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ABSTRACT

Constituent-quark models formulated in the _ame _',ork of nonrelativistic quantum

mechanics have been succcesful in accounting for the mass spectra of mesons and baryons.
Applications to elastic electron scattering require relativistic dynamics. Relativistic

quantum mechanics of constituent quarks can be formulated by constructing a suitable

unitary representation of the Poincar_ group on the three-quark Hilbert space. The mass
and spin operators oi' this representation specify _he relativistic model dynamics. The

dynamics of fundamental quark fields, on the other hand, is specifield by a Euclidean

functionM integral. In this paper I show how the dynamics of the fundamental fields

cLube related in principle to the Hamiltonian dynamics of quark particles through the

properties of the Wightman functions.

1. Izztroductlon

Nonrelativistic constituent-quark models have been successful in accounting

for mass spectra of hadrons, a-s The wave functions of these models are

functions of relative coordinates, spin, flavor and color variables. They are

_genfunctions of a mass operator (internal Hamiltonian) and the total spin_ )" _.
The relative coordinates are related by Fourier transform to internal momenta.

These wave functions are inv,_iant under translations and independent of the

total momentum. They are thus frame independent. Eigenfunctions of the energy

and momentum are required for the calculation of the elec_romagnetic properties

of such models. Relativity requires that current matrix elements must satisfy

covariance conditions, which for spin-zero particles take the form

h. ,,WIz"(=)lp>- (A/I/"CA-'=)IAp), (z)

where A is any Lorentz transform&tion. In nonrelativistic quantum mechanics

individ_I momenta of the constituents i_ an arbitrary frame are related to the
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internal momenta by Galileam boosts_ and the eigeni'unctions of she ,zr.er_y and

momentum aareobtained by Gali lean boosts from the eigenfunctions o_ ""__ ""-er_ai

Hamiltonian and the spin. The Lorentz eovariance relations illustrated in Eq. (_)

are then violated. Relativistic quantum mechanics, 4 which remedies t_s de.'ect

is based on the following observations.

1, Symmetries in Quantum theory ave implemented by unitary _ran_forma_fon_

of the Hilbert Jpace oi state._.

2. In nonrelativis,tic quanturn mechanic_ the Hilbert _pace of _tateJ i_ :he

ten, or product of single.particle Hilbert _paees for both interac::,_,j ,_nd

noninteraeting systems. They differ by different unitary reI_reJen'_a_;.on of

the time evolution in the same space oi Jtate_.

3. The Hilbert space of single.particle s'tates i_ the _ame for reIa_'viJ_fc and

nonrelativis tic particles.

4. ttelativistic Particle dynamic_ is specified bi/ the construction of a non_r_v_al

unitar!/ representation of the Poincar_ group on the tenJor produc_ of _ngIe-

particle Hilbert Jpaces_ or on a direct _um of such tensor produc_.

5. Any internal ftamiItonian, which is invariant under translations, indepen-

dent of the total momentum, and commutes with a spin operator, can be

interpreted aJ the mass operator of a nontrivial unitary re?re._entation of ",,,_e

Poinear_ group. Together with a choice of the kinematic _ubgroup the ma_

operator specifies the relativistic d)tnarnies.

On the basis of these observations it is possible to obtain the electromagnetic

form factors of constituent quark models in a manner consistent with the require-

ments of Poinear_ eovarianee. _ This construction separates the req_irements

of relativistic invariaJaee from the decisions on the degrees of freedom which, for

physical reasons_ ought to be represented explleitly in the model.

This paper is an attempt to illuminate tFhe connection between the relativistic

particle dynamics described above and the quantum theory of fundamental fields,

wldeh specifies the dynamics by a functional integral in Euelldean space-time, a'r

Fundamental fields are operator valued distributions." Products of the field

operators applied to the physical vacuum state span the Hilbert space of the

theory. The field operators transform eovarianfly under a unitary representation

of the Poinear_ group. A connection between the fundamental fields and the

relativistic quantum meehanies of constituent quarks can be found if there is a

unitary map of a Poinear_ invariant subspaee of the Hilbert space of the field

theory onto the Hilbert space of the constituent-quark. The existence and the

properties of such a map depend on the properties of the Wightman functions,

which, are determined in principle by the Lagrangean of the field theory, e'r

Conventional connections between quantum field theory and quantum mechanics



involve either static appro_mations appropriate only for sui_iciently massive

particles, or the perturbative Fock space. Neither approach seems adequate for
constituent quarks. Time ordered Green functions and other matrix elements

of time ordered products of local fields are useful quantities directly related to

observable scattering amplitudes. However, they do not permit the reconstruction

of the Hilbert space of the field theory and provide therefore no access to relativistic

quantum mechanics of constituent particles.

In Sec. 2. I briefly review the relativistic quantum mechanics of constituent

quarks. For the general background and more details see refs. 4 and 5. In Sec. 3

I attempt a formal sketch of the relation to quantum field theory.

2. Relativistic Dynamics of Constituent Quarks

The bound-state wave function of a nucleon,

, (2)

consisting of three constituent quarks is a symmetric rotationally invariant func-

tion of the internal momenta _, subject to the constraint _ + q'2+ q'3- 0, spin

variables, _i = :h _,1 and the isospin variables, Ti = ± _'I The total spin operator
acting on these functions is

3

i=1

By de£uzition the operators ffi are canomcaJly co_ugate to the internal momenta

q'_, and they commute with the operators _i assoclated with the spin variables Yd.

The four-momentum operator, P is determined by the mass operator and three

kinematic ,=omponents. The choice of three kinematic components of the four-

momentum implies the choice of the kinematic subgroup of the Poincar4 group

and thu_ the _form of dynamics". ° Let n := {-1,rf} be a null vector r__ --" 0.
If the kinematic subgroup leaves the null-plane z+ := r_.z = 0 invariant, the

nu]l-plane momentum,

P := {P+ :,= n.P,P_. := P- rf. , (4)

is covariant under the kinematic boosts,

P+ _ e*P+ , P.L _ P_ + ba.P + (5)

specified by the paxameters -oo < a < c_ and b_.
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States in the three _uark Hilbert space are thus represented by functions of the

Mnemafic components of the total four-momentum, the internal momenta, spin ,

and flavor variables, _(P, 4"1,4"2,q-_,]21,/_2, ]_s, rl, r2, rs) with the scalar product

--/ /119112 dsP daql d q2 d3q3 _(¢1 "+"_ "+"_)

× ___ _ I*(P'q'_'4"2'_'_l'_2'_a'rx'_2'ra)l 2 , (6)

where

d_P:= _'P_O(v+)dP*/2P+ (7)
is invariant under the kinematic Lorentz transformations. By definition the spin

operator (3) commutes with the null-plane boosts (5). The ten generators of the

Poincard group are determined by the mass operator, the three components of

the total spin, the three kinematic components oi" the four-momentum, and the

three generators of the null-plane boosts. An eigenfunction of the tour-momentum

is constructed as a simultaneous eigenfunction of the mass and the kinematic

components of the four-momentum,

Iv,,,J) -, _,,,j(P, 4:,,q_,4"_,_,_,_,_,1,_,_'_,__,__) (s)
= ¢...,,A_'_,4"_,qS,_,_,_,_,_,_,_'_,_'_,n)6(P - pN)v_v•

Nowhere in this construction did I assume that the particles are free, or "approxi-

mately free". However, noninteracfing particles live in the same Hilbert space. In

that case the mass operator is

Mo=Z v/m+e,
i

and the spin operator _'i is equal to the canonical spin of the lth particle for

P = {Mo, O, O, 0).

The "impulse approximation" for the currentoperators assumes that the

currentscan be approximated by a sum ofone-body operators.In order to make

thispreciseit is necessaryto considertensorproducts of single-quazkHilbert

spaces.Vectors in a slngle-quarkHilbertspace,HI_ are representedby functions

g(p,A),with the scalarproduct

g) = / dSP Z [g(p' A)]2 ' (10)
(a,

where A is the component of the null-plane spin in the direction of _,. Given a mass

m the unitary representation of the Poincard group is specified as described above.



The null-plane Spin operator i are invarh, mt under null-pla_m boosts. Vectors in

the tensor product 7"{3 := 9tl :< 7"il x ni of three single-particle Hilbert spaces
axe thus represented by functions

@(pl, AI, p2, .._2, p_,A3)- ffg(P,_I,_I,±,AI,_2, q_,:,A2,_3,(t_,j.,A3 , (II)

where

P = p_, 4_= _-_, q_,= __ - _ ,
i

and

d'pld'p2d'p, =d'pd41 d_2 d_5(4_ + _2 + 4, - 1)
_I 42 _3 (13)

x d_q_;d2q2_d_q_=6(_'_.+ _ +¢3_) •

In tlds representaT.ion the assumption of "one-body" current operators can be
stated in the obvious manner,

<p_,_,p_,_',p_,_]X"(-)ip_,_,p..,_2,p_,_,> = <P_,_ l"(x) iP,,_,>

× _(p_ - p_.)_(_ - _)_(p_ - p_)_(_ - _) + pe=_u_tio_,
,(_4)

These operators are covari_.nt only for free particles, where the Poincar6 repre-

sentation on 9t2 implies the product representation on "H3. In genera/there must

be two- and three-body operators in order to satisfy the requirements of Lorentz

covaxiance and current conservation. It is possible, however, to assume with-

out inconsistency that only one-body currents contribute to the matrix elements

<P', A_] I+(0) PN, AN), if the orientation of the null plane is chosen such that

Q+ _= p+' - p_+ vanishes. These matrix elements are sui_.cient to obtain the elas-
tic form factors. In this context the "impulse approximation" is a possible model

assumption for the current.

There remMns the task of establishing the ,mitary equivalence of the function

spaces specified by (6)-(7) and (11)-(13)respectively. This is done by considering

the equivalence of the free-particle Poincar6 representations in the two function

spaces. I note that

Mg= _ _ + m_= _+ ¢_ , (_)

where

- _,_ (_)M_- +_'_ := 2 M0_ "

The canonical spin operators _-'i are related to the null-plane spins i_ by Melosh
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rotations

The matrix representation of 7_M,

1 [rn + _M0 -iS. (K x q'-)l (18)- ,
gives the relation between the spin variables tt and _.

Thus the functions H(P, q_, _, q'a, #1,1*2,/ta) represent vec_,ors in the tensor

product o£ three single-particle Hilbert spaces. As is the case in nonrelativistic

quantum mechanics states of interacting and norfinteracting particles are repre-

sented by functions in the same space. The interaction dependence oi" the dynamAc

Poincard generators enters only through the mass operator. For interacting par-

ticles one could_ of course, introduce an interaction dependence into the relations

between the functions (6)-(7) and (11)-(13). However, that would be inconsis-

tent with the physical assumptions underlying the impulse approximation which

imply that the one-body current operator should be the current of a free particle

of mass rn_ oblivious of the presence of other particles. As such it should not

depend on the interactions, or on the mass of the nucleon. The constituent-quark

mass appears in this picture as a parameter in the model assumptions specifying

the quark current.

3. From Fuzadamt:ntal Fields to Constituent Quarks

In order to ests, blish a relation of the quantum mechanics of constituent quarks

described in the previous Section to the dynamics of fundamental fields I will start

with certain axiomatic assumptions. 8 The objective is to find an isometric map

of the quantum mechanical Hilbert space into a Poincare invariant subspace of the

Hilbert space 'H of the field theory, la This map shmdd provide a relation between

the field dynamics specified by the Lagrangean and the dynamics specified by the

unitary representation of the Poincar_ group in the quantum mechanical Hilbert

space.

Let '¢(a_) be the fundamental quark field. There is a unitary representation of

the Poincard group in the Hilbert space 7"/of the field theory such that the vacuum

state _'t is invariant,

U(A, a)n = _ , (19)

and the field satisfies the covariance relations,

Ut(A, a)¢(a_)U(h, a) = S(A)¢(A-la_ + a) , (20)

where the matrix S(A) is the Dirac spinor representation of the Lorentz transfor-
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marion A. I am suppressing color and flavor quantum numbers. Products of fields

folded with Schwartz functions [infinitely differentiable functions that decrease

faster than any power], 12 h E S(_R4), applied to the vacuum state generate state

vectors in the Hilbert space 7"/, e. 9.

wh_

_3(h) := f d4z¢(z)h(z). (22)

Linear combinations of such states span a subspace of baryon number one. The

scalar product of these vectors implies a scalar product for functions h(za, z2, zl)

of three space-time points,

(h,h) = d4_i... #=_...h(=i,...)W(...,=i;_,...)h(...,=_) >_o,
(231

where W is the Wightman function,

' '. (n, ¢(=_)¢(=_)¢(_I)¢(=_)_(=,)¢(_)n)• (24)>vC=_,=_,=_,=_,=_,=_).=

Since the scalar product is not strictly positive the correspondence between the

functions and the states is many to one. It follows from the invariance of the

vacuum (19) and the covariemce of the field operators (20) that the scalar product

(23) is invariant under the transformations

h(=_,...) -_ s(A-_).., h(A(_ - _),...). (25)

We have thus a representation of states by equivalence classes of manifestly

covariant functions with a nontrivial scalar product specified by the Wightman

functions, which specify the dynamics of the field theory.

In order to to establish the connection to quantum mechanics I will generalize

to spinor fields results obtained by Schlieder and Seller 13 for scalar fields. The

objective is to obtain one-to-one mapping to a subspace oi'9/of functions restricted

to the null plane z + = 0. Let x be any point on the null plane z + = 0, and let

f(x) be the Fourier transform of

f(p) := u(p,m)g(p) , (26)

where

gCP+'_"½) (27)
g(P) = g(p+, px, - _) '



and the null-plaue spinor amplitudes are

_.p_ + _ + p+I + _3 1+ _ m - _.p..,.I+_ (2s)"(P"_) := v_+ 2 2 = 2_ -T-'

where 7 _ :-- Box_, a ° := 1. Note that no p" appears on the right hand side of Eq.

(28) because 7 +2 = 0. Here the functions g(p+, _j., :k½) are Schwartz functions in

the space _(_3) defined in ref. 13. These functions are Schwartz functions that
vanish for p+ = 0. [See Eq. (2.4) of ref. 13] They are a dense set in Hilbert space

7_1, with the scalar product (10),

(f, f) :: / _p+dp+/d'pjO(p+)f(p)f(p) = (g,g) . (29)

The mass m is a parameter in the definition of f(x), unrelated to the £eld _b(x).
If the operators

_(f) :: / dax_(x)/(x) . (30)

exist their products may provide the desired mapping from 7"/5 into 7"/. lt is

necessary that the norm l[_(f)n![ be finite =d nonzero for ali 9. This norm

depends on the two-point Wightman function, ]tC2(z, z') := (n, _b(z)_(a:')fZ),

ll,_(/)nll=- / d_x/ d3x'l(x)W=fx,,e).:(x'). (3_)

In order to show that the norm is finite and nonvanishing I assume that W2 has

the Lehmann representation 14

OO

w,(_,_'/- (_.,0_ e'p d_'o(p°/6(p'+,_')[A(,:/-B(_'b_]__,c'-''_ , (32)
, 0

It follows from Eq. (32) that the norm,

[[_(f)f_[]2 = [ dap Z [g(P' A)[2[ d_;2[A(_2) + r_B(_2)] ' (33)
d

A

is finite and positive for ali non vanlsh.ing functions g if the integrals over _ are

finite,

/ dtc'A(t_') < co and / d,2B(tc2) < oo, (34)

Let la(xi) and/2(x_) be two functions with support on different null planes. In

'.llllq_ ,p_i_lll,,ifr, '_" iI_l' ii,,,,,,i, 'irll, ii_1 ,llliI



general the scalar product,

does not vanish, lt is easy to verify with Eq.(32) that for any fl on the first null
plane there e_sts an 2c2on the second null plane such that the scalar product (35)
differs from zero. It follows that functions with support on a different null planes
generate the same space of states. This space is therefore Poincar_ invariant.

Fo_a freefieldofm_ _ the functions.4(_2)and B(,_2)wouldbe proportional
to the deltafnn_tion,6(,_2 - _2),

.,1(,<2)= _B(,<2)= _ 6(_2__2), (30)

which yields the free-fleld Wightman function,

w2s(,,- _') ; (_.¢)_ Opo(p°)6(p_+ ,_2){,_-"y'p]¢"(=-") • (37)

For confinedquarks there is no delta-functionsingularity in A(_ _) and B(t¢2).

The scalar product of states xi, defined by

I J' iq, := d3Xl dSx2 d'xs _(x,)_(x2)_(Xl)_/(x_,x2,xa),(38)
(

implies for the functions f the scalar product

(f'f) := /d3xl/d3x2/d3x3/d3x_ i dsx'i d3x_ (39)

The si.x-point Wightman function in this expression is a sum of products of
two-point functions and truncated 4-point functions plus the truncated six-point
function. Under suitable restrictions on _he truncated Wightman functions
this scalar product is strictly positive, and the space spanned by the states

(38) is Poincar6 invariant. '_he covariant Wightman functions tbus specify the
representation of the Poincar6 group in the function space, where the scalar
product is given by restriction of the Wightman function to a null plane. Since
this restriction provides a nonsingular Hilbert-space measure the space is related
to the quantum mechanical Hilbert space _3 by a similarity transform.

The fundamental Lagrangean determines the Euclidean functional integral.
The moments of this functional integral (Schwinger functions) determine the
Wightman functions and the properties of the field operators. These relations
establish in principle a connection between the fundamental Lagrangean and the
Poincar_ invariant quantum mechanics of constituent quarks.
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4. Conclusions

Quantum field theory and relativistic quantum mechanics are each formulated

as a theory of operators acting on a Hilbert space of states with Lorentz transfor-

mations and translations implemented by unitary transformations. I have shown

that the Wightman functions of the field theory can provide unitary map from a
Poincard invariant subspace of the Hilbert space of the field theory onto the quan-

tuna mechanical Hilbert space of constituent quarks. The Wightman functions thus

determine the dynamics in the model Hilbert space of the constituent quarks. It

should be emphasized that covariant amplitudes defined as matrix elements of

time ordered products of fields do not represent vectors in any Hilbert space. The

use of "light-cone variabl_.s" in the context of a Green function formalism should

not ]rs confused with the null-plane dynamics discussed in this paper.
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