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ABSTRACT

In this paper we present analytic formulas to estimate the
vertical emittance in weakly coupled electron/positron storage
rings. We consider contributions from both the vertical disper-
sion and linear coupling of the betatron motions. Jn addition
10 simple expressions for random misalignments and rotations
of the magnets, formulas are presented to calculate the vertical
emittance blowup due to orbit distortions. The orbit distor-
tions are assumed la be caused by random misalignments, but
because the closed orbit is correlated from point to peint, the
effects must be treated differentlv. We consider only corrected
orbits. Finally. the analvtic expressions are compared with com-
puter simulations of storage rings with random misalignments.

INTRODUCTION

In an ideal uncoupled ring there is no vertical dispersion or
lincar coupling. Thus the synchrotron radiation opening angle,
which is very small, determines the vertical emittance. In prac-
tice, this is not the case. First, vertical bending fields and a
non-zero vertical orbit in the quadrupole magnets will directly
introeduce some vertical dispersion. Second, a non-zero vertical
orbit through the sextupole magnets, vertical sextupole misalign-
ments. or rotational misalignments of the quadrupoles couple the
horizontal and vertical planes. This coupling has two effects both
of which increase the vertical emittance. It couples the horizon-
1al dispersion 16 the vertical, causing an increase in the vertical,
and it couples the £ and y betatron motion so that energy is
transfecred between the two.

In this paper we analyze the effects of the coupling pertur-
batively, i.e. assuming a large aspect ratio egfey. Ve will first
describe the clased orbit correlation function which we use to
approximate a corrected closed orbit, Next we will calculate the
dispersion resulting from both a distribution of random errors
and a corrected closed orbit. We will then calculate results for
the linear coupling in a similar manner. Because the contribu-
tions from the vertical dispersion and the lipear coupling ate
statistically independent, these contributions to ¢, simply add.

CLOSED ORBIT

We only consider the closed orbit after substantial correc-
tion. When the orbit is correcied jts Fourier spectrum tends
towards that of white noise. The orbit correction reduces the
dominant harmonics on either side of the tune while increasing
the other modes. We approximate this by assuming that the
correctors “randomize” the orbit and thus points on either side
of a corrector are uncorrelated.

The closed orbit is found using the periodic Green function
for the ring. The driving term is: Gl2) = Gy + ©8G: — Kiym
where ©p are bend rotations, ym ate vertical misalignments, and
Cye is the inverse bending radius of any vertical besding fields.
Thus, the correlation function between two points 3 and s’ is
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whete 3 = Bplt'), cos = coslvyls) — iz} + ). o8’ =
cos(wy(s') — wy(2') + 7). and C is the ring circumference.
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Equation {]) can be written as the square of the clused artnr
at s multiplied by both cos Ay and the square root of Lhe bota
functions, plus a term of order As/C. Since we assume that
many dipole correctors are used, As/C will be small. Thus we
approximate the correlation function as

aQ

(v cos Ay, No correctors
(Ve(8'pel2)} = 3-(-‘)51‘(-!')‘2’;){ between & and »
¥

0. Otherwise

(2
where Ay = ¢,(s') — yy(s) and the term (y7}/3, 1s the sque-r
of the residual orbit after corvection. Note that althaugh
could improve the approximation by assuming that the corre.
tion decays in some manner, rather than just dropping to zen
our approximation should illustrate the essemtial behavior

VERTICAL DISPERSION
In the limit of small coupling, the equation for the vertical
dispersion is
"+ Kiny = Koyelte — Kinie ~ Gye + K. i3

where n; is the unperturbed horizontal dispersion and K. A\.
and K3 are the normalized quadrupole, skew quadrupole. and
sextupole strengths respectively. The solution for 5, is found in
the same manner as is the closed orbit, namely. by using the
petiodic Green function for the ring. The solution is

W= KLAD] /\/d, z)cos(oy(s) - oy(z) + mmghFds (4}

2sinwe, Ty

where F(z) = (K} + Kane)ye — I\';rj, ~ Gye. Notice that the
term (K + Ky )yc is proportioral to the focal cliromaticity,
the chromaticity is given by

_dv
= Bim

Thus the vertical dispersion can be reduced by using lora! chro-
matic correction which reduces the driving term f(:).

We can now calculate the vertical dispersion due to an ¢n-
semble of random errors. First we will present well known re-
sults for random quadrupole misalignments and bead rotations.
Then we discuss the eflects of a corrected closed orbit, Becausce
a closed orbit is correlated from point ta point, the effects differ
{rom those of random errors. In this paper we only consider a
correcied closed orbit: the case of an uncorrected orhat is dis-
cussed in Refs. 1-3.

The equation for {5,%}/3, is:

&= f(ln + W) dyds 5

~C

) _ jjd.d~ V3B (coscos’ Fi(z.2's;  16)
ﬂ, 45in° xuy

where &', cos. and cos’ are definced as they were in Eqg (14 The
function Fi{z,2')is
F2:.3') = 4K W10 nem, + Kol 3ymym o, o
. T
+ GG - 2Gy.f +yey.ff .

where the primed quantities are functions of ' In addition. f(z)
is proportional to the local chromaticity: fiz) = Ay + Ny,
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Because the errors are uncorrelated, the first three terms of
Eq. (6) are

("y‘:)qumi totaton  _ .
Jy T 2sin’ xp Z (B1LFOF 3;,'],
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‘:"y:)uxl musalign 2
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(’h")dnpole kacks _ i_z_
3, 3, ®

where the term {y7)/3, in Eq. (9) is equal to the square of the
reatdual ol the carrected arhit.

The neat two ternis can be written as a function of the closed
orbun correlation function - Eq. (2). For the fourth term, we
find

B -1 €0s 7Y

(('7: } . (yr)J Y (10)

3/, 2sinzyy 8, N

where Neory i% equal to the number of correctors and we have

assunied that the correctors are uniformly distributed. Note that

we have averaged over s since we are not interested in the explicit
» dependance.

The fuuction J, was introduced in Ref. 4: it is the fourier

transforis, of 1he chromaticity function f3:

c
dn = /ds(l\'l + Kang)3dge'™® | {1

where @ = [ ds/J,uy so o(C) ~ ¢(0) = 25. Notice that J is
pruportional 1o the vertical chromaticity. Eq. (5): Joa = —i=§,.
Finally, the fifth term of Eq. (6) is

Ay 1 (yr [ 2
R I T o el i [ RN
( 3y )5 16sin° Ty By \mn a4 e

= (12)
+ 3024 + Wiy ' + Wea—y [P)sine 2jr/h;a.,} .

1=1

where 2 is the integer nearest 10 2v, and sincr = sinx/r. The
sinc * function will dectease rapidly as j increases. The width of
the function is roughly ; ~ Nearr/2. This shows that as the or-
bit is corrected more components of f8 contribute to the vertical
dispersion  As in the case of the uncorrected orbit, the compe-
netits that are sampled are centered ahout the frequencies 0 and
duy  If no large additional components of 3 are sampled, the
dispersion of the corrected orbit should be smaller than that of
an uncorrected orbit; orbit correction reduces the residual orbit
(yé}/3 and the factor 1/Neory further decreases the contribution.
Now. given the vertical dispersion, we can calculate the con-
tribution Lo the vertical emittance. The Courant-Snyder disper-
sion invariant M is equal to 2{5,%)/8,. Thus, the emittance
I

g~ i) § (Glds _ 2J. o) »
I 35 fG:d-‘ Jy ﬁ ‘!

where, for convenience, we have ysed the relative energy spread
to simplify the expression. Here, J, is the longitudinal damping
partition and ¢, is the relative energy spread.

In Figure 1 we have plotted the vertical dispersion in the
North damping ring (NDR) of the Stanford Linear Collider (SLC}
vs. the vertical chromaticity. The points were found by simulat-
ng random guadrupole alignment errots y,;, = 180 um. The re-
sulting closed orbit was then corrected with 10 dipole correctors
using an RMS minimization procedure. The data points were
ralculated from ten different errar distributions and the dashed

€ydisp =~ 7.68 x 1 (13)

curve was calculated from Eqs. (9), (10}, and (12). Notice that
the analytic resuits agree quite well with the simulation.
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Fig. 1. Vertical dispersion vs. chromaticity.

In Figure 2, we have plotted the contribution from the ver.
tical dispersion to the ewnittance for the chromatically corrected
sing. Here, we have scaled the vestical emittance by {y?)/.3, and
we have plotted the contribution vs. the number of correctors
used 1o correct the arbit. Notice that our approximatians agree
very well when Neor 2 1. Also notice that, initially. the scaled
emiltance increases; this occurs since J, has a large mode at the
ring superperiodicity, N, = 2, which is sampled when the orbit 1s
corrected. After the initial increase, the contribution decreases
as 1/Ncos;: as expected.
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Fig. 2. Vertical emittance vs. Ncors.

LINEAR COUPLING

The equation for the vertical betatran motion is
yn+ Kiyg =~ (By + Kage)rs . ()

We use this to calculate the change in yy. In addition to beta-
tron oscillations, the motion damped due to radiation damping.
Thus, after N turns, yg is equal to

ya(C) = yoe~ ey sin(2x Ny + to)

Nturms . {15
+ Y (9Lzgh/BACIe ¥ sing2e Ny, - 1)
=)

where ya is the initial amplitude, 7o is the revolution period. and
a, is the vertical damping rate. Also, g = K| + Raye., L is the
length of magnet t, and ¥, is the vertical phase at element 1.
The equilibrium emittance is found by averaging the equi-
librium valee of yglﬁ, over an ensemble of particles. Thus, we
calculate the emittance by finding (y3)/3y as N — oc. This

yields
1 N turna NtV nhg
=~ k 2 12N —1~v1Toa, .
6y(s) N"_‘:‘;4 'Z" g(ﬂ’:l'l.'h Ly} (16)

{(FaesTov )V 3y cosley ) = Cyuyd -



Note that we have written the product of the two sines as the
difference of two cosines and have only kept the 1y, = ¥yv
term. The cos{tys, + tiyry) term wilk be small unless 21y = n.

This can be further simplified by using the correlation {unc-
tion for the r betatron motion. If one ignores synchrotron radia-
tion. the cotrelation function is equal to the emiftance multiplied
by both the squace root af the beta functions and the cosine ot
the phase difference. The radiation. which is a stochastic pro-
cess, causes the correlation function 1o decay exponentially with

As. Thus,
rala)2ats')) & /AN cos Ayge LTI 17y

where o, is the horizontal damping rate,

We calculate the sum over turns in Eq. (16) as N — ¢
and with the assumption that we are far from the coupling res-
vnances. The contribution from both the sum and difference
resonances is then

=l =+

yis) = ;—:—;E’_:'_u_" [d: / g1 a0 =W I
30213 ,)((‘051.3;-, + Avy) . cosi Auy -AL-,))
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(18}
where g = (ﬂ'] + Nayed. Av = 3(z) = ¢ =), and we will denote
the function of the damping rates as & @ = ta, + a,)/ay. Fi-
aally. notice that we have dropped the averaging brackets from
g(2)g(='): all beam particles will have the same closed orbit pro-
vided that y. > néE/E.

This final relation is similar to the result found in Ref. 5.
There the expression was derived by solving the Fokker.Planck
equation when close to the difference coupling resonance. We
keep both terms in Eq. (18) since we have found that contribu-
tions from the sum resonance can be significant even when the
tunes are closer to the difference resonance.

Now we include the effects of both random errors and a ¢or-
rected closed orbit. The quadrupole rotational errors. sextupole
misalignments, and the closed orbit all contribute independently.
For random errors. we find

| = cos2muy cos 2ty

Q ——————————
(cos 2rypy — cos 2muy)?

Y (miL)iess,

Cyquadrat = tr

{quad}
. €28 ¥ — cos Ixpy o3 My L pa22
Cysenimu Tm Z (KLY pde 8y -
{oent}
(19

These relatians are similar to equations used in Ref. 6; the rela-
tions differ in the farm of @ which is determined by the damping.

Using Eq. (2] for the closed orbit, we find for a corrected
orbit with Neare 3> 1.

= Z _ud ()
A5 32sm7xlp BN

tycororbn

(20)

Neowr
>
.

where the sum over Ar and ¢ is a sum over the two values of
Av = {vs - vy.¥: + vy} and the two values of v associated with
each value Jor Av. The values of v* are

¥y & 2uy
= .
v, -2y and  wy,

newl 2
f d:l\';»(:)&,(:)\/d,(:)e"'% .

and ¢y, AV =v:+1y

. (21
il Av = v, — vy

Note that the integral is calculated between correctors rather
than over the entire ring.

The integrals in Eq. (20) are the same mtegrals one finds
when using time dependant perturbation theory to caleulate the
effect of sextupoles on the betatron motion. The similarity arises
because, over a short segment. the closed orbit oscillates like
a free betatron osciiiation. It iz important to emphasize that
Equatjon (20) describes an effect due to linear coupling - noti s
the resonant denominator in Eq. (20): it is pot an eflect of the
third order difference resonances. Specifically. Eq. (20} is on!y
valid when the closed orbit is broken into short segments iy
correctors).

Typically, when correcting the dynamic apefture, one ad-
justs the sextupole strength and placement so that the first order
aberrations will cancel over the ring. For example. in the NDR.
the cell phase advances are vy = 0.37 and v,y = 0.12. This
causes Lhe first order zeometric aberrations due Lo the sextupoles
to cancel over an arv of roughly 8.5 cells. Unfortunately, when
correcting the orbit, we break this cancellation scheme, and thus
the vertical emittance to grows.

Ia Figure 3 we plot the contribution to the vertical emit-
tance from linear coupling vs. the number of orbit correctors
used. The points plotted are generated by simulating random
misalignments in the NDR as was done in Figures 1 and 2. No-
Lice that thete is a large variation in ¢, for different error distri-
butions. This indicates that the coupling is very sensitive to the
acinal closed orbit. The dashed line is an approximation of Eq.
20). Notice that the contribution increases roughly linearly with
the number of correctors. Also notice that the magnitude of this
eflect is greater than the contribuiion due to vertical dispersion.
This has been true in all of 1he nings we have examined.
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Fig. 3. ¢y due to linear coupling vs. Neoer.

SUMMARY

In this paper we have presented simple [ormulas to estimaie
the vertical emittance in weakly coupled storage rings. In par-
ticular, we consider the effect of a corrected closed orbit in gen-
erating vertical dispersion and lincar coupling. The resulting
formulas compare well with simulations of corrected closed or-
bits due to random alignment errors.
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