

MASTER

COO-1672-74

RADIOCHEMICAL INVESTIGATIONS OF NUCLEAR PROPERTIES

Progress Report

for Period October 1, 1977 to December 31, 1978

Patrick J. Daly
Principal Investigator

Purdue University, West Lafayette, Indiana 47907

January 1979

Prepared For

THE U.S. DEPARTMENT OF ENERGY
UNDER CONTRACT NO. EY-76-S-02-1672

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the Energy Research and Development Administration, nor any person acting on behalf of the Commission:

- A. Makes any warranty of representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

As used in the above, 'person acting on behalf of the Commission' includes any employee or contractor of the Administration, or employee of such contractor, to the extent that such employee or contractor of the Administration, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Administration, or his employment with such contractor.

Abstract

Results of (α , $xn\gamma$) and (Heavy Ion, $xn\gamma$) investigations of high-spin excitations in spherical and transitional heavy nuclei are summarised. Considerable progress has been made in studies of the level structures of $^{187,188,189}\text{Pt}$ and of $^{200,201,202}\text{Pb}$. Investigations of the structure of the $Z = 64, N = 82$ nucleus ^{146}Gd and of other nuclei consisting of the ^{146}Gd core plus one, two or three valence nucleons are also briefly described.

I. Research Activities

The research activities of our group during the contract period can be divided naturally into two categories. On the one hand, we have pursued our investigations at the Michigan State Cyclotron Laboratory of the high-spin excitations of the transitional nuclei $^{187,188,189}\text{Pt}$ and of the spherical nuclei $^{200,201,202}\text{Pb}$. Several additional measurements were performed aimed at completing these particular studies before the impending shutdown of the MSU machine for the installation of the 500 MeV superconducting cyclotron. The other line of research has concerned the structure of Gd, Tb and Dy nuclei in the neighborhood of the N=82 closed shell. These are collaborative studies which the principal investigator was involved in during a sabbatical year 1977-78 at the Institut für Kernphysik, KFA Jülich; some of the results have already been published and others are being worked up towards publication at Jülich and at Purdue. Progress in the various projects is summarised in the following sections.

The Light Pt Nuclei $^{187,188,189}\text{Pt}$

We have expended considerable effort on unravelling the extremely complex level structures of these three Pt nuclei by $(p,xn\gamma)$, $(\alpha,xn\gamma)$ and $(^{12}\text{C},xn\gamma)$ reaction spectroscopy and by radioactive decay spectroscopy.

The breakthrough in understanding the ^{188}Pt high-spin level spectrum was described in our last annual report¹⁾, and the full level scheme is shown in Fig. 1. It is, as far as we know, the only nucleus in which rotation-aligned states of $\text{vi}_{13/2}^{-2}$ or $\text{th}_{11/2}^{-2}$ character are observed to de-excite predominantly to the γ -vibrational band. These ^{188}Pt results were reported

at the Dresden High-Spin Conference and at the 1978 Washington APS meeting: they are currently being written up for publication.

Work on the level structures of the two odd-A nuclei is also nearing completion and the resulting level schemes are shown in Fig. 2. The ^{189}Pt level structure is particularly intricate with well developed odd-parity bands as well as an extensive $\nu_{13/2}$ family of levels. In the case of ^{187}Pt , three weaker γ -ray cascades, which are probably counterparts of the odd-parity bands in ^{189}Pt , were observed, but since we have been unable to fit them together with the $\nu_{13/2}$ levels, they are omitted from Fig. 2. These results have been interpreted in terms of the triaxial rotor model²⁾; they illustrate rather nicely the gradual shape change from prolate to oblate that occurs across the Pt isotopes. A paper on the $^{187,189}\text{Pt}$ level structure is also in preparation.

High-Spin Excitation Modes in Light Pb Nuclei

Earlier³⁾ we explored the high-spin level spectra, up to $I^\pi=29/2^-$, of the five odd-A Pb nuclei in the $A=195-203$ mass range; the results formed S. K. Saha's Ph.D. thesis, completed in January 1978. We have gone on to investigate the high-spin excitations of the nuclei ^{200}Pb , ^{201}Pb and ^{202}Pb above the known 9^- isomers in the even-A nuclei and the $29/2^-$ isomer in ^{201}Pb .

Extensive γ - γ -t coincidence and $t_{\gamma\text{-RF}}$ timing measurements using (α, xn) reactions on enriched Hg targets have yielded new and detailed high-spin level schemes in all three nuclei. In contrast to ^{204}Pb , which has no known high-spin isomers⁴⁾, several isomers with half-lives in the range 20 to 180 ns have been located in each of the even-A nuclei. The previously

reported⁵⁾ 200 ns 12^+ isomer at 3103 keV in ^{202}Pb could not be confirmed; instead, we identify a 21 ns isomer at 3238 keV as the 12^+ state of $\text{vi}_{13/2}^{-2}$ character in this nucleus. The corresponding state in ^{200}Pb is found at a slightly lower energy.

There are still definite problems in interpreting the established level schemes and, particularly, in deciding the configurations of the several isomers located above the 12^+ states in ^{200}Pb and ^{202}Pb . The main difficulty is that the usual method of inferring transition multipolarities from γ -ray angular distributions has proved to be of limited usefulness in nuclei containing so many rather long lived isomers. In an attempt to solve some of the problems, we performed in-beam conversion electron measurements in our most recent run, but the results have not yet been analyzed.

Excitation Modes in $^{146}_{64}\text{Gd}_{82}$ and Neighboring Nuclei

While the principal investigator was on sabbatical leave at KFA Jülich, Germany, he collaborated in an interesting series of experiments involving nuclei in the neighborhood of the N=82 closed shell. On the basis of γ -ray angular distribution results, Kleinheinz et al.⁶⁾ had interpreted the 1579 keV first excited level in ^{146}Gd as the 3^- octupole state, and not a 2^+ state as had been previously claimed. It was desirable to test this conclusion using more widely accepted experimental methods. Accordingly, in the first experiments the K-conversion coefficient of the 1579 keV transition was determined accurately by e^- and γ -ray measurements, and the half-life of the 1579 keV level was determined as $T_{1/2} = 1.06 \pm 0.12$ ns. The results

showed that the 1579 keV transition indeed had pure E3 character, and that the B(E3) value was 37 ± 4 Weisskopf units, comparable to the large values found for enhanced $3^- \rightarrow 0^+$ transitions in the Pb region. These were rather significant results establishing ^{146}Gd , with Z=64, N=82, as the only nucleus besides ^{208}Pb with a 3^- first excited state.

It then seemed important to determine the true location of the lowest 2^+ state in ^{146}Gd . In a specially designed experiment involving careful $^{144}\text{Sm}(\alpha, 2n\gamma)$ threshold measurements, that 2^+ state was identified at 1971 keV - more than 300 keV higher than in any other N=82 isotope. This result provided a strong indication that the energy gap in the single particle level spectrum at Z=64 is unusually large, perhaps as large as the gaps observed at the magic numbers.

Subsequently, a more comprehensive study of the high-spin level structure of ^{146}Gd and ^{147}Gd by in-beam γ -ray and electron spectroscopy established detailed level schemes for the two nuclei to above 4 MeV excitation energy. An analysis using empirical single particle energies and two nucleon interactions characterized all the observed energy levels as particle-hole excitations (Fig. 3). Most importantly, the observed energies of pure 1 particle-1 hole states of the types $\pi h_{11/2}^{d-1} 5/2$ and $\pi h_{11/2}^{g-1} 7/2$ in ^{146}Gd showed that the Z=64 energy gap is approximately 3.4 MeV, which is nearly as large as the well established N=82 gap. The inferred proton and neutron single particle level schemes for the Z=64, N=82 region are displayed in Fig. 3.

The above studies showed that ^{146}Gd can be viewed as a doubly closed shell nucleus and that the shell model might be as successful in describing the excitation modes of nuclei consisting of the ^{146}Gd core plus a few nucleons as it has been in the neighborhood of ^{208}Pb . Accordingly,

investigations of the previously unknown level spectra of the one-proton nucleus ^{147}Tb , the one-proton one-neutron nucleus ^{148}Tb , and the two-proton nucleus ^{148}Dy were undertaken. The analyses and interpretation of the data for the Tb nuclei are still in progress but it is already clear that the results will be interesting and unusual. The ^{148}Dy study is further advanced, and a preliminary report on the findings has already been published⁷⁾. In this nucleus, a complete j^2 -spectrum of $\pi h_{11/2}^2 0^+$, $2^+, -10^+$ levels was observed and an effective $\pi h_{11/2}$ charge of 1.53e was extracted from the measured $10^+ \rightarrow 8^+$ E2 transition probability. The results also provided a valuable extension of the 2^+ and 3^- energy systematics for the N=82 isotones.

Apart from the intrinsic interest of the spectroscopy of these nuclei, the establishment of accurate single particle level spectra for both proton and neutrons around Z=64, N=82 was important because it is this region that a much discussed Copenhagen-Darmstadt experiment⁸⁾ located an island of high spin isomers. Many workers seem inclined to identify these isomers as the yrast traps first suggested by Bohr and Mottelson⁹⁾. In a separate investigation, we found that α -particle induced reactions on Sm targets populate high-lying isomers in ^{146}Gd and ^{147}Gd , which are clearly identical to the two best established isomers reported by the Copenhagen-Darmstadt team. Moreover, we were able to show that these isomers have rather modest spin-values ($\sim 20 \hbar$). Therefore, these two isomers cannot be the very high-spin yrast traps theoretically predicted for this region. Since the levels observed in these nuclei below 4 MeV are convincingly explained in terms of shell model configurations of seniorities one, two and three, it seems much more natural to interpret these isomers as

as spherical shell model states of higher seniority.

It remains to be seen whether the other members of the reported island of isomers could be the predicted yrast traps in deformed nuclei rotating around a symmetry axis. Studies of the detailed spectroscopy of the nuclei above the $Z=64$, $N=82$ shells should provide answers to this topical question.

Summary

The research performed during the contract period followed closely the outline submitted in our renewal proposal. The principal investigator devoted approximately 40% of his time and effort to this project during the period.

References

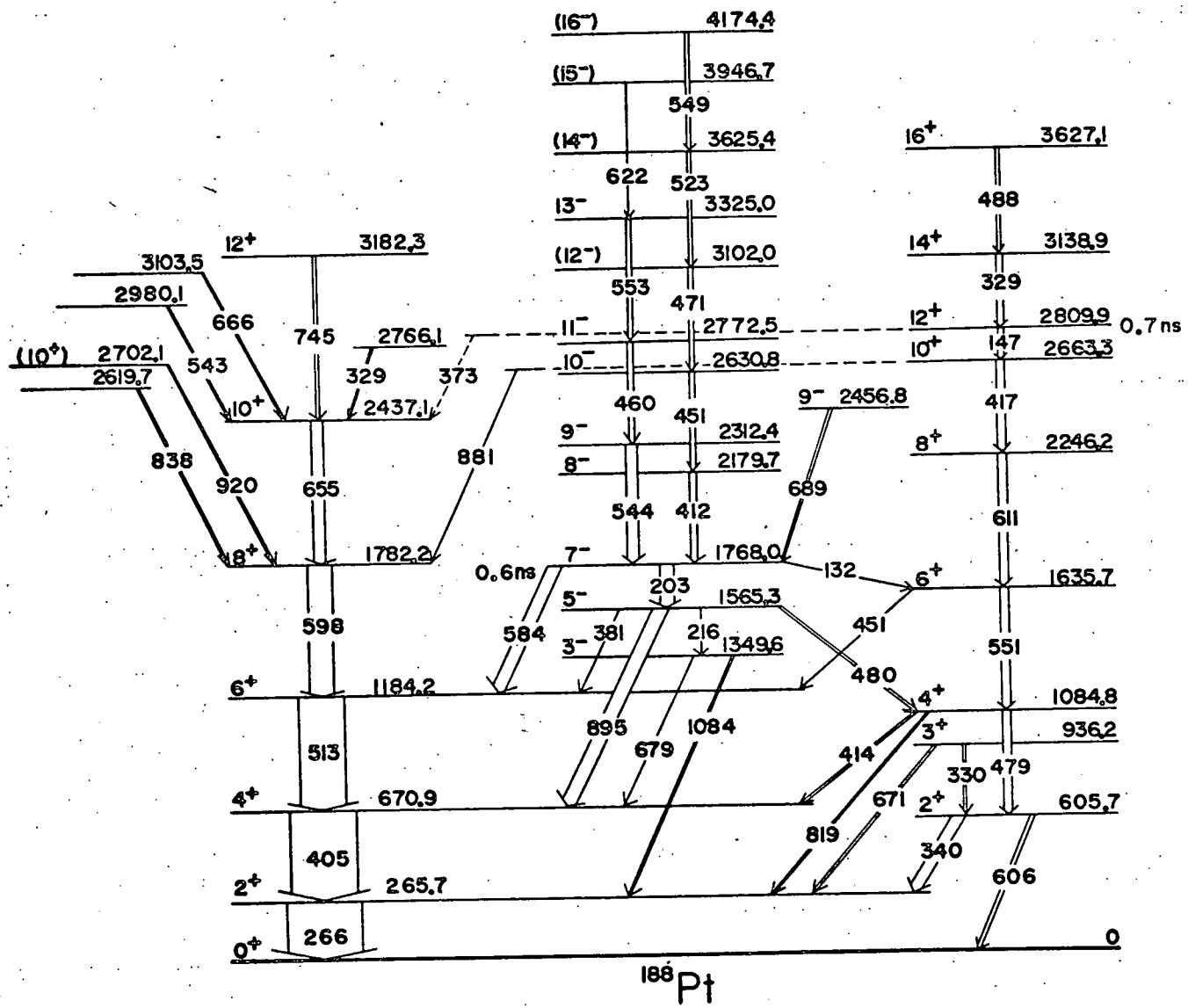
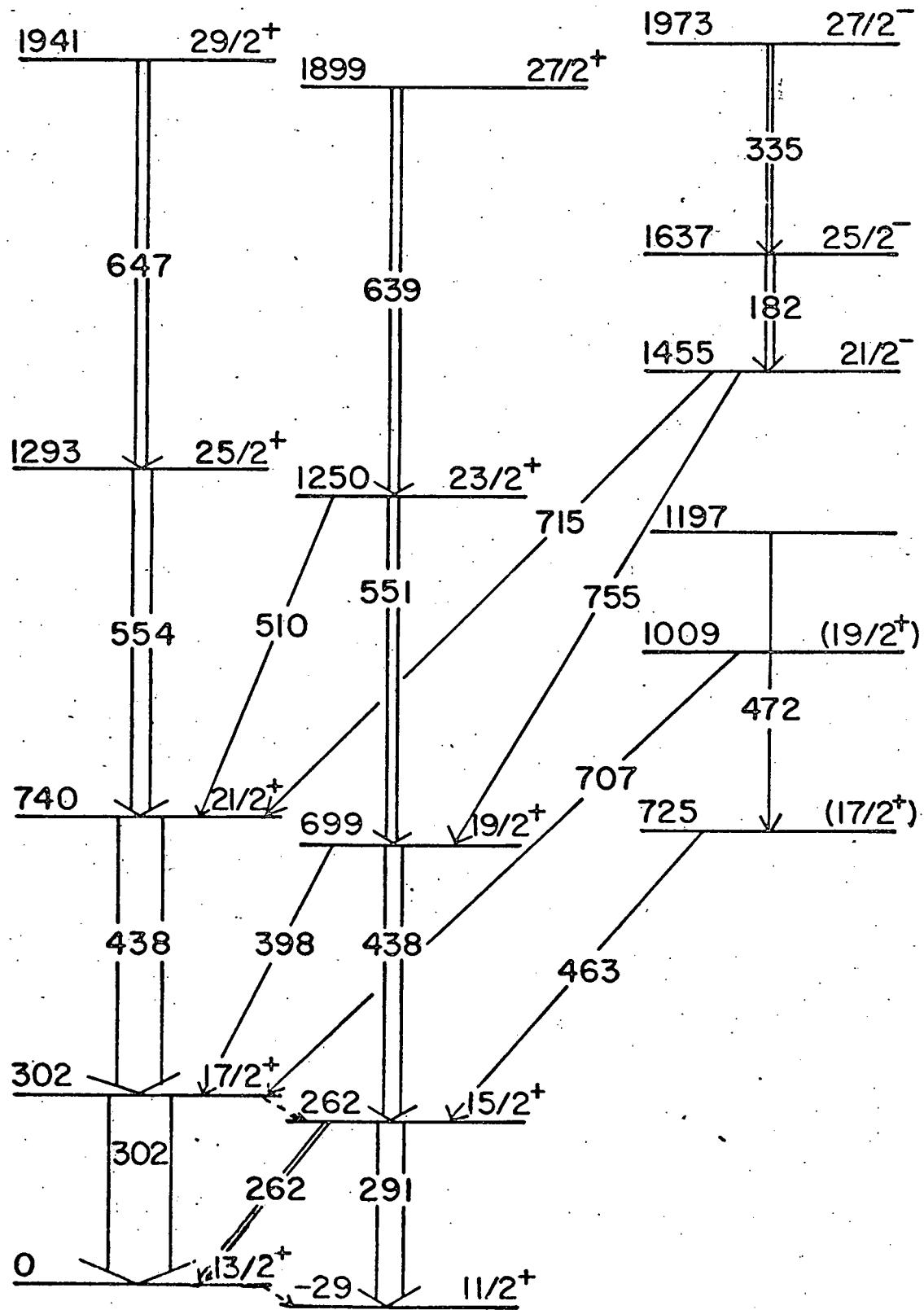

1. P. J. Daly, ERDA Report COO-1672-73 (1977)
2. J. Meyer-ter-vehn, Nucl. Phys. A249 (1975) 111 and 141
3. H. Helppi et al., Phys. Lett. 67B (1977) 279
4. C. G. Linden et al., Z. Physik A284 (1978) 217
5. Nucl. Data Sheets 25 (1978) 705
6. P. Kleinheinz et al., Z. Physik A284 (1978) 351
7. P. J. Daly et al., Z. Physik A288 (1978) 103
8. J. Pedersen et al., Phys. Rev. Lett. 39 (1977) 990
9. A. Bohr and B. R. Mottelson, Phys. Scr. 10A (1974) 13

Figure Captions


Fig. 1 The ^{188}Pt level scheme

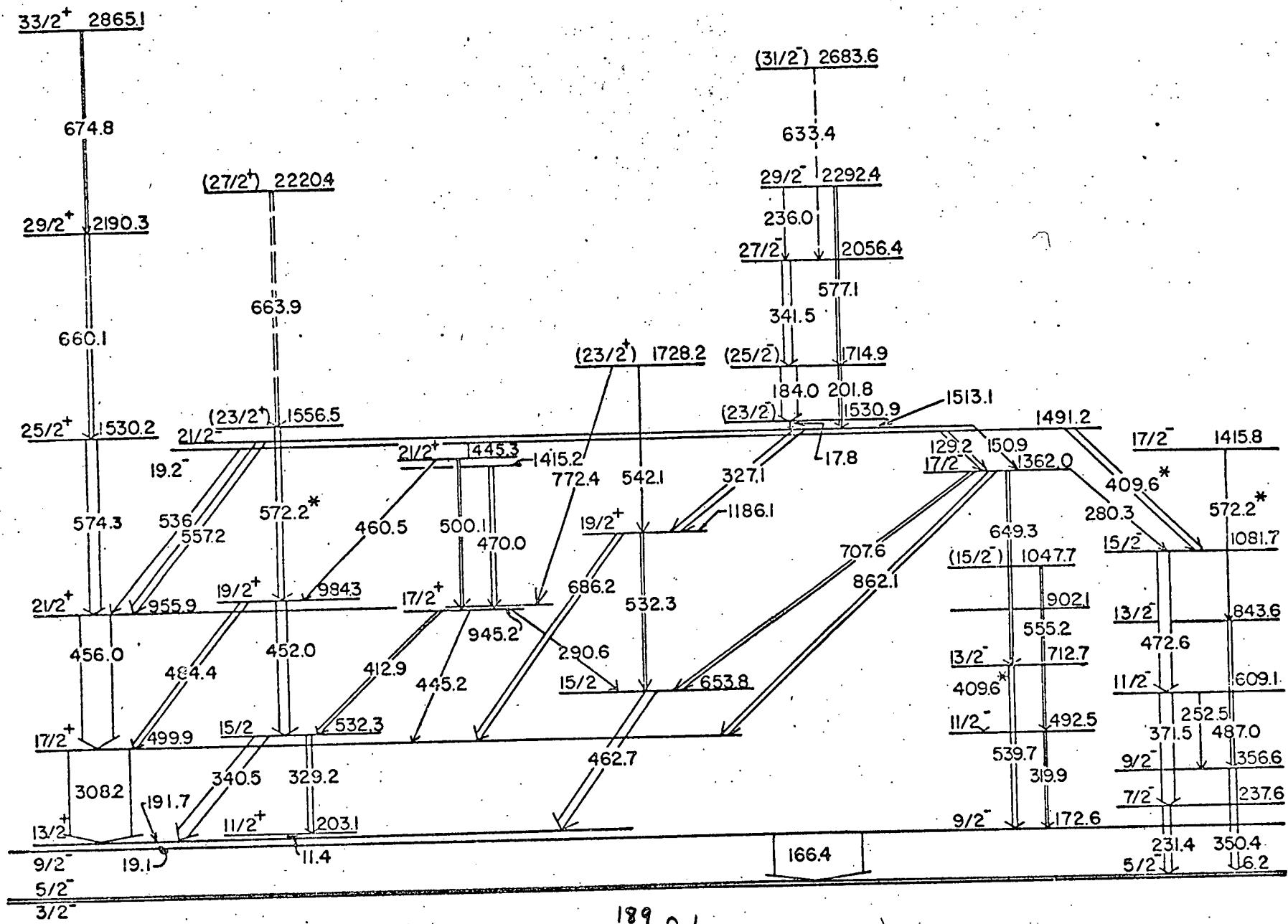
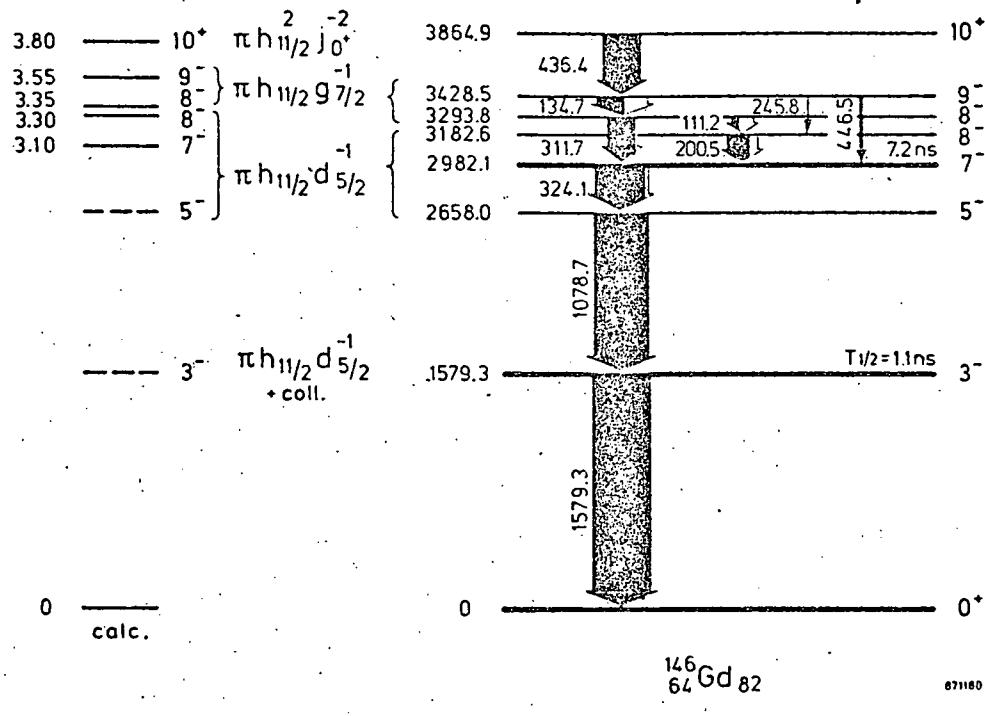

Fig. 2 The level schemes of the odd-A nuclei ^{187}Pt and ^{189}Pt

Fig. 3 The ^{146}Gd level scheme, configuration assignments and theoretical level energies; the empirical single particle level spectra in this region are also shown.



¹⁸⁷ Pt

^{189}Pt

PROTONS

(82)

NEUTRONS

3p $3/2$	$1h_{9/2}$	—	—	—	5.97
	$1i_{13/2}$	—	—	—	6.37
		—	—	—	6.22
		—	—	—	
2f $7/2$	—	—	—	—	7.37

III. Personnel

Senior Staff

Dr. P. J. Daly, Professor of Chemistry, Principal Investigator

Dr. C. L. Dors, Research Associate

Graduate Students

S.K. Saha[†]

J. Wilson

Service Staff

J. Hoffman, part-time electronics technician

J.H. Biddle, part-time secretary

[†]Terminated Feb. 1978 on obtaining Ph.D. degree.

Reprints removed

IV. Publications and Talks

High-Spin Level Structure of the Five Neutron Hole Nucleus ^{203}Pb , S. K. Saha, H. Helppi, P. J. Daly, S. R. Faber, T. L. Khoo and F. M. Bernthal, Phys. Rev. C 16 (1977) 2159

Production of High Multiplicity Yrast Isomers in ^{147}Gd and ^{146}Gd in α -Particle Induced Reactions, R. Broda, M. Ogawa, S. Lunardi, M. R. Maier, P. J. Daly and P. Kleinheinz, Z. Physik A285 (1978) 423

Properties of the 3^+ First Excited State in the Doubly Closed Shell Nucleus ^{146}Gd , P. Kleinheinz, M. Ogawa, R. Broda, P. J. Daly, D. Haenni, H. Beuscher and A. Kleinrahm, Z. Physik A286 (1978) 27

Lowest 2^+ State in $^{146}_{64}\text{Gd}_{82}$ and the Energy Gap at $Z=64$, M. Ogawa, R. Broda, K. Zell, P. J. Daly and P. Kleinheinz, Phys. Rev. Lett. 41 (1978) 289

A $0.5 \mu\text{s}$ 10^+ Isomer in ^{148}Dy and the $\pi h_{11/2}$ Effective E2 Charge, P. J. Daly, P. Kleinheinz, R. Broda, A. M. Stefanini, S. Lunardi, H. Backe, L. Richter, R. Willwater and F. Weik, Z. Physik, A288 (1978) 103

Particle Hole Yrast States in ^{146}Gd and ^{147}Gd and the $Z=64$ Shell Closure, P. Kleinheinz, R. Broda, P. J. Daly, S. Lunardi, M. Ogawa and J. Blomqvist, Z. Physik (1979) in press

Extensive $\nu_{13/2}$ Level Families in ^{187}Pt and ^{189}Pt , Am. Physical Society, Washington, D.C., April 1978; abstract published in Bull. Am. Phys. Soc. 23 (1978) 628 - given by C. L. Dors.

High-Spin Level Structure of ^{188}Pt , Am. Physical Society, Washington, D.C., April 1978; abstract published in Bull. Am. Phys. Soc. 23 (1978) 628 - given by C. L. Dors.

A Touch of Magic at Z=64, Physics Departmental Colloquium, Jyväskylä University, Finland, May 1978 - given by P. J. Daly.

A Touch of Magic at Z=64, Nuclear Chemistry Seminar, Purdue University, Sept. 1978 - given by P. J. Daly.

Nuclear Shells, Shapes and Structures, Physical Chemistry Seminar, Purdue University, October 1978 - given by P. J. Daly.

A Touch of Magic at Z=64, Nuclear Physics Seminar, Argonne National Laboratory, November 1978 - given by P. J. Daly.