman functions and the properties of the field operators. These relations
establish in principle a connection between the fundamental Lagrangean and the
Poincaré invariant quantum mechanics of constituent quarks.



4. Conclusions

Quantuin field theory and relativistic quantum mechanics are each formulsated
as a theory of operators acting on a Hilbert space of states with Lorentz transfor-
mations and translations implemented by unitary transformations. I have shown
that the Wightman functions of the field theory can provide unitary map from a
Poincaré invariant subspace of the Hilbert space of the field theory onto the quan-
tum mechanical Hilbert space of constituent quarks. The Wightman functions thus
determine the dynamics in the model Hilbert space of the constituent quarks. It
should be emphasized that covariant amplitudes defined as matrix elements of
time ordered products of fields do not represent vectors in any Hilbert space. The
use of “light-cone variables” in the context of a Green function formalism should
not ke confused with the null-plane dynamics discussed in this paper.
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