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Abstract

Since many of the physical properties of materials are determined by
their microstructure, it iS Important to be able to predict and contrcl
microstructural development. A number of approaches have been taken to
study this problem, but they assume that the grains can be described as
spherical or hexagonal and that growth occurs in an average eilvironment.
We have developed a new technique to bridge the gap between the atomistic
interactions and the macroscopic scale by discretizing the continuum system
such that the microstructure retains its topological connectedness, yet is
amenable to computer Simulations. Using this technique we have studied
grain growth in polycrystalline aggregates. The temporal evolution and
grain morphology of our model are in excellent agreement with experimental
re:ults for metals and c~ramics.
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-Introduction

The physical and chemical properties of materials are determined, in
part, by their microstructure. Both grain size and texture affect yield
strength, fracture, surface adsorption phenomena and other properties. The
final grain morphology can be modified by thermal processing, addition of a
second phase, deformation, etc. However, in order to effectively t~ilor
the microstructure for specific applications, the mechanism and kinetics of
grain growth and recrystallization must be un~erstood. Unfortunately,
present theories (l-5) predict grain growth kinetics which differ from
experimental observations, have little ability to predict microstructural
details and cannot be readily generalized to account for the variety of
experimentally control-able features.

Historically, a number of different theoretical approaches have been
taken to understand and predict the mlcrostructures of polycrystalline
materials. These inclu~e analytical theory (l-5), finite element analysis
(6), molecular dynamics simulations (7) and physical-analogue models [e.g.
bubble rafts] (8), hard sphere models (9) and Photoelastic models (10).
Whereas analytical models have the virtue of producing closed form
solutions, they are usually too oversimplified to quantitatively describe
real physical systems. Even when numerical solutions of these analytical
theories are performed, this difficulty persists. In principle, molecular
dynamics is an ideal way to consistently incorporate the known forces and
kinetic processes involved in microstructural evolution. However, present
day compute memory and speed limits the technique to small clusters of
atoms ($ 10f), which are typically too small to effectively represent more
thdn a single microstructural feature. Whereas physical-analogue models
lead to some insight, they are usually crude analogues to the actual
physical process.

Since one of the essential features of grairl growth or
recrystallization in pnlycrystalllne materials involves the competition
between individual grains, of different orientations which share a common
boundary, it is not surprising that existing grain growth theories have
done so poorly In describing more than slmpl(~qualitative aspects of the
experimentally observed kinetics and topology. Most analytic theories
(1,3,4) implicitly assume that grains can be described as spherical, and
that growth occurs In an average environment. This type of theory leads
immediately to the result that the average grain radius

(1)

where B Is a temperature depenaent constant and n = 1/2. This is in
Contrast to experimental data for n which, while showing substantial
scatter, consistently give n (1/2, with a mean value of approximately 0.4
(11). In addition, these macroscopic theories, incorrectly predict the
grain size distribution function and make no prediction at all for many
topological quantities, like the distribution of the number of grain
edges. These failures and inabilities may be traced to their treating
grain growth In terms of a grain in a mean environment. This type of mean
field theory a~erages out much of the important, topological effects
associated with connectedness of the actual microstructure,
Generalizations of this type of theory (12-13) to include many interacting
spherical grains, are IISO not sufficient as they sti’ildo not include the
simple space-filling requlr,meritswhich result in a t~pologically connected
structure.

The present outlook for fit~dinga solutlon of an analytical model for
“m.4- ---..,&k...Lh-k--- ------L-..---AJ_* *L. *-–-*-–,--- *.-A .-– ----



it is also not possible at this time to
simulation using molecular dynamics to
lization. The computer resources for
atoms is several years away. Thus, a
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;ot seem hopeful. In addition,
carry out a realistic atomistic
study grain growth or recryst ‘
simulating a system of even 10R
method to bridge this gap between the atomistic and- macroscopic scale is
necessary. One method which”we (14-17) have pursued is to discretlze
continuum models for microstructural evol~ltionsuch that they are amenable
to large scale computer simulations. The essential elements of this
approach (which will be described in more detail below) consist of mapp!ng
the continuum microstructure onto a discrete lattice and defining
interactions and dynamics for individual, discrete elements which are
analogous to those in continuous systems.

There are several advantages to this type of procedure. The first is
that one can incorporate at the most basic level different, often
competing, driving forces. This is done by defining the energetic, and
hence forces, for each individual element. These energetic include both
interactions with surrou~ding elemerts and external stimuli. The second
advantage is that, not only are complex microstructure generated from
simple postulates, but that one can observe the temporal evolution of the
microstructure, as well as the micro-mechanisms which lead to its
development. In addition, microstructure may be generated which are
consistent with any set of postulates as to the nature of the local
dynamics and energetic. In this way, the testing of theoretical
hypotheses can be performed by comparing simulated microstructure against
those experimentally observed, similar to structur~ determination in x-ray
diffraction (18) and lattice imaging (19) <n electron microscopy. Finally,
in terms of computer resources, both the memory and CPU time requirements
are readily available on today’s main frame computers.

In this paper we will describe, in more detail, the mapping onto a
discrete lattice and the Monte Carlo alogarithm used in the simulations.
As an example of how the method works, we will review our work on grain
growth, In a companion paper (20) in these Proceedings, we will describe
our work on abnormal grain growth and recrystallization. Finally, we will
review several possible applications of the methodology to other problems.

The Model and Monte Carlo Method

In order to incorporate the complexity of grain boundary topology, the
microstructure is mapped onto a discrete lattice (Fig. 1). Each lattice
site is assigned a number between 1 and Q c~rrespondlng to the orientation
of the grain in which {t is embedded, We choose Q large enough so that
grains of llke orientation impinge Infrequently, typically Q = 48 or 64.
Since the spaed of the computer alogarithm decreases with increasing 0,
larger values of Q are not routinely employed. However, for Q ~ 36, our
results are insensitive to the magnitude of Q. In the present model, a
gr~in boundary segment is defined to lie between two sites of unlike
orientation. The grain boundary energy Is specified by def!ning an
InteractIon between lattice sites within a given distance [usual!y nearest
neighbor in two-dimensions (2-d) and up to the third nearest neighbors in
three-dimensions (3-d)],

Ei = -J j (6SiS# (2)

Her~’Si is the orientation of site 1 (1 x $ < Q), 6A is the Kronecker
1 !delta and the sum 1s taken over all sites with n a speci led distance.

The kinetics of boundary motion are simulated via a Monte Carlo
tnchniquu in which a site is selected at random and re-orionted to a
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Figure 1 - Sample microstructure
mapped onto a triangular lattice.
The ~ntegers denote orientations and
the 1ines represent grain
boundaries.

randomly chosen orientation between

Figure 2 - Evolution of an initially
spherical grain of Initial radius R.
= 30 (in units of lattice sites) in
an infinite matrix on a simple c;bic
lattice for t = O, 200, 400 and 600
Mcs.

1 and Q. If the change in energy
associated with the re-orientation, AE, is less than or equal-to zero the
re-orientation is accepted. However, if the re-orientation attempt results
in AE > 0, the re-orientation is accepted with probability exp(-AE/kBT),
where kBT is the thermal energy. A modified version of this algorithm has
been employed to make the simulation more efficient (see Ref. 17). A unit
segment of grain boundary, therefore, moves with a velocity, Vi = C[l-exP
(-AEi/kBT)], where C is a constant proportional to the boundary mobility.
This description of the local boundary velocity is formally equivalent to
that derived from classical reaction rate theory. Time, in these
simulations, is proportional to the number of re-orientation attempts. N
re-orientation attempts is used as the unit of time and is referred to as 1
Monte Carlo Step (MCS), where N is the number of lattice sites. The
conversion from MCS ix real time has an implicit activation energy factor,
exp(-W/kBT)9 which corresponds to the atomic jump frequency. Since the
quoted times are normalized by the jump frequency, the only effect of
choosing T ~ O (as in these simulations) is to restrict the accepted i-e-

orientation attempts to those with AE c O. Re-orientation of a site at a
grain boundary corresponds to boundary migration.

Results

We have carried out extensive sim[ilationsin both 2-d and 3-d. Mo t5of our studies in 2-d have been on a triangular lattice of size 200 ,
though we have also carried out simulations on the square and honeycom’
lattice Our results for 3-d are for the simple cubic lattice of size 60$

and 100~. One remarkable conclusion from our study is that most of the
results are independent of dimensionality (for d > 2). For example, the
grain area distribution and topological distribution of the number of edges
Is the same for the growth In the plane and for the cross-section of the 3-
d microstructure. This result allows us to carry out many simulations in
two-dlmenslons, where it is possible to study systems with much larger
linear dimensions than in 3-d,

As a test of the simulation procedure, it is useful to examine the
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matrix (21), This is the case where the analytical theory applies. In
Fig. 2 we show one of the great circles of a shrinking sphere at four
different times. Similar results are obtained for a shrinking circle in 2-
d. We observe that the radius decreases as the square of time, n = 1/2 In
Eq. (l). This shows that the kinetic simulation technique employed is in
agreement with the rate theory model of boundary motion.

For the simulations of polycrystalline grain growth, the
microstructure is initialized by randomly assigning an orientation between
1 and Q to each lattice site. The temporal evolution of a ~olycrystalline
microstructure is shown in Fig. 3 for growth on a 2-d triangular lattic and
in Fig. 4 for a (100) planar section on the 3-d simple cubic lattice with
tirst, second and third nearest neighbor interactions.

$

Steps are clearly
visible in he micrographs in Fig. 4 due to the small size of the simulated
vol me (100

!
lattice sites) though this is less visible in Fig. 3 for a

200 system. From these figures, it appears that the grain size
distribution is nearly identical between 2-d and 3-d. This correspondence
is made more quantitative in Fig. 5, where the grain radi~: distribution
function is shown for the 2-d and 3-d samples. These distributions were
found to be time invariant when normalized by their respective means. This
property, which Mullins (22) refers to as statistical self-similarity, was
always observed. To test how well our model compares with experimental
data, we present the cross-sectional area grain size distribution taken
from data like that presented in Fig. 4 and compared with that measured for
pure Fe in Fig. 6. ?!otethat the grain size distribution function for the
simulations and experiment agree remarkably well.

The mean grain size was also monitored as a function of time. In Fig.
7 we present the mean grain area for 2-d and the mean cross-sectional area
fr~ 3-d as The growth kinetics for these two cases
gave (A - tfi)fV~ti~~410\ VVI~ (2.d) (15) and n =.0,37 * 0.02 (3-d) (23).
For comparison, the average grain growth exponent n derived from averaging
the results for n from the literature
0.39 ~ 0.07 (11).

Figure 5 - Grain radius distribution
as determined from cross-sections of
the 3-d lattice model (fi~lec!
circles) and from the 2-d lattice
model (histogram).

for different metals and ceramics
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Figure 6 - Grain radius dlstributim
as-determined from a cross-sectional
area analysis of pure Fe (histogram)
and from cross-sections of the
three-dlmmslon~l ?attice model
(filled circles).



104

103

<

102

101

100 E--JIM I 1 IIIJ

102 103

t (MCS)
Figure 7 - Log-log plot ot the mean area A
the two-dimensional grain growth simulations
data from the three-dimensional simulations.

One advantaqe of this method is that
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versus time for Q = 48 for
and for the cross-sectional

since Qrain topolo9y is not
averaged away, wi can measure the topological distribution”functions as
shown in Fig. 8. Here we compare the results from our simulation in 3-d
with those me~sured for Al (24), Sn (l), and MgO (25). In Fig. 9 we show
the mean grain radius fcr each topological class versus the number of
edges, Ne. In all cases, the agreement between the simulations of our
lattice model and the experimental results is excellent.

One interesting question that often arises is why the growth exponent
n < 1/2 in both our simulations dnd experiments, Recently, Mullins (22)
has shown that by assuming statistic~l self-similarity (which our
slmulaticms demonstrate) and local equilibrium that n must equal 1/2 in
2-d. He uses the result, first proven by von Neumann (26) and Mullins
(27), that for both bubble growth and idealized grain growth in Z-d, the
rate of change of the area Ai of an individual grain (or bubble) depends
only on the number of sides,

dAi (3)
A s ~t- - + (Ne-6)

where k is a constant. This equation should be valid for an arbitrarily
shaped two-dimensional grain of N -sides under the assumption that u ■ k/R
and the angle between intersectin~ grain bou”dtiriesis 120°. Here u is the
local velocity and R is the signed local radius of curveture lying in the
plane, counted positive when it lies along n , Thus
Ai > 0 for N ) 6 and Is < 0 for Ne< 6. Writin# the statistical self-
slmilarity hyflothesisin the form
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Figure 9 - Mean grain radius for
each topological class versus number
of edges Ne. The circles represent
data from cross-section of the 3-d
microstructure. The triangles and
diamonds represent Aboav and
Langdon’s data on MgO (25), and
Beck’s data on Al (24),
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the results obtained from the ?-d
simulation. The line is drawn
through the 3-d simulation results.

fNe(A,t) = $Ne(A/~)/~ (4)

where fN (A,t)dA is the probability that a 9rain has Ne ed9es and area

between ~afld A + dA, Mullins (22) then proves that if local equilibrium is
satisfied [Eq. (3) is valid for all grains at all times] then n = 1/2.

Since we have already shown (16) that Eq. (4) is valid, it is of
Interest to test Eq. (3). We first performed a grain growth simulation in
2-4 for 10UOO MCS until there were 960 grains remaining. We then followed
each grain, monitoring its number of edges,as a function cf time. In Fig.
10, we present results for the temporal evolution of the area of several
individual grains with the same number of edges. Those grains monitored in
Fig. 10 were highly unusual in that their number of edges did not change
during the majority of the 10,000 MCS step run. For convenience we have
reset the clock to O after we started monitoring the number of edges and we
have plotted a symbol only when the number of edges equal the number N
specified In the figure. In Fig. 4, we have shaded those qrains whit8
remafn predominantly 6 edged during the 10,000 MCS run. From Fig. 10, we
see that the slope of A Is approximately zero for Ne = 6 &nd that for Ne
= 4 Is approximately of ~qual magnitude and opposfte sign from that for
Ne = 8. An average slope for N = 5 and 7 is harder to determine. We also
must point out, however, that m~st of the grains change Ne too often to be
plotted in this way, Shown in Fig. 11 is the temporal evolution of the

for five more typical grains.area, Al, , - . A different symbol is used to*-L-* AL



. . Thus It appears that for those grains which keep the same number of
sides for a long time, Eq. (3) iS satisfied. However, there are large
fluctuations around the mean slope and for most grains Eq. (3) IS not
applicable. From these results, we can understand the discrepancy in the
value of n between classical theories (l-5) and our simulations. Since
local equilibrium, Eq. (3), is never establisi~ed,the grain growth is
slower than would be expected. The grains are continuously changing their
number of edges Ne too rapidly for the system to reach local equilibrium.
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Figure 10 - Time dependence of the area, Ai, of tndividual grains from
the 2-d simulations with a specific number of edges, Ne. Symbols are
shown every 20 MCS when the grain has the number of edges specified.
The simulation was started from a random starting state and run fop
1,000 MCS, after which the clock was reset to O. The data plotted are
for grains which had the specified number of edges over unusually large
portions of the 10,000 MCS simulatio~.
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Figure 11 - Time dependence of the area A. of five randomly chosen
grains from the 2-d simulations. The symbols represent the number of
eJges, Ne. AS in Fig. 10, the clock was reset to O after an initial run
of 1,000 MCS.

Every time Ne changes, the microstructure rearranges to accommodatethe new
growth rate, as per Eq. (3). This accommodation process is not
instantaneous but requires a finite amount of time, T , which scales with
the grain size. Since grain topology changes so frequently, it is likely
that local equilibrium is never established and Eq. (3) is only rarely
satisfied. This point of view is further supported by simulations of
Weaire et al. for 2-d soap bubbles (28). Usirlga procedure similar to
ours, they (29) introduced the additional constraint that Eq. (3) be
satisfied locally at all times. The growth kinetics then followed Eq. (1)
with n = 1/2. Without imposing Eq. (3), they obtained the same value of n
as we found. It -is important to note that statistical self-sinlilarity
requires only that R - tn, not that n = 1/2!

Discussion

Now that we have demonstrated that our lattice models produce many of
the essential features of grain growth in simple, isotropic system, it is
possible to study more complex situations. In the presence of a particle
dispersion (30), the average grain size E grows algebraically in time
according to Eq. (l), with n - 0.40 (2-d), followed by a transition to a
pinned state. There does, however, exist a cross-oter regime where some
grains have already becomed pinned and hence the kinetics are not
adequately described by Eq. (l). The final average grain area and the time
required for the microstructure to pin are both approximately proportional
to the inverse particle concentration in 2-d. In the presence of
ani%otropic grain boundary energies (31), the growth exponent n is found to
decrease in 2-d from n = 0.42 t 0.02 to 0.25 * 0,02 and the grain size
distribution broadens, as the anisotropy is Increased. However, for values
of the anisotropy expected for real polycrystalline materials, the results
differ only slightly from those measured in the isotronic case. In



ken studied. Results from thii work will be presented in these
proceedings (20).

We think that we have demonstrated that although the lattice model
employed in the simulation described above is inherently discrete, the
resultant micrographs show an excellent correspondence with those from real
materials. The constraints imposed upon the boundary intersections due to
the synmmtry of the underlying lattice appears to be unimportant, and the
interface ‘tensiondictates the angle at which grain boundaries meet. What
is somewhat surprising is the agreement between the two-dimensional results
and the cross-sections of the three-dimensional systems. While the grain
radii distribution function as computed from the volume is narrower than
the grain radii taken from the cross-sectional area, the rain radii taken

1from the cr~ss-sectional area in 3-d are nearly identical o those found in
the 2-d simulations.

One further test of the validity of the lattice model is the
comparison of kinetic predictions with experiment. Kinetics measured from
the mean chord, area and volume give the same growth exponent, n, in 3-d.
While we do not know if the difference in n between 2-d and 3-d is
significant, both results agree very well with experimental findings and
disagree with existing grain growth theories (n=l/2). While one cannot
rule out that asymptotically both the simulations and experiments would not
eventually cross over to n = 1/2, we .ee no physical reason why the growth
of a grain in an average env~ronment should be the same as that occurring
in the presence of many, competing grains. In addition, the fact that both
the kinetics and all of the measured grain size distributions agree so well
with experiment, suggests that the model has captured the essential
features of the grain growth, at least on the time scale of an
experimentalist.
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