
ANALYSIS OF LASER UL'iRASONIC MEASUREMENTS OF SURFACE WAVES ON

ELASTIC SPHERES

T S. Koo and K. L. Telschow ti :.,,., _._rl L, _, I-. . . ,., . :. (

Idaho National Engineering Laboratory NOV 2 2 lgg|EG&G Idaho, Inc.
P.O. Box 1625
Idaho Falls, ID 83415-2209

i

INTRODUCTION

In conventional ultrasonic nondestructive evaluation studies, piezoelectric trmasducers
are used to generate sound waves in solids via a couplant that transmits the mechanical
motions. In recent years, a different method of generating sound in solids, pulsed laser
heating, was introduced by Whke [1,2]. This method is noncontacting, re.quires no coupling
medium, and operates directly on the surface of the specimen. Noncontactmg ultrasonic
detection using laser interferometers of several types has also been developed [3]. Laser

techniques can achieve essentially point source and point detection of ultrasonic motion
utrough focusing. Laser ultrasonics can, therefore, be used on objects with complex shapes,
e.g. curved surfaces, and are applicable to material shapes more commonly found in
industry. Often the goal of ultrasonic measurements is to determine material properties such
as Lame's elastic constants. The conventional approach measures longitudinal and shear
wave speeds between two parallel flat surfaces. The work reported here demonstrates the
versatility of laser ultrasonics by directly measuring the surface motion of a solid sphere
generated by ablation from a pulsed laser beam in the ablation regime. The results compare
well with elastodynamic theoretical calculations, where the ablation source is approximated
as a normal impulse, on the surface. This work suggests that an algorithm could be
formulated to measure elastic properties of targets with curved surfaces.

EXPERIMENTAL MEASUREMENTS

A pulsed laser can generate ultrasonic waves in a target by two methods: the creation of
a transient subsurface thermal expansion (thermoelastic) and surface evaporation (ablation)
[4-7]. In this study, a volatile liquid coating was applied to the surface of a sphere and
ablated by the laser pulse. This method produces a strong ablation source without causing
surface damage. The experimental measurements of surface waves on a methanol-coated
type 304 stainless steel sphere are shown in Fig. 1. The out-of-plane motion (radial velocity
component at the surface) was measured with a confocal Fabry-Perot interferometer [3,8].
Detailed discussions of the experimental methodology can be found in reference [8].

A similar study [9] reported measurements of Rayleigh waves generated on a sphere by
a thermoelastic laser source and illustrated the general properties of this wave (e.g. the
focusing at the poles and the wave dispersion). In the present work, the complete wave train
of the forward-focusing group is measured (Fig. 1) and analyzed theoretically. This group
of waves is bounded by the earliest arriving wave L1 and the fin'st Rayleigh wave R1 (the
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Fig. 1. Measurements of ultrasonic waves at the detecting pole of the target sphere.

strongest re_._onse in Fig. 1). All the other waves after R1 are not part of the forward-
focusing group. The radius of the solid sphere was 8.73 mm. The laser source and the
detecting laser interferometer were placed at opposite poles as is illustrated in Fig. 2. As can
be seen from the geometry, and as is shown in Fig. 1, the earliest arrival at the ctetecting pole
is the longitudinal wave directly traversing the sphere (LI). Based on the theoretical
calculations of angular directivity given in [4], there is no shear wave expected following the
path of L1, as confirmed in Fig. 1. Ali the other rays, bounded by L1 and R1, are due to
multiple internal reflections with or without wave mode conversions at the surface. The
waves due to internal multiple boundary reflection have been historically called "whispering
gallery" waves [10]. For rays of the whispering gallery group that do not have wave mode
conversion, that are either pure longitudinal (LI) or pure shear ($1) from the source pole to
the detecting pole, the ray paths Pl (1=1,2,3,...) can be calculated from the geometry by

pl=la_/2[1-c°s(f )] , where (a) is the sphere radius and I =1,2,3,.... (1)

Therefore the time-of-flight tl of L] (or S]) is

Pl (2)
t/=_-

where the wave speed C is either the longitudinal wave speed, CL, or the shear wave speed,
Cs. Some identified waves (L1,$2,$3) are indicated in Fig. 1 and Fig. 2. The other waves
are probably due to wave mode conversions and critical angle surface reflections. The arrival
time of the Rayleigh wave at any surface point can be approximately computed by using the
half-space Rayleigh wave speed, CR,
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Fig. 2. Schematic expefmaental configuration and some geometrical ray paths.

=aO. (3)
tR CR

Similarly to the thick plate case considered theoretically in [11], the Rayleigh wave on a
spherical surface is strongest while the longitudinal wave is weakest. The ratio ef any two
strengths among the longitudinal, shear, and Rayleigh waves depends on Poisson's rttio. It
is known that the spherical Rayleigh wave is dispersive due to the surface curvature [9]. As
seen in Fig. 1, after having traveled half of the spherical surface the Rayleigh wave shows a
strong resemblance to the analogous flat surface half-space waveform [4] and exhibits 5ittle
change in waveform due to dispersion; however, after several passes around the sphere
significant dispersive effects were observed.

THEORETICAL ANALYSIS

In this section, the development follows closely the work of Sat8 and Usami [12,13].
The technique is based on Fourier synthesis and summation of normal modes that are
specified by the combination of indices n and i as discussed in the following. To model the
ablation effect, a normal stress depending on both the polar angle, 0, (Fig. 2) and time, t, is
assumed at the source pole on the surface together with zero surface shear stresses

arrl,---a= 0)F(t) (4a)

O'r/_r--.a= O'r_r--a "" O. (4b)



. Due to the axial symmetry, the responding motions can be spheroidal only and hence do not

depend on the azimuthal angle, _. Harmonic fields are assumed to calculate the
displacement components and then the Helmoltz equations are solved using the standard
technique of separation of variables [14]. With Fourier synthesis, the harmonic fields were
summed to obtain the time domain functions. Following this outlined method, the surface
radial displacement can be written as

Ur(r,t) = Z Pn(cosO) D E(W) f(co) eJa_tdto evaluated at r=a (5)n

wheref(co) is the Fourier transform of F(t), Ph(cosO) is the Legendre polynomial with
n=0,1,2,.., and

Un(r) =/1 [_(l'n(kr) + (n(n+ 1).2;n(kr)_)j,n(hr)(kr)_ ._k 2n(n+l)d (]'n(hr)/(hr))d__.jn(kr)-kr](6)

On = 4zt J.1 cl)(O)Ph(cosO) d(cosO) (7)

with jn denoting the nth order spherical Bessel function of the first kind and h, k being the
longitudinal and shear wave numbers respectively. The primes in the above equations denote
differentiations with respect to the argument. The denominator E is

E=l-tJn(_"(ri)[2n(ng)Jn- -1)- 0 2 + 4 jn+l(_)].[ 2(n2 -1)- 7"/2+ 2 jn+l(r/).
_2 _" jn(_) 0 2 _._ "i

4n(n+1)btjn(_)jn(17)[7 + 1 jn+l(_).l.[n-1 1Jn+l (r/)-¢• o 7.(5j (8)

which has only simple poles. At these poles, E=0, which gives the normal mode frequencies
of a tracdon-fi'ee sphere.

In the above equations, the longitudinal or shear dimensionless frequencies on the
surface am denoted as _ or 7/ respectively where _=ha and _7=ka. Instead of using direct
integration m evaluate (5), contour integration is more desirable and yields

.Ula(a,w./)
ur(a,t) =j _ Ph(COSO)Dla [ _ f(colaj) eJC°la,it] (9)

--la,l _ OJ, "l_?l,ll

where (.On,iare the simple poles of E. As was shown in [13], the fundamental mode i=1 and
n>0 forms the Rayleigh wave. For n=0, the sphere vibrates symmetrically with respect to its
center and hence these motions are denoted as the compressional modes. The modes with
i>l and n>0 give rise to ali the other internal reflections including the whispering gallery
phenomenon. Fig. 3 shows the dispersion relation for the spheroidal modes in terms of the

normalized shear frequency (1"1).The compressional modes (n=0) are plotted as x's along the
vertical axis. The Rayleigh modes (i=l and n>0) are plotted as "plus" signs and the
whispering gallery modes (i> 1 and n>0) are depicted as circles. These normal mode curves,
except when n--0, show undulation for higher modes at small values of n. This irregularity
is directly related to the corresponding group velocity [13]. The summations of these three
groups of modes, flu'st individually and then together, are demonstrated in Figs. 4 and 5.
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Fig. 3. Dimensionless frequency T1,of the major groups of normal modes:
Compressional, Whispering Gallery and Rayleigh.
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Fig. 4. Theoretical synthesis of the normal modes where the range of values for n and i are
shown in brackets.
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Fig. 5. Comparison of experimental and theoretical results.

In these figures, ali modes with rl < 200 were used (n < 200, i < 100) and only the
radial surface velocity motion is plotted as this approximates the experimental measurements
[8]. To compare the experimental and the theoretical results, both the calculated composite
wave train and the experimental measurements are repeated in Fig. 5. Other than the
mismatch of some wave forms (prefiles) and a slight time delay in the theoretical predictions,
the computational result agrees well with the measured result. The slight discrepancy in

arrival times is due to the phase velocities CE (= 5.66 mm/l.ts) and Cs (- 3.12 mm/_s) used
in the calculation, which were taken from standard elastic values rather than direct
measurements of the target. Since the source laser pulse width was only 10 ns, a Dirac delta
function in time dependence was used in Eq. 4a. The spatial extent of the boundary loading
determines the coefficients Dn as given in Eq. 7. These coefficients are proportional to a
mode number for small n, reach a maximum, and eventually decrease for large n. This

pattern produces a spatial loading function that decreases rapidly with polar angle (0). Such
a function, with an angular width of about 5 degrees, was used to produce the calculated
results shown in Figs. 4 and 5. Also, the response of the Fabry-Perot interferometer was
approximated according to reference [15]. Both the interferometer response and the source
angular distribution are not well known; this uncertainty may be the cause of the difference in
bandwidth between the experimental and theoretical results displayed in Fig. 5.

CONCLUSION AND FUTURE RESEARCH

The good agreement between experimental measurement and theoretical calculation
demonstrates the utility of laser ultrasonics for materials with curved surface geometries,
such as a sphere. Even though there are no simple nondispersive waveforms present with



which to determine material elastic constants for the sphere, close comparison between
analytic calculations and experimental measurements could lead to an accurate scheme for
elastic constant determination. This scheme would involve comparison of many waveforms
(such as the whispering gallery waves) simultaneously.
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