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ABSTRACT 
In this paper we present analytic formulas to estimate the 

vertical emittance in weakly coupled electron/positron storage 
rings. We consider contributions from both the vertical disper­
sion and linear coupling of the betatron motions. In addition 
to simple expressions for random misalignments and rotations 
of the magnets, formulas are presented to calculate the vertical 
omittance blowup due to orbit distortions. The orbit distor­
tions are assumed to be caused by random misalignments, but 
because the closed orbit is correlated from point to point, the 
effects must be treated differently. We consider only corrected 
orbits. Finally, the analytic expressions are compared with com­
puter simulations of storage rings with random misalignments. 

INTRODUCTION 
In an ideal uncoupled ring there is no vertical dispersion or 

linear coupling. Thus the synchrotron radiation opening angle, 
which is very small, determines the vertical emittance- In prac­
tice, ibis is not the case. First, vertical bending fields and a 
non-zero vertical orbit in the quadrupole magnets will directly 
introduce some vertical dispersion. Second, a non-zero vertical 
orbit through the sextupole magnets, vertical sextupole misalign­
ments, or rotational misalignments of the quadrupoles couple the 
horizontal and vertical planes. This coupling has two effects both 
of which increase the vertical emittance. It couples the horizon-
tal dispersion to the venical, causing an increase in the vertical, 
and it couples the x and y betatron motion so that energy is 
transferred between the two. 

In this paper we analyze the effects of the coupling pertur-
batively. i.e. assuming a large aspect ratio ( , / t , . We will first 
describe the dosed orbit correlation function which we use to 
approximate a corrected closed orbit, Next we will calculate the 
dispersion resulting from both * distribution of random errors 
and a corrected closed orbit. We will then calculate results for 
the linear coupling in a similar manner. Because the contribu­
tions from the vertical dispersion and the linear coupling are 
statistically independent, these contributions to <, simply add. 

CLOSED ORBIT 
We only consider the closed orbit after substantial correc­

tion. When the orbit is corrected its Fourier spectrum tends 
towards that of white noise. The orbit correction reduces th<' 
dominant harmonics on either side of the tune while increasing 
the other modes. We approximate this by assuming that the 
correctors "randomize" the orbit and thus points on either side 
of a corrector are uncorrected. 

The closed orbit is found using the periodic Green function 
for the ring. The driving term is: C?(J) = G„ + Bgd - K,yn 

where 0 a are bend rotations, ym are vertical misalignments, and 
C',t is the inverse bending radius of any vertical bending fields. 
Thus, the correlation function between two points J and s' is 

i+c »+c 

4sin-«-i>, J J (1) 
#' * 

x (G(Y)G(j)cos'cos) 
where $ = &tK:'\, cos = cos(»t-,|s) - «!>,(;) + tut\. zaJ — 
co5(i3,(i') - tl'jU') + »",). and C is the ring circumference. 
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Equation (1) can be written as the square of the dust-J îlnr 
at s multiplied by both COsAl/» and the square root of ihr* beta 
functions* plus a term of order As/C. Since wt assume that 
many dipole correctors are used, As/C will be small. Thus \w 
approximate the correlation function as 

( y c ( ^ M ^ ) ) ^ / S W j 
cos ,1$, No corrector* 

between .« AIHI . 

0, Otherwise 

where A((* = C»U') — (!>»(*) and the term (y;)/d» is th>* MJIIH---
of the residua] orbit after correction. Note that although 
could improve the approximation by assuming that the currii 
tion decays in some manner, rather than just dropping to- gr-r< 
our approximation should illustrate the essential behavior 

VERTICAL DISPERSION 
In the limit of small coupling, the equation for the K-rtK.il 

dispersion is 

n," + A'inF ~ A'lSfri?/ - Kill - C)t + A'I i:i: 

where ij r is the unperturbed horizontal dispersion and A*i, A'i-
and A'j are the normalized quadrupole, skew quadrupolr. and 
sextupole strengths respectively. The solution for ijv is found in 
the same manner as is the closed orbit, namely, by using the 
periodic Green function for the ring. The solution is 

2 sin rv. 

_ » + L 

- I ^?,(-:)cos(Oj,<ji) -<>,(;) + ri<,)r"<i.- (41 

where F{z) = (A'I + KsT]t)ye — AV;f - G9C- Notice that Ox-
term (A'i + A'jifx/Ste is proportional to the local chromatin!}. 
the chromaticity is given by 

{ ' S ^ = -47/ l A"' + A ' ! " • , ^ Cn 

Thus the vertical dispersion can he reduced by using local chro­
matic correction which reduces the driving term Ft--). 

We can now calculate the vertical dispersion <lut- to an en­
semble of random errors. First we will present well known re­
sults for random quadrupole misalignments and bend rotation:-. 
Then we discuss the effects of a corrected closed orbit. Bec^usc 
a closed orbit is correlated from point to point, the elfects differ 
from those of random errors. In this paper we only consider a 
corrected closed orbit: the case of an uncorrected orbit is dis­
cussed in Refs. 1-3. 

The equation for { i j , 1 } / ^ is: 

P, 4 sin TI>, J J 
;<oscos'F'u.;'|, 101 

The where ff. cos. and cos' are defined as they were in Eq (1 \ 
function F]{:,:') is 

F 2f.-.;') = 4 A', A'i 60 'v , j , + K; A'i Vmy'm o,./; 

where the primed quantities are functions of r' In addition. / ( - ) 
is proportional to the local chromaiiritv /(,-) = A'j + A'.U/J 
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Because the errors are uncorrel&ted, the first three terms of 
Eq. (6) are 

rotation J 

(fluid) 

-. = 0 - i " _ Z - t A - ' t ) Umfl9Jlr Ju Ssin ri/ .^^. (text) 

(S) 

(9) 

where the term {yi)/3, in Eq. (9) is equal to the square of the 
'•<*idujl*>! the corrected orbit. 

The next two terms can he written as a function of the closed 
oii>n correlation function — Eq- (2). For the fourth term, we 
tin. 

'(it2)\ __ - I <&)j«>sirt-, (10) 
P|l -'<or 

where A'cori is equal to the number of correctors and we have 
assumed ihat the correctors are uniformly distributed. Note that 
»<• have averaged over s since we are not interested in the explicit 
.- lieijelidance. 

The function J„ was introduced in Ref. 4: it is the fourier 
Uriiisfiiri-., •>( the chiomaticity function j'i' 

J „ = I ds{l<\ +A'jrfx)d„r'" (11) 

where p = f ds/J,v, so <?(0 - <j(0) = 2ir. Notice that Ja is 
proportional to the vertical chromaticity. Eq. (5): Jo = —i*it-

Finally, the fifth term of Eq. (6) is 

\ J„ / ; 16sin xvt Pf -^corrl 
(12) 

where >« is the integer nearest to 2i-F and sincr a sinj"/r. The 
sine ' function will decrease rapidly as j increases. The width of 
i he function is roughly j ~ A'corr/2. This shows that as the oi-
bit is corrected more components of f$ contribute to the vertical 
dispersion As in the case of the uncorrected orbit, the compo­
nent- that are sampled are centered about the frequencies 0 and 
2vy if no large additional components of f$ are sampled, the 
dispersion of the corrected orbit should be smaller than that of 
an uncorrected orbit; orbit correction reduces the residual orbit 
(i/;)/S and the factor l/Ar

COir further decreases the contribution. 
Now. given the vertical dispersion, we can calculate the con­

tribution to the vertical emitlance The Courant-Snyder disper­
sion invariant fit is equal to 2 (TJ , - ) /^ , - Thus, the emittance 

^ p . T . 6 8 x , 0 - ^ 2 ^ £ J ^ - ^ ^ = =FTF»? . (13) J, 0, f&Js J, p\ 
where, for convenience, we have used the relative energy spread 
to simplify the expression. Here, J, is the longitudinal damping 
partition and a, is the relative energy spread. 

In Figure 1 we have plotted the vertical dispersion in the 
North damping ring (NDR) of the Stanford Linear Collider (SIX/ 
vs. the vertical chromaticity. The points were found by simulat­
ing random quadrupole alignment errors y,n — 150/im. The re­
sulting closed orbit was then corrected with 10 dipole correctors 
using an RMS minimization procedure. The data points were 
calculated from ten different error distributions and the dashed 

curve was calculated from Eqs. (9), (10), and (l"2). Notice that 
the analytic results agree quite well with the simulation. 
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Vertical dispersion vs. chromaticity. 
In Figure 2, we have plotted the contribution from the ver­

tical dispersion to the emittance for the chromatically corrected 
ring. Here, we have scaled the vertical emittance by {y;){3v and 
we have plotted the contribution vs. the number of correctors 
used to correct the orbit. Notice that our approximations agree 
very well when #„ , , . > 1. Also notice that, initially, the scaled 
emittance increases; this occurs since Jn has a large mode at the 
ring superperiodicity, N, — 2, which is sampled when the orbit is 
corrected. After the initial increase, the contribution decreases 
as l/A'coir as expected. 
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L I N E A R COUPLING 
The equation for the vertical betatron motion is 

\Ta + A'ISJJ =: (A't + A ' 3 ? c ) j r f . (11) 

We use this to calculate the change in yg. In addition to beta­
tron oscillations, the motion damped due to radiation damping. 
Thus, after N turns, yg is equal to 

»»(C) = yae-Nna* sin(2iA rr/, + l/'o) 
^ t u m 

+ £ ( 9 I x ( ( ) , V ^ ( C ) e - , A ' - " r " " s i i i ( 2 r , \ V , - c l ) 
(15) 

where yo is the initial amplitude, To is the revolution period, and 
at is the vertical damping rate. Also, g = A'i + A":jic, /, is the 
length of magnet i, and tfr, is the vertical phase at element i. 

The equilibrium emittance is found by averaging the equi­
librium value of y%/0¥ over an ensemble of particles. Thus, ive 
calculate the emittance by finding (y^)/f?« as Ar — oc. This 
yields 

. JVturoi ring 

(*3i.i'Si;r)y/!il3yro'(ii;l., - C,i'./) 

(16) 
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Note that we have written the product of the two sines as the 
difference of two cosines and have only kepi the v^ij — Vyi'j' 
term. The cos(v f , 7 + i"»i\i") term will be small unless 21', = n. 

This can be further simplified by using the correlation func­
tion for the x betatron motion. If one ignores synchrotron radia­
tion, the correlation function is equal to the emittance multiplied 
by both the square root of the beta functions and the cosine 01 
the phase difference. The radiation, which is a stochastic pro­
cess, causes the correlation function to decay exponentially with 
i s . Thus. 

frrjfatol*')) a t , V ^ p ( 7 ) c o s A l , - I t - [ j - 5 ' i ( , " / ' . (17) 

where a, is the horizontal damping rate. 
We calculate the sum over turns in Eq. (16) as A' —> x 

and with the assumption that we are far from the coupling res­
onances. The contribution from both the sum and difference 
resonances is then 

t,t.«) ^ H 2 * - ^ /•*-- / j: ' j l : l !I i:Vil:)Al:') 16 n, ./ J 
3 M 

« V sin" r( f i + i'j,l sin" irti'i - v,) / 
(IS! 

where g = (A'j + A'JJ,I. AL- = <,•(-") - IV"'). and we will denote 
the function of the damping rates as 5. 5 s t o , + av)jav. fi­
nally, notice that we have dropped the averaging brackets from 
g(:)g[z'): all beam particles will have the same closed orbit pro­
vided that ye 3> i? ,o£ /£ 

This final relation is similar to the result found in Rof. 5. 
There the expression was derived by solving the Fokker-Planck 
equation when close to the difference coupling resonance. We 
keep both terms in Eq. (IS) since we have found that contribu­
tions from the sum resonance cari be significant even when the 
tunes are closer to the difference resonance. 

Now we include the effects of both random errors and a cor­
rected closed orbit. The quadrupole rotational errors, sextupole 
misalignments. aJKi the closed orbit all contribute independently. 
For random errors, we find 

tyqukd rat 
1 - cos 2~vr cos 2:riv 

1 — " ^ 
(cos2iri/, - c«2iri/ v )-

Y. (A'iA)20^A 
(quid) 

e r a ! - cos 2ffi>Jco5 2*vt 

* 4 (COS2TTV, — c6s2 
' (K«<1 

(19) 
These relations are similar to equations used in Ref. 6; the rela­
tions differ in the form of 5 which Is determined by the damping. 

Using Eq. (2] for the closed orbit, we find for a corrected 
orbit with .VCon > 1. 

(K) - %T ^ Q _ SK 
*— 32sin~T.li' Ju 

fif * , T l j (20) 

where the sum over .ii> and c is a sum over the two values of 
_ii» = {«, - c, . f, + i/f] and the w o values of v associated with 
each value for i v . The values of v arc 

f « i J ' 2 f , and v„ if \v - v, + r, 
{ V>. - 2 c , and «•,. if Ai» = v, - u, 

Note that the integral is calculated between correctors rather 
than over the entire ring 

The integrals in Eq. (20) are the same integrals one lunK 
when usv.g time dependant perturbation theory 10 calculate the 
effect of sextupoles on the betatron motion. The similarity ariw-» 
because, over a short segment, the closed orbit oscillate-* like 
a free betatron oscillation. It is important to emphasize tL>' 
Equation (20J describes an effect due to linear coupling - not 11 <• 
the resonant denominator in Eq. (20): it is not an effect of tin-
third order difference resonances. Specifically. Eq. (20) is i>i(!\ 
valid when the closed orbit is broken into short segments ili\ 
correctors). 

Typically, when correcting the dynamic aperture, one ail-
justs the sexttipole strength and placement so thai the first order 
aberrations will cancel over the ring. For example, in the N'Dlt. 
the cell phase advances are v, n. |i * 0.37 and i'„di a: 0.12. Thi> 
causes the first order geometric aberrations due to the sextupok*> 
to cancel over an arc of roughly S.5 cells I'nfortunately. when 
correcting the orbit, we break this cancellation scheme, and tliut-
the vertical emitlance to grows, 

In Figure 3 we plot the contribution to the vertical emit 
tame from linear coupling vs. the number of orbit correctors 
used. The points plotted are generated by simulating random 
misalignments in the NDK as was done in Figures 1 and 2. No­
tice that there is a large variation in t, for different error distri­
butions. This indicates that the coupling is very sensitive to the 
actual closed orbit. The dashed line is AH approximation of Hq. 
(20) Notice that the contribution increases roughly linearly with 
the number of correctors. Also notice that the magnitude of this 
effect is greater than the contribution due to vertical dispersion. 
This has been true in all of the rings we have examined. 
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SUMMARY 
In this paper we have presented simple formulas to estimate 

the vertical emittance in weakly coupled storage rings. In par 
ticular, we consider the effect of a corrected closed orbit in gen­
erating vertical dispersion and linear coupling. The resulting 
formulas compare well with simulations of corrected closed c -
bits due to random alignment errors. 
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