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ABSTRACT

A Panofsky Long lon Chamber (PLIC) is essentially a gas-filled
coaxial cable, and has been used to protect the Stanford Linear
Accelerator from damage caused by its electron beam, and as a
sensitive diagnostic tool. This old technology has been updated
and has found reucwed use in the SLC. PLIC systems have been
installed as beam steering aids in most parts of the SLC and are
a part of the system that protects the SLC from damage by
errant beams in several places.

1. INTRODUCTION

The use of a single coaxial cable as a long ion chamber was
initially proposed by Panofsky in 1963.! A PLIC is a gas-filled
coaxial cable supplied with high voltage, which detects beam
losses along a beam line. It is useful as both a beam diagnostic
device and as a machine protection element. The PLIC in the
Linear Accelerator (linac) is made from 1.63-iach (4.1-cm) diam-
eter RG-319/U coaxial cable. In the accelerator housing, this
original PLIC system has protected the disc-loaded waveguide
and beam profile monitors from catastrophic beam damage for
more than 20 vears.® Within the past 10 years, stripline beam
position monitors were installed and the trip threshold of the
PLIC system was reduced and has success{ully protected them.
Pulses produced by radiation incident to the PLIC cable prop-
agate along the cable, thus providing a time-resolved indication
of the location of beam losses and are particularly helpful in es-
tablishing and tuning beams. The PLIC is a relatively simple
system that provides a real time, easy to interpret, display of
beam losses induced by mis-ateering and mis-focusing.

2. PLIC IN THE SLC ARCS

It was easy to make the linac system useful for beth pro-
tection and disgnostics, ia that the structures along the linear
accelerator housing are nearly uniform in their effects on PLIC
sensitivity. A joule of bearn dumped in any manner over any
short region along the linac will produce nearly the same PLIC
signal (roughly 0.06 V). In tests, the signals have been observed
to vary by perhaps 220%, except in a few special places.

Ia the SLC Arcs, radiation from the thin beam pipes is al-
ternately shadowed to left and right by 8-foot magnets. The
back legs of the magnets are effective radiation shields. When
electrons strike the beam pipe, most of the resulting electromag-
netic shower directed toward the back leg is absorbed. However,
the other side of the beam pipe is clearly seen by one PLIC ca-
ble. Additionally, since the shower is directed sirongly forward,
most of the shower will be absorbed in the next magnet down-
stream. The resulting PLIC sensitivity is not obvious.

Shower calculations were performed? using the EGS4 Monte
Carlo program® to demonstrate how radiation reaches the PLIC
detectors. A semi-infinite slab geometry was used for the SLC
Arcs, as depicted by the center sketch in Fig. 1. The beam pipe
is represented by the dark curved lines that extend from left to
right along the general direction of the beam. The figure is pur-
posely distorted so that the total horizontal distance represents
12.5 m, whereas the vertical distance covers about 16 cm an ei-
ther side of the heam pipe. The curvature corresponds to that
of the SLC arcs. The cross-hatched areas represent magnet iron;
beam pipe matetial is aluminum (1-cm diameter, 1-mm thick),
and all the other regions are vacuum.
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Fig. 1: Energy seaching PLIC surfaces in SLC Ares.

The circle and ray indicate the location and direction, re-
spectively, of a typical electron beam hitting the SLC beam pipe
at an angle of 1 mrad. As stated, most of the energy gets de-
posited in the magunet iron. However, a small fraction does reach
the two PLIC surfaces as indicated in the plots surrounding the
geometry sketch—i.e., 9.8% at PLICI and 3.7% at PLIC2—and
this can provide a reasonable PLIC signal. To determine if there
are times when the shower leakage is effectively hidden from ei.
ther or both PLICs, the incident beam position was varied over
the lattice. We found that the energy percentage seen by an
individual PLIC ranges {rom 2-20%.

Fortunately, when one PLIC becomes hidden from the
shower, the other becomes visible. Numerical calculations
showed that if the signals from the two PLIC cables on both
sides of the beam pipe are added, the variation in seasitivity
is only 30% for events originating at different points along the
beam path through most of the Ares. The system is thus sat-
isfactoty for both beam diagnostic and machine protection pur-
poses in the SLC Arcs. Figure 2 shows the installation of the
PLIC cables in the SLC Ares.

3. DECREASING PLIC SENSITIVITY TO AVOID
SATURATION PROBLEMS

PLIC saturation is a problem at several places in the SLC
because of high radiation, and desensitized PLICS have been
installed in the Beam Switch Yard (BSY) and the extraction
line. Initial tests of desensitized PLICs were done in the BSY.

The geometry is more complicated in the BSY than in the
linac, as the structures are nonuniform. The beam pipe is only
a fraction of a radiation length thick. For perhaps half its
length, the pipe is covered by very thick radiation absarbers,
such as magnets and collimators; some of them are many ra-
diation lengths thick. [n other places, the beam pipes are sur-
rounded with shiclding of intermediate thickness. As a result,
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Fig. 8 PLIC cables in SLC Arcs.

a joule of beam loss might produce a PLIC signal of 1 V when
dumped in one place and 10 mV when dumped in another place.
To help make PLIC sensitivity more uniform, two PLIC cables
were used, mounted on either side about 4 feet away from the
beam pipe.

Maximum signal amplitudes obtained depend mainly upon
saturation effects, which occur at about 6 V with the gas mixture
of 95% argon and 5% carbon dioxide used for most PLIC systems
{with 250 V on the PLIC cable). The PLIC sensitivity can be
reduced in areas of high-incident radiation by adding freon to
the filling gas. Freon absorbs electrons and thereby reduces
sensitivity and extends saturation limits on signals.

The BSY system has separate filling-gas plumbing, so that
the sensitivity and ssturation jevels for the BSY PLIC cables
can be adjusted by changing the percentage of freon in them.

Measurements were made with a 1E1© particle electron
beam (75 J at the end of the linac) durnped near a large bend-
ing magnet, since consistent and large PLIC signals could be
obtained there. Three different gas mixtures were tested, with
the beam resteered for maximum PLIC vigoal near this same
large bending magnet each time. Resulls were as follows:

Table 1.

Freon | COz PLIC velts mV/joule | Sensitivity
% % out as ratio
3.0 3.0 0.26 347 1.0
0.3 4.7 20 26.7 .7
0.0 50 6.6 (saturated) -

10,0 (extrapolated) 133 38.3

The remaining gas is argoa in each case.

Although deposited PLIC charge/fjoule is the correct mea-
sure of PLIC sensitivity, the output voltage is proportional to
charge, and therefore may be used to compare sensitivities.

Because of the uncertainties in the relationship beiween en-
ergy loss and PLIC amplitude. the use of the PLIC for machine

protection in the BSY is not considered practical. However, the
BSY PLIC is extremely usefu] for beam steering, Signals origi-
nating in the BSY substantially exceed the signals in the Arcs
which appear on the same oscilloscope display. The 95% argon,
4.7% carbon dioxide and 0.3% freon gas mixture makes BSY
and Arc signal levels nearly equal on the oscilloscope display,
and works well as far a3 disgnostic use of the BSY PLIC system
is concerued.

4. OTHER PLICS IN THE SLC

Figure 3 is a map of the SLC showing all of the places that
PLICs have been installed, with each PLIC described briefly.
The timing and operation of the SLC have been discussed in
the SLC Design Handbook.®> The following are some general
comments concerning the PLIC system.

All the SLC PLIC systems have been made with 1/2-inch
coaxial cable (Andrew Corp H34-50). Electron collection times
increase, but propagated pulse rise time decreases with increas-
ing eable dizmeter. For the length of PLIC cables in the SLC
Ares—about 4000 feet—the two effects produce a broad mini-
mum in signal rise time, and therefore best spatial resolution,
for a cable diameter near 1/2 inch. Since s standard cable for
all PLIC systems ia desirabie, this cable was used in all of the
PLIC systems built for the SLC. This also happens to be the
least expensive cable suitable for 2 PLIC system.

Fiducial cables have been added to clearly mark particular
places along the PLIC system. These are coiled, 50-ns-delay
sections of nonsensitive cable {RG-214) inserted to provide a
zero-response baseline at known places. Additionally, the use of
1/2-inch cable has made it possible to thread the PLIC cables
through beamline components, such as magnets, that otherwise
would shield the PLIC.

8. CONCLUSION

We have described & number of PLIC systems installed in
the SLC. They are continuing to be extremely valuable tools for
beam diagnostics, and also to protect the SLC from damage by
its own beama in several places.
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Fig. 8: Qverall SLC layoat, showing PLIC installalions.
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