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Abstract

Since many of the physical properties of materials are determined by
their microstructure, it is wmportant to be able to predict and contrcl
microstructural development. A number of approaches have been taken to
study this problem, but they assume that the grains can be described as
spherical or hexagonal and that growth occurs in an average environment,
We have developed a new technique to bridge the gap between the atomistic
interactions and the macroscopic scale by discretizing the continuum system
such that the microstructure retains its topological connectedness, yet is
amenable to computer simulations. Using this technique we have studied
grain growth in polycrystalline aggregates. The temporal evolution and
grain morphology of our model are in excellent agreement with experimental
rrecults for metals and ceramics.



Introduction

The physical and chemical properties of materials are determined, in
part, by their microstructure. Both grain size and texture affect yield
strength, fracture, surface adsorption phenomena and other properties. The
final grain morphology can be modified by thermal processing, addition of a
second phase, deformation, etc. However, in order to effectively teilor
the microstructure for specific applications, the mechanism and kinetics of
grain growth and recrystailization must be understood. Unfortunately,
present theories (1-5) predict grain growth kinetics which differ from
experimental observations, have little ability to predict microstructural
details and cannot be readily generalized to account for the variety of
experimentally control! "able features.

Historically, a number of different theoretical approaches have been
taken to understand and predict the microstructures of polycrystalline
materials. These incluue analytical theory (1-5), finite element analysis
(6), molecular dynamics simulations (7) and physical-analogue models [e.g.
bubble rafts] (8), hard sphere models (9) and photoelastic models (10).
Whereas analytical models have the virtue of producing closed form
solutions, they are usually too oversimplifiei to quantitatively describe
real physical systems. Even when numerical solutions of these analytical
theories are performed, this difficulty persists. In principle, molecular
dynamics 1s an ideal way to consistently incorporate the known forces and
kinetic processes involved in microstructural evolution. However, present
day computeg memory and speed limits the teciinique to small clusters of
atoms (¢ 10°), which are typically too small to effectively represent more
than a single microstructural feature. Whereas physical-analogue models
lead *o some 1insight, they are usually crude analogues to the actual
physical pro<ess.

Since one of the essential features of grain growth or
recrystallization in pnlycrystalline materials 1involves the competition
between 1individual grains, of different orientations which share a common
boundary, 1t 1is not surprising that existing grain growth theories have
done so poorly in describing more than simple qualitative aspects of the
experimentally observed kinetics and topology. Most analytic theories
(1,3,4) implicitly assume that grains can be described as spherical, and
that growth occurs in an average environment, This type of theory leads
immediately to the result that the average grain radtus

R «B th (1)

where B 1is a temperature depenaent constant and n = 1/2, This is in
contrast to experimental data for n which, while showing substantial
scatter, concistently give n <1/2, with a mean value of approximately 0.4
(11). In addition, these macroscopic theories, incorrectly predict the
grain size distribution function and make no prediction at all for many
topological quantities, 1ike the distribution of the number of grain
edges. These failures and 1inabilities may be traced to their treating
grain growth in terms of a grain in a mean environment. This type of mean
field theory averages out much of the 1important, topological effects
associated with connectedness of the actua!l microstructure,
Generalizations of this type of theory (12-13) to include many interacting
spherical grains, are 11so not sufficient as they sti(l do not include the

simple space-fi11ing requir.ments which result in a topologically connected
structure.

The present outlook for finding a solution of an analytical modellfqr
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not seem hopeful., In addition, it is also not possible at this time to
_carry out a realistic atomistic simulation using molecular dynamics to
study grain growth or recrystgllization. The computer resources for
simulating a system of even 10° atoms is several years away. Thus, a
method to bridge this gap between the atomistic and macroscopic scale is
necessary, One method which' we (14-17) have pursued is to discretize
continuum models for microstructural evolution such that they are zmenabhle
to large scale computer simulations. The essential elements of this
approach (which will be described in more detail below) consist of mapping
the continuum microstructure onto a discrete lattice and defining
interactions and dynamics for individual, discrete elements which are
analogous to those in continuous systems.

There are several advantages to this type of procedure. The first is
that one can dincorporate at the most basic level different, often
competing, driving forces. This is done by defining the energetics, and
hence forces, for each individual element. These energetics include both
interactions with surrouiding elemerts and external stimuli. The second
advantage is that, not only are complex microstructures generated from
simple postulates, but that one can observe the temporal evolution of the
microstructures, as well as the micro-mechanisms which lead to its
development. In addition, microstructures may be generated which are
consistent with any set of postulates as to the nature of the local
dynamics and energetics. In this way, the testing of theoretizal
hypotheses can be performed by comparing simulated microstructures against
those experimentally observed, similar to structure determination in x-ray
diffraction (18) and lattice imaging (19) ‘n electron microscopy. Finally,
in terms of computer resources, both the memory and CPU time requirements
are readily available on today's main frame computers.

In this paper we will describe, in more detail, the mapping onto a
discrete lattice and the Monte Carlo alogarithm used in the simulations.
As an example of how the method works, we will review our work on grain
growth, In a companion paper (20) in these Proceedings, we will describe
our work on abnormal grain growth and recrystallization, Finally, we will
review several possible applications of the methodology to other problems.

The Model and Monte Carlo Method

In order to incorporate the complexity of grain boundary tonology, the
microstructure is mapped onto a discrete lattice (Fig. 1). Each lattice
site 1s assigned a number between 1 and Q corresponding to the orientation
of the grain in which it {is embedded. We choose Q large enough so that
grains of like orfentation impinge infrequently, typically Q = 48 or 64,
Since the spazed of the computer alogarithm decreases with increasing Q,
larger values of Q are not routinely employed. However, for Q 2 36, our
results are insensitive to the magnitude of Q. In the present model, a
grain boundary segment 1{s defined to 11e between two sites of unlike
orientation. The grain boundary energy 1{s specified by defining an
{nteraction between lattice sites within a given distance [usually nearest
nefghbor in two-dimensions (2-d) and up to the third nearest neighbors in
three-dimensions (3-d)],

E1 = . j (ds‘lsj-l). (2)

Here S, is the orientation of site 1 (1 < S; < Q), 8a is the Kronecker
delta and the sum 1s taken over all sites w1th1n a speci?.ed distance.

The kinetics of boundary motion are simulated via a Monte Carlo
technique 1n which a site 1s selected at random and re-oricnted to a
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Figure 1 - Sample microstructure Figure 2 - Evolution of an initially
mapped onto a triangular lattice. spherical grain of initial radius R
The integers denote orientations and = 30 (in units of lattice sites) in

the Tines represent grain  an infinite matrix on a simple cubic
boundaries. lattice for t = 0, 200, 400 and 600
MCS.

randomly chosen orientation between 1 and Q. If the change in energy
associated with the re-orientation, AE, is less than or equal to zero the
re-orientation is accepted. However, if the re-orientation attempt results
in A&E > 0, the re-orientation is accepted with probability exp(-AE/kBT),
where ko7 1s the thermal energy. A modified version of this alogorithm has
been employed to make the simulation more efficient (see Ref. 17). A unit
segment of grain boundary, therefore, moves with a velocity, v, = C[l-exp
(-AEilkBT)]. where C is a constant proportional to the boundary mobility.
This description of the local boundary velocity is formally equivalent to
that derived from classical reaction rate theory. Time, 1in these
simulations, 1s proportional to the number of re-orientation attempts. N
re-orientation attempts is used as the unit of time and is referred to as 1
Monte Carlo Step (MCS), where N is the number of lattice sites. The
conversion from MCS tov real time has an implicit activation energy factor,
exp(-H/kBT), which corresponds to the atomic jump frequency. Sinre the
quoted times are normalized by the jump frequency, the only effect of
choosing T # 0 (as in these simulations) is to restrict the accepted ie-
orientation attempts to those with AE < 0. Re-orientation of a site at a
grain boundary rorresponds to boundary migration,

Results

We have carried out extensive simulations in both 2-d and 3-d. Moit
of our studies in 2-d have been on 2a triangular lattice of size 200%,
though we have also carried out simulations on the square and honeycoms
un:t:ice.3 Our results for 3-d are for the simple cubic lattice of size 60
and 100°, One remarkable conclusion from our study is that most of the
results are independent of dimensionality (for d » 2). For example, the
grain area distribution and topological distribution of the number of edges
fs the same for the growth {n the plane and for the cross-section of the 3-
d microstructures. This result allows us to carry out many simulations in
two-dimensions, where it 1{s possible to study systems with much larger
1inear dimensions than in 3-d.

As a test of the simulation procedure, it 1s useful to examine the






matrix (21). This s the case where the analytical theory applies. In
Fig. 2 we show one of the great circles of a shrinking sphere at four
different times. Similar results are obtained for a shrinking circle in 2-
d. We observe that the radius decreases as the square of time, n = 1/2 in
Eq. (1). This shows that the kinetic simulation technique employed is in
agreement with the rate theory model of boundary motion.

For the simulations of polycrystaliine grain growth, the
microstructu‘e is initialized by randomly assigning an orientation between
1 and Q to each lattice site. The temporal evolution of a polycrystalline
microstructure is shown in Fig. 3 for growth on a 2-d triangular lattic and
in Fig. 4 for a (100) planar section on the 3-d simple cubic lattice with
first, second and third nearest neighbor interactions. Steps are clearly
visible in the micrographs in Fig. 4 due to the small size of the simulated
vo]gme (100° lattice sites) though this is less visible in Fig, 3 for a
200¢ systenm, From these figures, it appears that the grain size
distribution is nearly identical between 2-d and 3-d. This correspondence
is made more quantitative in Fig. 5, where the grain radiu; distribution
function is shown for the 2-d and 3-d samples. These distributions were
found to be time invariant when normalized by their respective means. This
property, which Mullins (22) refers to as statistical self-similarity, was
always observed. To test how well our model compares with experimental
data, we present the cross-sectional area grain size distribution taken
from data like that presented in Fig. 4 and compared with that measured for
pure Fe in Fig. 6. Note that the grain size distribution function for tne
simulations and experiment agree remarkably wel?,

The mean grain size was also monitored as a function of time, In Fig.
7 we present the mean grain area for 2-d and the mean cross-sectional area
fer 3-d as Za function of time. The growth kinetics for these two cases
gave (A ~ t") n = 0.41 ¢ 0,03 (2-d) (15) and n =_0.37 ¢ 0,02 (3-d) (23).
For comparison, the average grain growth exponent n derived from averaging
the results for n from the 1iterature for different metalc and ceramics is
0.39 £ 0.07 (11).
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Figure 5 - Grain radius distributior Figure 6 - Grain radius distribution

as determined from cross-sections of as determined from a cross-sectional

the 3-d lattice model (filled area analysis of pure Fe (histogram)

circles) and from the 2-d lattice and from cross-sections of the
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(filled circles).
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Figure 7 - log-leg plot ot the mean area A versus time for Q = 48 for
the two-dimensional grain growth simulations and for the cross-sectional
data from the three-dimensional simulations.

One advantage of this method is that since grain topology is not
averaged away, we can measure the topological distribution functions as
shown in Fig. 8. Here we compare the results from our simulation in 3-d
with those measured for Al (24), Sn (1), and Mg0 (25). In Fig. 9 we show
the mean grain radius fecr each topological class versus the number of
edges, N_. In all cases, the agreement between the simulations of our
lattice model and the experimental results is excellent,

One interesting question that often arises is why the growth exponent
n ¢ 1/2 in both our simulations and experiments. Recently, Mullins (22)
has shown that by assuming statisticul self-similarity (which our
simulations demonstrate) and local equilibrium that n must equal 1/2 1in
2-d. He uses the result, first proven by von Neumann (26) and Mullins
(27), that for both bubble growth and idealized grain growth in z-d, the
rate of change of the area Ay of an individual grain (or bubble) depends
only on the number of sides,

dA | (3)
Az Ttl ; 1‘-‘% (N,-6)

where k is & constant. This equation shouid be valid for an arbitrarily
shaped two-dimensional grain of N,-sides under the assumption that u = k/R
and the angle between intersecting grain bou-dsries is 120°, Here u 1s the
local velocity and R is the signed local radius of curveture lying in the
plane, counted positive when it 1ies along rn . Thus

A1 >0 for N> 6 and 1s ¢ 0 for N < 6. Writing the statistical self-
simiiarity hyfothesis in the form ©
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Figure 8 - Topological distribution '19ure 9 - Mean grain radius for

each topological class versus number

measured in cross-section for the of edges Ne‘ The circles represent
microstructure in Fig. 4 (circles), d?ta from cross-section of the 3-d
and for Mg0 (triangle), Al 2 crostructures, The triangles and
(squares), and Sn (diamond). The Liamgnd§ represent Aboay and
curve i drawn through the ang.on s data on Mg0 (25), and
simulation results. Beck's data on Al (24),
respectively., The squares represent
the results obtained from the 2-d
simulation. The 1line 1is drawn
through the 3-d simulation results.

for the numoer of grain edges

g (Ast) = ¢Ne(A/R)/7\ (4)

where fNe(A,t)dA is the probability that a grain has N, edges and area

between A and A + dA, Mullins (22) then proves that if local equilibrium is
satisfied [Eq. (3) is valid for all grains at all times] then n = 1/2,

Since we have already shown (16) that Eq. (4) is valid, it is of
interest to test Eq. (3). We first performed a grain growth simulation in
2-4 for 1,000 MCS until there were 960 grains remaining. We then followed
each grain, monitoring its number of edges as a function cf time. In Fig.
10, we present results for the temporal evolution of the area of several
individual grains with the same number of edges. Those grains monitored in
Fig. 10 were highly unusual in that their number of edges did not change
during the majority of the 10,000 MCS step run, For convenience we have
reset the clock to 0 after we started monitoring the number of edges and we
have plotted a symbol only when the number of edges equal the number N
specified in the figure. In Fig, 4, we have shaded those grains whicﬁ
remain predominantly 6 edged during the 10,000 MCS run, From Fig. 10, we
see that the slope of A, is approximately zero for N, = 6 and that for N
= 4 {is approximately of Lqua] magnitude and opposite sign from that for
N, = 8, An average slope for N, = 5 and 7 is harder to determine. We also
must point out, however, that m35t of the grains change Ne too often to be
plotted in this way, Shown in Fig. 11 is the temporal “evolution of the
area, Ay, for five more typical grains. A different symbol 1s used to

T k"



Thus it appears that for these grains which keep the same number of
sides for a long time, Eq. (3) is satisfied. However, thzie are large
fluctuations around the mean slope and for most grains Eq. (3) is not
"applicable. From these results, we can understand the discrepancy in the
value of n between classical theories (1-5) and our simulations. Since
local equilibrium, Eq. (3), 1is never established, the grain growth is
slower than would be expected. The grains are continuously changing their
nunber of edges Ne too rapidly for the system to reach local equilibrium,
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Figure 10 - Time dependence of the area, Ay, of individual grains from
the 2-d simulations with a specific number of edges, Ne. Symbols are
shown every 20 MCS when the grain has the number of edges specified.
The simulation was started from a random starting state and run for
1,000 MCS, after which the clock was reset to 0. The data plotted are
for grains which had the specified number of edges over unusually large
portions of the 10,000 MCS simulation,
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Figure 11 - Time dependence of the area A; of five randomly chosen
grains from the 2-d simulations. The symbo\s represent the qumber of
edges, N,. As in Fig. 10, the clock was reset to O after an initial run
of 1,0007MCS.

cvery time N, changes, the microstructure rearranges to accomodate the new
growth rate, as per Eq. (3). This accomodation process 1is not
instantaneous but requires a finite amount of time, t , which scales with
the grain size. Since grain topoliogy changes so frequently, it is likely
that local equilibrium is never established and Eq. (3) is only rarely
satisfied. This point of view is further supported by simulations of
Weaire et al. for 2-d soap bubbles (28), Using a procedure similar to
ours, they (29) introduced the additional constraint that Eq. (3) be
satisfied locally at all times. The growth kinetics then followed Eq. (1)
with n = 1/2, Without imposing Eq. (3), they obtained the same value of n
as we found. It is important to note that statistical self-similarity
requires only that R ~ t", not that n = 1/2!

Discussion

Now that we have demonstrated that our lattice models produce many of
the essential features of grain growth in simple, isotropic system, it is
possible to study more complex situations. _In the presence of a particle
dispersion (30), the average grain size R grows algebraically in time
according to Eq. (1), with n ~ 0.40 (2-d), followed by a transition to a
pinned state. There does, however, exist a cross-over regime where some
grains have already becomed pinned and hence the kinetics are not
adequately described by Eq. (1). The final average grain area and the time
required for the microstructure to pin are both approximately proportional
to the inverse particle concentration 1in 2-d. In the presence of
anisotropic grain boundary energies (31), the growth exponent n is found to
decrease in 2-d from n = 0.42 t 0,02 to 0.25 ¢ 0,02 and the grain size
distribution broadens, as the anisotropy is increased, However, for values
of the anisotropy expected for real polycrystalline materials, the resulis
differ only slightly from those measured in the isotropic case. In



been studied. Results from this work will be presented in these
proc2edings (20).

We think that we have demonstrated that although the lattice model
employed in the simulation described above is inherently discrete, the
resultant micrographs show an excellent correspondence with those from real
materiais. The constraints imposed upon the boundary intersections due to
the symmetry of the underlying lattice appears to be unimportant, and the
interface tension dictates the angle at which grain boundaries meet. What
is somewhat surprising is the agreement between the two-dimensional results
and the cross-sections of the three-dimensional systems, While the grain
radii distribution function as computed from the volume is narrower than
the grain radii taken from the cross-sectional area, the grain radii taken
from the cross-sectional area in 3-d are nearly identical to those found in

the 2-d simulations,

One further test of the validity of the Jlattice model is the
comparison of kinetic predictions with experiment. Kinetics measured from
the mean chord, area and volume give the same growth exponent, n, in 3-d,
While we do not know if the difference in n between 2-d and 3-d is
significant, both results agree very well with experimental findings and
disagree with existing grain growth theories (n=1/2). While one cannot
rule out that asymptotically both the simulations and experiments would not
eventually cross over ton = 1/2, we .ee no physical reason why the growth
of a grain in an average environment should be the same as that occurring
in the presence of many, competing grains. In addition, the fact that both
the kinetics and all of the measured grain size distributions agree so well
with experiment, suggests that the model has captured the essential
features of the grain growth, at 1least on the time scale of an
experimentalist.
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