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THE STUDY OF ELASTIC P10N SCATTERING FROM
%Be, 283i, S®Ni, AND 2°®Pb AT 162 MeV

by

Michael John Deverenx

ABSTRACT

Elastic pion scattering from °Be, 2%Si, 5%Ni, and
208ph at 162 MeV is analyzed and compared with an optical
model theory which incorporates a pion-nucleon range.
Excellent fits to the data are obtained in all but one case.
The fitted values of the pion-nucleon range, as well as
other fitted values are listed.



I. INTRODUCTION

It may be wondered why one spends the large quantities of time,
money, and effort which are a prerequisite for the successful investi-
gation of complex scientific questions. Part of the answer surely
is the instinct of natural curiosity.

Aristotle speculated gratis that all matter is composed of indi-
visible entities called atoms, and in terms of the scientific criteria
which now are used to evaluate nature, there was surely more than a
grain of truth in his speculation. It is now known that the chemical
properties of matter which so wonderfully diversify the physical world
are functions of the microscopic atoms, the atomic, and the molecular
bonds which construct our macroscopic environment.

But it has been found that atoms are not indivisible. Indeed,
every single atom is composed of a small central nucleus and a spatially
dispersed cloud of electrons surrounding the nucleus. One yearns to
understand the integrity of a single nucleus, the individual particles
that compose a nucleus, the forces that bind parts of a nucleus to-
gether, and the organization that mediates different nuclear pro-
perties for different types of nuclei. To satisty one's curiosity
about the continued divisibility and the coherent complexity of matter,
the price is often that of extremely expensive machinery and the out-

lay of prodigious quantities of time and effort by highly skilled people.



The orderly arrangement of different atoms into elements of the
periodic table was elucidated by Dalton at the beginning of the nine-
teenth century.1 However, the divisibility of the atom into consti-
tuent parts was not decisively shown until the conclusion of that
century. J. J. Thompson discovered the electron2 in 1897 and measured
some of its properties. The fact that electrons are emitted from
various oxide cathodes of a cathode ray tube implies the inclusion
of electrons in many different atoms. But atoms were known to be
neutral in charge. However, a singly ionized atom has a charge equal
and opposite to the electron's charge. Thompson was thus led to pro-
pose a model3 of the atom which specified a uniform distribution of
electrons imbedded in a sphere of positive charge whose magnitude was
equal, but opposite to the charge held by the electrons.

Thompson's atomic model contrasted with that of Nagaoka's
1904 model4 in which a positive core was surrounded by electron rings
as in a planetary system. Experiments performed by Geiger and
M’arsdens’6 indicated the impossibility of atoms as Thompscn conceived
them. Alpha particles from natural radiation were directed on target
nuclei and the distribution of scattered alpha particles was detected
by the scintillation light produced when the scattered alpha hit a
small piece of the crystalline compound ZnS. The percentage of alphas
scattered to large angles in the experiments was incompatible with
the predictions of the Thompson atomic model. Rutherford proposed a

7
model in 1911 similar to Nagaoka's which correctly accounted for



the amount of large-angle alpha scattering. This model, hypo-
thesized to have nonradiative electron orbits by Bohr was in con-
currence with Plank's quantum hypothesis.9 The model was modified
by Sommerfeldlco to have elliptical orbits and again modified to

have dispersed, quantum-mechanical clouds of electron location pro-

bability. 1*1?

Rutherford was first to discover one of the constituent parts
of the nucleus as a consequence of experiments which included the
first transmutation of one atom into an entirely different atom. The
transmutation experiment changed atoms of nitrogen into atoms of
oxygen by bombardment, with naturally occurring alpha particles yield-

ing protons as an end product. Symbolically,

lAN + 4He -+ 170 + lH .

It was first assumed by scientists of the time that protons,
the nuclei of hydrogen atoms, combined with electrons in varying
ratios to form the nuclei of all atoms. Later quantum mechanical
arguments, however, threw doubt on the notion that nuclei are

composed of electrons and protons. Chadwick, in 1932, discovered

a neutral particle13 to be called the neutron and it is the neutron
which combines with protons to compose all the various nuclei of
atoms. Iwanenko14 and Heisenberg15 take credit for the model of

nuclei composed of protons and neutrons but not electrons, a model

not substantially refuted by any subsequent evidence.



It is for investigations of today, in particular this experiment,
to accumulate information about the internal structure of atomic
nuclei. The problem of completely describing nuclei from first phy-
sical principles has so far proved unsolvable, and one must resort
‘nstead to mathematical models of nuclei. Several models of nuclear
excitation have been devcloped, inclvding the shell model and liquid
drop model.16 There are also many mathematical models which des~
cribe the interaction of various elementary particles with nuciei.
One such model is the optical potential model which is based on the
assumption that particles impinging on nuclei may be treated as waves
encountering a medium described by an index of refraction. The
optical model, described in detail in chapter IV of this thesis, is
one tool that will be used to investigate nuclear structure.

The Pi Meson

The pion is the least massive, strongly interacting, elementary
particle and is the nuclear probe of this experiment. The construct-
ion of pi meson facr:or:les”’18 around the world and the increase in
experiments examining the pion-nucleus interaction hinge on the
felicitous properl:ies]'9 of this spin zero, negative parity particle
wlich carries nature's strong (nuclear) force.

The pi meson was predicted in 1935 by the Japanese physicist
H. Yukawa,20 some twelve years before its experimental discovery in
nuclear emulsions.21 Yukawa's insightful paper postulates the pion

as the quantum of the hadronic force. It was known by 1934 that



this force had a range of approximately two fermi and Yukawa argued
correctly that an unobserved, virtual particle transmitting this force
must exist and have a mass near 100 MeV/cz.

Suppose the iInteraction between two hadrons is mediated by the
exchange of pions. According to the Pauli uncertainty principle,
the creation of a pion, and this consequent energy imbalance, can

survive only for the short time
t < B/AE,

where AE is the energy imbalance and h is Planck's constant divided
by 27. Assuming the virtual pion to have the velocity of light, c,
then its range must be approximately given by

R = ct = ch/AE.
The energy imbalance must be at least as large as the rest energy of

the pion, so that

Therefore the pilon rest mass is

m > fi/cR = 99 MEV/CZ.

The actual mass of the pion is about 140 MeV/cz. It is now known that
other heavier mesons also transmit the strong force over distances
that are, however, much shorter than the range of the force carried
by the pi meson.

The pion has isospin I=1. It therefore comprises an 1isospin

triplet,22 with isospin projections 13 = (-1,0,1) and three charge



states. Electromagnetic effects may give the two charged pions a

slightly higher mass than the neutral pion

139.576 MeV/c?

+ -
My My

)
134.972 Mev/c2. 23:24

m o
m

The fact that the pion is about one seventh the mass of the
lightest nucleus is significant. The pion-nucleus interaction imparts
little of the incident pion momentum to the nucleus, thus simplify-
ing nuclear experiments using pions. More importantly, one may
formulate approximations to the description of pion-nucleus physics
in terms of expansions in powers of pion mass divided by nucleon mass.
For example, one may approximate radiative energy losses in pion-
nucleus scattering by just such an éxpansion.

Because the charged pion is a relatively long-lived meson, a
beam of these particles can be transported through extended apparatus
designed to define the phase space of the beam. This allows for the
necessary careful control of the parameters of pion-nucleus experi~
25

ments. Charged pions have a mean life of T = 2.60 x 10—8 sec.,

so their mean decay length is

L. .=

0 cT = 5.57 P em ,

5|'1:J

T

where the pion momentum P is given in MeV/c. Thirty-seven percent
of the charged pions in a beam of momentum 300 MeV/c would therefore
survive a distance of 6.7 meters. Unfortunately, neutral pions

have a mean life of only 0.89 x 10—16 sec.25 and survive only short



distances after their creation, making it difficult to work with
these particles. Even charged pions do not live long enough to be
used in conventional particle accelerators and must be produced by
the collision ;,of energetic particles with a production target. The
fact that the pion 1is a particle with three-charge states makes it
especially useful as a nuclear probe. One may examine charge ex-
change reactions of the sort (n+,ﬂ°) and (W—,ﬂo), or even double-
charge exchange such as (n+,n-).26’27 Such reactions permit the pro-
duction of otherwise inaccessible nuclei. Additionally, it may be
possible to distinguish proton from neutron distributions in nuclei
due to the different way in which the two species of charged pions
interact with neutrons and protons,zs’zg’30 and, by using incident
pions of opposite sign, the separation of electromagnetic effects in
pion-nucleus collisions is feasible.

Because of the pion zero spin, pion-nucleus interactions are
simplified. There are, for example, no spin-orbit complications
introduced by the pion, and while the nucleus wave function must be
antisymmetric because its nucleons are fermions, antisymmetrization
of wave functions with respect to an incident pion is not necessary
since nucleons and pions are not identical particles. Since the pion
is a boson, it can be created or destroyed singly, and pion absorption

and creation in nuclei are phenomena with the potential of yielding

a deeper understanding of nuclear structure.



The interaction of a pion with an ind’vidual nucleon at inter-
mediate energics (approximately 50 to 500 MeV), such as are available
at the Los Alamos Meson Physics Facility (LAMPF) where this experi-
ment was performed, shows a large variation with energy. There is,
in fact, a resonance at about 180 MeV kinetic energy. Below this
resonance, called the (3,3) ressonance because the significant partial

32 in the energy range of

wave exhibits the quantum numbers J=I=3/2,
about 50 to 150 MeV, the pion wavelength is much larger than the
nucleon diameter and the pilon-nucleon cross section is at least an
order of magnitude smaller than the nucleon-nucleon cross section.
Near the (3,3) resonance the pion-nucleon cross section grows very
large. Above the resonance, the pion wavelength is about the size
of the nucleon diameter.

The pilon-nucleon cross section, though smaller than at resonance,
now is about the same size as the steadily decreasing nucleon-
nucleon cross section. One may thus use the pion-nucleon inter-

action at intermediate energies to probe both nuclear surface and

deeper-lying effects and to examine the (3,3) resonance.

Motivation

This experiment, whose spokesman was Ben Zeidman of Argonne
National Laboratory, is a survey of pion-nucleus scattering at

intermediate energies. It studies the elastic scattering of both
positive and negative pions from four nuclei at incident energy

162 MeV. The nuclei chosen for this experiment were 9Be, 28Si,



58Ni, and 208Pb, selected primarily for their wide range of mass,
because the first excited state in each nucleus is at least 1 MeV
above the ground state, providing sufficient separation of this
excited level, and because each of them has interesting nuclear
structure. The experiment is not a measurement of the values of the
energy levels of nuclear inelastic states. Other nuclear probes are
more adept at measuring these values and evaluating the suitability
of particular models of nuclear excitation. The goal of this
experiment 1Is to generate a body of the best possible pion scatter-
ing data which may be applied to the verification of existing models
or perhaps the formulation of new models of the pion-nucleus inter-
action with nuclei. If such a model aptly deszribes pion-nucleus
interaction, then the ultimate goal of understanding the structure

of the nucleus is facilitated. The experimental data that will be
presented later in this thesis will be compared with the predictions
of a rudimentary optical model of the pion-nucleus interaction.
Nuclear structure information generated by the experimental data,
particularly proton and neutron distributions in nuclei, will be
investigated in the light of the validity of these models.

Prior to this experiment, other intermediate energy pion-
nucleus scattering data existed, much of it the result of recent
investigations at the Swiss meson factory, Schweizerisches Institut
Fur Nuklearforschung, (SIN) Zurich, Switzerland. The first high-

quality data appeared about eleven years ago, consisting of elastic



and inelastic negative plor-scattering differential cross sections for
12C.33 The usefulness of this data, particularly the scattering to
inelastic states, was limited by low statistics due to low—-incident
beam intensity. Such low intensity also hampered other experi-

ments34’35’36’37 done before the completion of meson factories.

More recently published data, benefiting from smaller statistical

uncertainty, include elastic and inelastic plon-scattering cross

sections for 180 at 230 MeV38 and elastic pion-scattering cross

sections for 40Ca and 48Ca at 130 MeV.39 These data may have their

primary usefulness in determining neutron and proton densities and
nuclear shapes in both the ground and excited states.

Low-energy pion-scattering information, the 50 MeV elastic and
2 0
inelastic differential cross sections for 1 c, 4 incdicates that a
rudimentary optical interaction model may need major revisions if

it is to describe scattering at 50 MeV, well below the (3,3) reso-

nance. Recent data which will complement the information gleaned from
this experiment are the pion differential cross sectionsof 120 at
148, 162, and 226 MéV.4l Total cross-sectional pion-scattering data

has also been published. Some total cross sections were measured by

Jakobsen42 and Wilkin43 as well a: others. Recent work, with as yet

unpublished results, has been the pion scattering from “Li, 14N, 160,

6

and 18O at SIN and scattering from 12C, 1 U, and 180 at LAMPF.

Additionally, elastic and inelastic pion differential scattering on

28Si at 130 MeV and on 208Pb at 116 MeV has been carried out at SIN.



Pion scattering at 50 MeV from 208Pb was done at LAMPF. These un-

published results have Leen presented in preliminary form at
conferences.44 .

Scattering ehergy and target nuclei examined by this disserta-
tion experiment were chosen to complement pion-nucleus data already
available. In particular, 58Ni is a target of intermediate mass,
and scattering data from this nucleus fills a void in previous re-
sults. The elastic differential cross sections obtained '>r each
nucleus will be compared with the description of pion-nucleus elastic
scattering given by the first-order optical model.as’“,’47
potential parameters derived from fits to the elastic data can be used
in an evaluation of the differential cross sections of certaln in-
elastic nuclear states given by a distorted wave impulse approxima-
tion.48 Proton and neutron distributions obtained will be compared
with results gathered from electron and proton scattering and
from total cross-sectional measurements.

More detailed reviews of pion-nucleus scattering are given by
Huffner,49 Sternheim and Silbar,50 Tabakin,51 and in the lec:ures
from the LAMPF summer school.52 Earlier reviews are by Tanner53 and
Wilkin.54 Brown55 discusses nuclear models in a concise but readable
way. Intermediate energy nuclear physics is described rather com-
prehensively by Lock and Measday.56 Experimental aspects of pion-
nucleus scattering are reviewed by Stroot 7 and Binon.58 Koltun

reviews the more general field of pion-nucleus interactions.

Pion-nucleus

11
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IT. THE ENERGETIC PION CHANNEL AND SPECTROMETER

A pi meson i¢ somewhat smaller than a basketball, in the approxi-

14 to 1, and thus its position and velocity are not

mate ratio of 10
S0 easily measured as one might measure these properties for the
basketball. A scattering experiment, such as pion scattering by
nuclei, depends on the momentum measurement of every pion scattered
into a specified solid angle. Pions that scatter from atomic

nuclel sometimes lose energy by inducing nuclear excited levels, so
one must have an accurate measurement of each scattered pion's
momentum if he is to decipher the nuclear interaction. It is of
primary importance to determine the percantage of nuclear probes

that interact with a nucleus, relative to the total number of such
probes incident on the nucleus, and the percentage of each particular
kind of nuclear interaction. This is so because the total information
gleaned from the scattering of a single pion on a nucleus is the
existence of an interaction, but no description whatsoever of the
nature of that interaction. One wishes to determine precisely the
pion-nucleus interaction mechanism, and therefore an instrument capa-
ble of measuring the momentum of great numbers of pious before and
after a nuclear collision is a necessity. This tool must determine

the number, trajectories, and velocities of pions, one-hundred-thousandth



as large as an atom, traveling at nearly the velocity of light. At
LAMPF such an instrument exists. It is called the Energetic Pion
Channel and Spectrometer (EPICS), and is capable of analyzing 108
pions per second incident on a scattering target.

This chapter describes the EPICS system.60 The pion channel is
detailed first, then the spectrometer, and finally other instrumenta-

tion including the on-line computer and its software.

The EPICS Channel

The Los Alamos Meson Physics Facility (see Figure 1) is built
around an 800 MeV linear proton accelerator.18 The accelerator in-
corporates three different types of accelerator technology. Normal-
ly two 750 KeV Cockcroft-Walton generators alternately inject protons
and H ions into the accelerator beam line at precise intervals,
timed to coincide with the rf field at the entry end of an Alverez-
type drift-tube linear accelerator. The LAMPF machine is alsc equip-
ped with a third Cockcroft-Walton injector which supplies volarized
ions. A beam transport system makes it possible to feed these
polarized ions, in place of the H ions, to the linear accelerator.

The drift-tube accelerator, fed by electrical fields oscillating
at a 201.25 MHz rate, boosts the injected particles to 100 MeV 1in a
length of 202.5 feet. The final beam energy of 800 MeV is accomplish~
ed by feeding the 100 MeV beam particles into a sidecoupled resonant-

cavity linear accelerator operated at 805 MHz.
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This portion of the accelerator is atout half a mile long. The
LAMPF beam is desigred to have an average current of 1 mA of protons,
with a peak current of 17 mA at 6% duty factor. During this experi-
ment the average proton current was 300 pA at a 6% duty factor. The
gross beam structure showed a proton beam of 520 usec duration at
120 Hz.

Eight hundred MeV protons from the accelerator are separated from
the energetic negative icns of the beam and guided into the experi-
mental area, beam area A (see Figure 2). Pi mesons, as well as other
elementary particles, of varying energies, are created by directing
the proton beam into a rotating carbon target, called the A~1 target,
in Figure 3. Pions from the target are collimated, transported, and
defined by the EPICS pion channel, 15.24 m long. The channel can
deliver pions in the 50- to 300-MeV kinetic energy range.

The EPICS channel is basically composed of four large dipole
magnets, which define the charge sign and momentum of particles
directed onto a scattering target. It is this target that contains
nuclei of interest for nuclear structure studies. A pion channel
can well define the momenta of exiting pions by severely limiting
the momentum spread of particles which may traverse the chanm.~l.
Suppose a pion channel allows a momentum bite of 0.01% of central
momentum, then obviously the momenta of pions striking the scat-
tering target is known to one part in 104. Such a channel has a

debilitating drawback. It severely limits the intensity of its pion

15
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Fig. 3.

The A-1 production target rotates in the proton beam.
It creates pions for the EPICS system.
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beam. The EPICS channel overcomes this problem by accepting a
moderate momentum bite of pions, and vertically dispersing pions of
different momenta at the scattering target. A careful correlation
of pion momentum with vertical position at the scattering target per-
mits the EPICS channel to have an excellent momentum resolution and
high intensitiy. |

As shown in Figure 4, the four large dipoles, labeled BMO1-BMO4,
are arranged in a symmetric fashion, and these charged particles with
proper momenta traverse the channel from the position labeled S, the
location of target A-1, to the focal plane, FP in the figure, where
the scattering target is mounted. The first bending magnet, BMO1,
directs upward a given sign of charged particles passing through the
aperture of the fixed collimator located near target A-1l. Oppositely
charged particles are bent downward and are absorbed by equipment
and blocks of radiation shieldimg which surround the pion channel.
The magnetic field in each bending magnet is separately adjustable
from zero to 18 kG and defines the range of momenta of those particles
which will pass through the entire channel and hit the scattering
target. A probe, operating on the principle of nuclear magnetic
resonance,61 may be inserted into each dipole magnet to precisely
measure the field. These probes are labeled NMR1-NMR4 in the figure.
Notice that particles with larger momenta than that of the channel
are not sufficiently bent by the dipole magnets to allow them to

arrive at the focal plane. They are abscrbed by material surrounding
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the channel. 1In like fashion, particles with too small momenta are
bent too much to traverse the pion channel.

There are also three small magnets in the EPICS pion channel.
These magnets generate quadrupole and sextupole fields. The three
small magnets, FM0O1-FMO3, fine tune the magnetic~optic properties of
the channel, such as focusing at the focal plane.

Particles other than pions are created in the A-1 production
target and it is possible for some of these particles to follow the
EPICS channel through to the scattering target. In fact, when the
channel is optimized for 200 MeV positive pion transport, there can
be 20 times more protons than pions arriving at the focal plane
of the channel. Thus is the justification for including a stationary-
field separator in the channel. A strong magnetic and a strong
electrostatic field aligned orthogonally are maintained in the
sepa.. tor shown in Figure 4. The separator should deflect out of
the pion channel all particles not having the same charge to mass
ratio as pions. However, at a pion kinetic energy of 151 MeV the
particle beam at the focal plane is not exclusively pions. The
separator does a good job of removing protons but has more difficulty
with muons and electrons. Table I shows the beam content at 151 MeV.

Showﬂ in Figure 4, below the channel drawing, i1s a schematie
diagram of the magnetié optics of the channel. The solid line re-
presents a ray in the horizontal plane. From production target to

scattering target the optics configuration is point-to-point in the



Table 1. The composition of the EPICS beam at the scattering target
is shown.?
P T T U (Percent) and p
Particle (MeV/c) s (Percent) e (Perrcent) (Percent)
nt 255 151 76 *+ 3 22 ¢ 3 2.2 + 0.2
T 255 151 69 * 2 31 % 2
i 310 200 77 + 5 19 + 5 3.8 ¢ 1.0
T 310 200 82 t+5 18 £ 5

3 4. A. Thiessen et al., "EPICS

Scientific Laboratory Report (LA-6663-MS, 1977).62

Pion Chann€l Performance," Los

Alamos
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vertical plane, but is point-~to-~parallel in the horizontal plane.

Four jaws, labeled FJ01-FJ04 in Figure 4, act as adjustable
apertures and may be opened or closed remotely to control the pion
flux through the chamnel. Jaw 1, FJ01l in the drawing, regulates the
intensity of the pion beam. It also controls the vertical angular
divergence of the beam at the focal plane. Jaw 4, labeled FJ04, has
a more subtle function. It determines the momentum spread of plons
that will pass through the channel. Jaw 4 contains two sliding
obstructions, one above and one below the beam line, which may be
used to narrow vertical acceptance. Since the dipole magnets bend
charged particles in the vertical plane, pions of varying momenta
are dispersed vertically, so that restricting the vertical opening
of the channel at FJ04 produces a more nearly monoenergetic, al-
though less intense, pion beam at the focal plane. Restricting the
vertical size at FJ04 also trims the vertical size of the pion beam
incident on the scattering target. Jaw 4 contains another set of
wwo movable blocks which limit the horizontal opening of the beam
line at FJ04. This horizontal slit size regulates both the width
of the pion beam at the focal plane and the horizontal angular
divergence of the beam there. Jaws FJ02 and FJ03 are essentially
redundant, though FJ03 can be used to eliminate pions scattered
from the edges of beam apertures farther upstream.

The entire EPICS chaniel from production target to a point

dovmstream of FM03, is maintained at high vacuum. This minimizes



pion scattering from gaseous particles. There is a single vacuum
window, made of steel, 0.005 in thick, downstream of the production
target. Measured properties of the EPICS channel were detailed in
a laboratory rgport in 1977.62 Several characteristics of the channel
are noteworthy. With all jaws wide open, the beam spot at the focal
plane containing 95% of all pions, measured 20.4 cm vertically and
6.4 cm horizontally. Angular divergence was *77.5 mrad in the
vertical plane and *15 mrad in the horizontal plane. Figure 5 il-
lustrates the beam disposition at the focal plane. The channel
accepts a momentum bite of *1.0%. Plou momentum at the focal plane
is correlated with vertical position such that

GB = [xl/DB s (1

where GB is the change in momentum, in percent, from the central
value of the beam momentum and x is the vertical distance in centi-
meters from the center of the pion beam. This vertical dispersion

of the pion beam allows for an increase in beam intensity of 100X
relative to the intensity of a monoenergetic pion beam in a similar
channel. With careful measurement of the vertical position of a pion

at the focal plane, a momentum resolution of 2x10-4, full width at

half maximum (FWHM), may be achieved.

The EPICS Spectrometer

In order to carefully measure the momentum of a pion incident

on a nucleus of interest, then to carefully measure the momentum of
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the scattered pion, the EPICS system must clearly have a device that
determines the vertical position of each pion strikiang the scattering
target, as well as a device which can measure scattered pion momentum.
4 large magnetic spectrometer at EPICS, depicted in Figure 6, satisfies

beth these requirements.

Spectrometer Construction

There are five magnets in the spectrometer, three identical
quadrupole magnets and two similar dipole magnets. There are no
multipole trim magnets as were found in the channel. The middle
quadrupole magnet is rotated 90 degrees about-the beam line relative
to the other two. This quadrupole triplet translates and focuses
the scattered pions from the scattering target. Figure 7 shows the
coordinate system used to describe the spectrometer. Although it
looks awkward, the coordinate system provides simplicity in thc use
of computer beam-transport codes, and for that reason was chosen.
The optics of the quadrupole triplet cannot be equated with thin

lens optics but the following matrix describes, t~ “.rst order in the front

coordinates, the effect of the tripiet on pions transported from a scattering

target in the xy plane to the front spectrometer focus.

r \ r 3 ( A\
Xy -1 0 0 0 Xp
- o
6y 0 -1 0 0 .
= (2)
Vg 0 0 0 0.2 Ve
-5, o
97 0 0-5.0 0j %
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Here, ¢ is the angle in the horizontal (yz) plane and 6 is the angle
in the vertical (xz) plane. The subscript T indicates a coordinate
value at the scattering target, while the subscript F refers to a
coordinate value at the front focus shown in Figure 6. Units of
distance are cm and angies are given in mrad., A ray diagram through
the gquadrupole triplet would show parallel-to-point depeudence in
the yz plane from scattering target to first focus, but point-to-
peint dependence in the xz plane.

The two dipole magnets of the spectrometer are very similar in
function to the dipole magnets of the EPICS channel. They serve to
determine the momenta of pions in the spectrometer. Maximum field
strength in the dipoles is 18 kG, just as it is in the channel di-
pole magrets, but because of the greater radius of curvature the
spectrometer dipoles can handle pions of greater energy than the
channel magnets. It would be possible to measure pion energies as
high as 570 MeV in the spectrometer. This feature 1s useful for
scattering experiments in which the scattered particles are other
tnan pions. To first order, the optics of the dipole magnets in

the zx plane is specified by the following matrix:

D
n
|

W
i

=
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@D

F R (3
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where § = (PN-P Pn is the momentum of a given pion and POS

0S POS’

is the central momentum of the spectrometer (the momentum of a pion
which travels through the nominal center of the spectrometer). The
subscript R indicates a coordinate value it the rear focus of the

spectrometer. The units of § are percent. Notice that (3) means

§ = (x  + xF)/4. (4)

R
The spectrometer has a momrntum acceptance of § = #6%.

The EPICS spectrometer weighs several hundred tons, but it may
nevertheless be rotated about an axis centered on the scattering
target. Figure € indicates this axis as the pivot. Compressed air
is forced into pads under the spectrometer frame lifting the entire
device slightly off the concrete floor so that an air engine may
then rotate the spectrometer. This feature allows for the measure-
ment of scattered pions at various angles relative to the direction
of the pion beam incident on the scattering target. The spectrometer
may be positioned at angles from 20 degrees through 0 degrees to
+120 degrees. The pion beam path through the scattering chamber and
spectrometer, 12.77 m in length, is almost entirely within high
vacuum. The three exceptions are a short length of beam path,
about 8 cm, near the spectrometer pivot, another section about 30-cm
long near the front focus and a third section of about 40-cm long
near the rear focus. The first two sections are filled with helium

gas slightly above atmospheric pressure. The third section of beam
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path is in air at atmospheric pressure. Scattering of pions from

gaseous particles 1is minimized by vacuum along the beam path.

Detection Equipment

Pion detection equipment mounted on the spectrometer is com-
posed of eight multiwire proportional chambers and two plastic
scintillators. The two scintillators, depicted in Figure 8, are
located at the far downstream end of the beam path, near the rear
focal plane of the spectrometer. Each scintillator63 is made of
0.25-in.-thick polystyrene manufactured by Nuclear Enterprises
Corporation (NE 110). Scintillator S2, the upstream scintillator,
is 19-cm wide (y axis) and 140-cm long (x axis). Scintillator S3
has dimensions 21 cm by 140 cm. At both x axis ends of both scintil-
lators there is a photomultiplier tube connected to the scintillator
by a lucite light pipe. The phototubes are of 14 stages, model 9813
manufactured by E.M.I. Corporation, with a rise time of 2.4 nsec and
gain of about 5 x 107. Charged particles passing through a scintil-
lator create light, which is transmitted to both phototubes where an
amplified electrical  ulse is generated. The time integral of the
current generated in a phototube, the total electrical charge, 1is
proportional to the energy lost by the charged particle which passed
through the scintillator. The detection efficiency of the EPICS
scintillators is better than 997 for pions and protons.

The other detectors in the spectrometer beam line are position-

sensitive, delay-line wire chambers designed and fabricated by LAMPF
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personnel.65 The four rear chambers, R5, R6, R9, and R10, are schema-
tically displayed in Figure 8. There are wires running in both the
X direction and Y direction in every chamber mounted on the spectrom-
eter, cathodes and anodes in opposite directions. Chamber R5 is
0.8 cm upstream of R6 and chambers R9 and R10 are separated by the
same distance. The Z distance from R5 to R9 is 50.0 cm. Each rear
chamber has an active area of 90 cm (X axis) by 30 cm (Y axis).
Anode wires, 8 mm apart, parallel the Y axis in every rear chamber.
Cathode wires, in the X direction, are 90-cm long having a 4 mm
separation. These wires are typically 20 to 80 um in diameter to
insure few collisions between pions and the wire. Surrounding the
wire grid of each chamber is a gas mixture.

A charged particle passing through a wire chamber ionizes the
gas atoms along its path. Freed electrons from the gas drift to the
anode wires where high amplification occurs. An electrical pulse 1s
formed and travels down the wire and into delay circuitry. The
pulse formed in the anode wires induces a positive pulse in adjacent
cathode wires and these positive disturbances travel along the cathodes
and into cathode delay circulitry. The anode delay circuitry is simply
a serpentine conducting path printed on a circuit beard. Soldered at
uniform distances along the path are the ends of the anode wires.
Wire chamber signals are detected at both ends of the delay path.

Cathode delay circuitry is entirely analogous to the anode circuitry.



The difference in the time it takes for a signal to travel from
an excited anode to one end of the delay path compared with the
travel time to the other end of the delay line, tad’ specifies
which anode wire was closest to the charged particle which traversed
the wire chamber. The sum of the travel times of the signals from
an ¢node wire to each end of the delay line is constant for all anode
wires. However, the sum of the times beginning when a charge&
particle ionizes the gas and ending when two signals reach separate
ends of the anode delay line, tas’ is equal to a constant plus a
time proportional to the length of electron drift from the point of

ionization to the position of whichever anode wire is nearest. So,

this last-described time sum may specify drift distance from the

L T Ty

point of ionization to b~ adjacent anode wire.

With regard to cathode wires, the time difference between
signals at either end of the cathode delay path, tcd’ specifies
which cathode wires were nearest to the point where a signal was
formed in the anode wire. Because the anode pulse induces signals
of varying strengths in several cathode wires, depending on distance
from the initially formed anode pulse, time difference of signals
at the ends of the cathode delay line may be used to determine the
position of the ionizing particle more closely than just the posi-
tion of the nearest cathode wire. The time sum of the two signals

beginning at ionization of the gas and ending wheu the signals are
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detected at either end of the cathode delay line, tcs’ is again
a constant plus a time proportional to drift distance. But the

difference,

t =t -t (5)

c cs as’

1s a constant for charged-particle induced ionization at any point
in the wire chamber regardless of drift time. Using signals from
scintillators 52, S3 to help define the instant jionization occurs in
any of the wire chambers, the times tas and tad are used to resolve
the X position in a rear wire chamber to better than 0.5 mm. X posi-
tion in the rear chambers determines the approximate pion momentum in
the spectrometer. The Y position of an lonizing particle in a rear
wire chamber may be resolved, given the time tcd’ to better than 3 mm.
The wire chamber RY9 was inoperative during this experiment, but this
proved no significant handicap.

Four wire chambers, of similar construction to the rear chambers,
are mounted in the spectrometer beanm line near the front focus.
These chambers, F1, F2, F3, and F{. in order of their proximity to
the scattering target, are mounted in the XY plane. The chambers
have active areus of 30 cm by 20 em, the longest dimension measured
vertically. Spacing between ancde wires is 4 mm but cathode spacing
is only 1 mm., Chamber Fl, farthest upstream, is 26.04 cm ahead of
F3. Chamber F2 is 1.90 cm behind F1 and chamber F4, positioned at

the front focus, is likewise 1.90 cm downstream of F3. Unlike the



rear chambers, cathode wires in the front chambers are not all parallel
to the X axis. They are in the X axis direction in chambers Fl and
F3, but are oriented along the Y axis in the other two front wire
chambers. Position resolution is 0.5 mm using tiined cathode signals
but only 4 mm using anode signals. The drift-timing feature of the
front chambers is not utilized since its superior resolution has not
proved necessary. For a moderate particle flux, less than 105/sec,
the wire chambers have detection efficiencies greater than 95 per-~
cent. Deadtime is 150 nsec. Deadtime is the period required for a
wire chamber to recover from the effects of a charged particle pass-—
ing through it.

Mounted directly in the EPICS channel beam line, downstream of
the scattering target, are two ion chambers. Most pions whose paths
intersect the scattering target pass right through the target and
enter the first ion chamber. Those pions which are not stopped in
the first ion chamber enter the second chamber. Each ion chamber is
filled with a gas mixture held at constant pressure and has electrodes
maintained at a constant electric potential. As charged particles
ionize the gas, a current is set up between the electrodes, and this
current is proportional to the flux of charged particles. Thus,
one may measure the beam intensity of the channel by measuring ion
chamber current. Because of the high intensity of the beam, scintil-

lators would be unreliable as a beam monitor.
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Measurement Techniques

It has been pointed oat that the EPICS system depends on a
measurement of the vertical position of a pion striking the scat-
tering target in order to accurately determine the pion's incident
momentum. This function is performed by the quadrupole triplet of
the spectrometer and the four front wire chambers. To first order in YT’
the Y component of momentum is zero for pions incident on the target,
P,, = 0. The Z component of momentum is approximately given by

YB

the relation

<
i

(PZB-POB)/POB = XT/D s (6)

where POB is the pion central momentum of the channel and DB is the
momentum dispersion of the channel, 10.0 cm per percent. The X com-
ponent of the momentum of incident pions to first order in XT 1s specified

by

Op = Pyp/Pop = Xp/hy » 7

with AB = 5,5 mrad/em. Using the quadrupole transport matrix (2),
it is possible, by measuring the pion X position at chamber F4, to
determine the momentum vector of a pion incident on the target.
Notice that F4 measures X position with cathode, not anode, signals.
The cathode signals provide better position resolution ir the front

chambers.



Figure 9 represents the fast electronic circuitry into which
detector signals feed. As shown, both phototubes of the upstream
scintillator, S2P and S2N, branch signals both to discriminators
(DISC) and to an integrating analogue-to-digital converter (ADC).

The signal to the converter is time-delayed, as indicated by a coiled
wire in the figure. The ADC (model LRS 2249A) measures the time
integral of the phototube current generated by a light scintillation
in S2. So a function of this ADC value is proportional to the =nergy
lost by a charged particle in traversing S2. The discriminator
eliminates electronic noise and outputs twd standard NIM66 signals
(digital logic signals) cf -0.700 V into 50 2 and of adjustable

width. One output goes to a scaler {(model LRS 2551), a device which

simply counts every occurrence of a NIM signal it receives. The other

output signal is sent to a mean timer (model LRS 624), where the
modified signals from both phototubes are joined. The mean timer
operates as a delayed logical .AND. If the two input signals occur
within a specified time, in this case 16 nsec, then a NIM pulse is
output after a standard delay. This ensures that no matter where a
charged particle hits the scintillator, mean-timer output occurs at
a constant time after scintillation. The mean timer feeds a pulse
width adjusting discriminator whose output, indicating that S2 has
detected a particle, branches to three devices. One device is a

scaler, the other two are logical .AND. devices.
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The outputs of the two phototubes, S3P and S3N from scintil~-
lator S3, follow circuitry identical with the S2 circuitry des-
cribed above and give a signal indicative of a charged particle in
S3. The S2 and S3 signals are input to two logical .AND. devices,
vne of which counts real particles traversing S2 and S3. Notice,
though, that the other device accepts an S3 signal delayed 300 nsec
before input. A real charged particle does not pass througna S3 as
long as 300 nsec after passing through S2, so coincidence of 52,
and 53 delayed, measures accidental coincidences between the S2 and
S3 signals. Such accidentals may be caused by two real particles
300 nsec apart or electronic noise.

Figure 9 shows that signals from either end of a wire chamber
delay line are passed through a discriminator to shape the electri-
cal pulse. Each discriminator output is sent to a time-to-digital
converter (TDC, model EGG TD811l). The TDC measures the time between
the arrival of two electrical pulses, one called the start, and the
other called the stop. 1In this case the discriminator pulse stops
the TDC. All TDC start pulses are specified by the S2+S3 signal
from the scintillators. Another signal from each discriminator
enters a logical .AND. device. There is one .AND. for each wire
chamber. One coincidence output signal from the .AND. feeds a
scaler and indicates the detection of a particle in the chawbar in
question. Another output signal is fed into a logical .AND. device

whose remaining input is the S2+S3 signal from the scintillators.
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Output pulses from this coincidence are counted by a scaler, which
indicates a particle in both scintillators and the wire chamber
considerad. For front wire chambers, a third output from the .AND.
leads to a further coincidence network. A logical .OR. device indi-
cates a particle in either Fl or F2 or both and another device
indicates a particle in either F3 or F4 or both. The output signals
from these two devices trigger an .AND. whose output is fed into
another .AND. device along with the S2+S3 signal. A particle in the
spectrometer is indicated by the output signal of this last .AND.
device. The rest of the fast electronics circuitry is designed to
produce the hardware trigger for the experiment.

Second only to the EPICS spectrometer and channel, the most
important device used in this experiment is a very powerful mini-
computer, the PDP 11/45,67 manufactured by Digital Equipment Corpora-
tion. The measurements made with TDC's, ADC's and scalers are read
by this computer. The CAMAC instrumentation system68 supplies
operating power for the measuring devices, provides an electrical
network for reading and commanding the devices, and interfaces the
electrical network with the computer through a microprogrammed
branch driver (MBD).69 Through the CAMAC interface the computer
can read any measurement of a TDC, ADC or scaler in the system as
though this information were in computer memory. The computer

1t 70

program called written by LAMPF personnel, provides the

command language for specifying location and type of measurement



modules, and for resetting the modules or systematically reading
their information into a software buffer in the computer. The
metier of the CAMAC system is speed of data analysis.

Each hardware trigger prompts the computer to activate ( soft-
ware and service measurement modules. The hardware trigger is the
particle signal of the fast electronics, Figure 9, modified in
several ways. Particle signals do not make hardware triggers if the
computer or CAMAC system is busy processing data from the recent
measurement of a particle in the spectrometer or if the wire chambers
are temporarily dead after ionization. The structure of the LAMPF
beam provides protons at the A~l target only 6% of the time. A beam
gate signal, labeled BG in Figure 9, causes no hardware triggers to
occur if protons are not incident on the A~l target. Finally, one
may halt thé processing of signals from the spectrometer detectors,
by setting a switch, labeled RUN, to off. The hardware trigger is
the actual signal which starts each TDC, but the timing of signals
from the front wire chambers are set wide enough that it is the more
accurate scintillator signals which determine trigger timing. In
this way position in the wire chambers, including drift times in the
rear chambers, is specified by the scintillator signals, indicating
a charged particle has traveled through the spectrometer.

The computer software utilized in this experiment is character-
ized by sedimental and multilingual traits. Programs are written

in three distinct languages, FORTRAN71 and two others. User
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interactive Q data-handling programs speak in a language written
by LAMPF programmers called QAL.72 Many general utility programs

3 the machine language of the PDP-1l

are written in MACRO ll,7
computer. The depth of the dependence of one layer of prcgramming
on others beneath it is startling. One of the more accessible
blocks of programming includes a FORTRAN program called the event
analyzer. Appendix A contains a copy of the analyzer for this ex-
periment, called PROCA6. The analyzer stores data from each CAMAC
measurement as a word in a common buffer. The values of these words
are the raw data for each particle measurement performed by the
spectrometer. More importantly, the analyzer calculates values of
quantities which are functions of the raw data and stores the calcu-
lated data in the same common. For example, the analyzer calculates
a number proportional to the energy loss in scintillator S2 when a
charged paiticle passes through it. Raw data for this calculation
are the ADC readings from phototubes S2P and S2N. These two words
are named IS2PA and IS2NA and energy loss in S2, named S2DELE, is
calculated by

S2DELE = (IS2PA x ISZNA)l/Z.

There is a small exponential loss as a light pulse travels to
either end of the scintillator. At a phototube the light intensity
is

Ie—(dtx) .



1f T is the intensity at the position of scintillation, x , with x «
P
x_, and d proportional to the distance half way between each tube. The

addition of the two light pulses at the two tubes yields
ZIe-d cosh x.

But the square root of the product of both pulses gives

Ie—d .

a term proportional to the light intensity of scintillation. It is
this last term that is chosen to measure the energy loss in the
scintillator.

The analyzer program calculates, among other quantities, the
values of XF’ YF’ OF, ¢F’ XR’ YR, OR, and ¢R. Raw data for these
calculations are the signals from all the wire chambers. Angles are
calculated from position in the various chambers and their separa-
tion distances. A much more interesting calculation is performed
by a subprogram of the analyzer. The computer stores the values
of POB’ angle of the spectrometer relative to particles incident
on the scattering target, angle of the target, nuclear composition
of the target, and POS’ the momentum of a pion which travels down
the center of the entire spectrometer. These values are input to
the computer by the experimenter. An elaborate relativistic kine-
matics calculation carried out by the subprogram can determine the

momentum, P_._, of a pion scattered from the center of the target
iv3

m

toward the exact center of the quadrupole magnets.
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A program called DSP creates histogram and scatter plots, dis-
played on a CRT screen, using any data words stored by the analyzer.
During this experiment., 280 data words were stored for every particle
that caused a hardware trigger. Figure 10 displays the results of
a histogram of S2DELE values for particles scattered from a target
composed of 58Ni. A scatter plot of XF verses YF is shown in
Figure 11 for particles scattered from a nickel target.

Another block of programs performs test operations on data
words. One program counts the number of particles during an ex~
perimental run that have a measured, or calculated, vaiue, such as
S2DELE or XT, lying between values specified by the experimenter.
Such a test may be used to gate a histogram or scatter plot. It is
possible, for example, to histogram the value S2DELE for those
particles, and only those particles, whose XT values lie between
-1 cm and 1 em. Protons which reach the scintillators of the
spectrometer lose more energy in the scintillators than do pions,
as can be seen from Figure 10. One may distinguish pions from
protons by specifying limits to the value S2DELE for all particles
that travel through the spectrometer.

Each hardware trigger activates the Q programs, causing each
TDC and ADC to be read and reset after an appropriate delay to let
measurements; be made, causing the analyzer program tc perform its
operations and the test programs to perform theirs, and usually
causing every raw data word to be written to magnetic tape. Th2 Q

programs are set up such that raw data words on tape can be used,



Fig, 11,

15,000 .
COUNTS

The energy loss in scintillator S2 is histogrammed for
particles scattered from *6Ni. Protons are created by
collisions in the target and are responsible for the
peak at right. The other peak is caused by pions.
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A scagter plot of Xg versus Y_ for particles scattered
from °ENi crudely shows the dimensions of the target.
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off line, to mimic the acquisition of raw data from the spectrometer.
This allows one to observe the effect of changing test limits, cal-
culating different quantities with a different analyzer, or other
such operations, without using the EPICS system. Scaler counts are
read by the computer and, in the usual case, written to magnetic
tape at uniform time intervals and at the end of an experimental run.
The analyzer program provides the means to measure XT more
accurately than is possible with the first-order quadrupole matrix
(2). The optics of the quadrupole triplet are not fully described
by the first-order matrix, and it is not possible to provide a fine
tune to the quadrupole magnets with small multipole trim magnets,
as exist in the channel, since there are no trim magnets in the
spectrometer system. Instead, higher-order terms of the quadrupole
optics may be equated with the coefficients of a linear equation,
and the coefficients found by a fitting technique. Design calcula-
tions indicate that the prominent terms, to third order, affecting
the measured value of XT’ are the following: XF’ OF’ XR, XRz, YFZ,
2 2 2 2 3 2 2
Xp s XpKpe Op > X XgOps Xp Ops XpOp s Op s Yp Ops 05 Ops XpOpKp,
XRZOF, and @FZXR. To calculate the coefficient of each of these
terms in the linear equation specifying XT’ a procedure is used in-
volving a thin horizontal rod as scattering target. The height of
this rod relative to the center of the quadrupole triplet is care-
fully measured. A computer program is written which can read the

data words XF’ GF’ Y QF’ and XR from the analyzer program. A

F’



large set of these values is accumulated by scattering pions from
the rod target. Then, a fitting program is run which determines a
best value of each coefflcient such that XT is the height of the rod
target. A Q subprogram, known as "Event 18", stores the coefficient
values in the computer so that the analyzer may calculate XT for any
particle entering the spectrometer. Using such an elaborate calcu-
lation, XT may be measured with a resolution of 5 mm. (FWHM).
The other particle coordinates at the scattering target are

found in the same way. A third-order linear equation is constructed

for each of ¢ YT’ and OT’ and the coefficients of each of these

T’
equations are stored in computer memory. Every time a particle in
the spectrometer initiates the analyzer program, a third-order
equation is used to determine each coordinate value at the target.
@T resolution was found to be better than 10 mrad (FWHM).

The momentum of a pion scattered from the target is calculated
irn a similar fashion. Again a third-order linear equ~tion is con-
structed for the value to be found and coefficients of the equation

are stored in the computer. The value measured is not strictly

pion momentum, however, but rather the difference

called DELTA in the analyzer program. Other values calculated by
elaborate linear equations with fitted coefficients are the path

length of a pion through the spectirometer and two angle predictions.
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Given OF and ¢F, Fhese last two calculations predict the values of
OR and ¢R,which may be compared with the values measured by the
rear chambers. Listed in Table 2 are the fitted coefficients used
in each calculation.

During this experiment, the overall energy resolution, the
measurement of the change in energy from the value possessed by an
incident pion, to the value after scattering, was found to be 0.25%
(FWHM). Calculations showed that multiple coulomb scattering and
energy degradation in the vacuum windows contributes about 150 keV

to the loss of resolution.



Table 2. The analyzer program calculates specified values using a
linear equation of terms and fitted coefficients as shown.

DL is analogous to DELTA.

Delta Calculation

Term Coefficient Term Coefficient

1 -0.2948 Yoop 0.00008533
Xp 0.2339 Opop 0.1400

Op 0.0008894 XX 0.001007

Ye -0.008157 X X0 0.000006887
¢p -0.0004591 XFOFOF 0.0000008418
Xy 0.2345 X0 X 0.000001057
X Xo 0.001349 OFQFOF 0.00000004718
X0 0.00001608 Op¥ ¥ ~0.000005711
XX 0.0002318 OFOFOF 0.0000004762
OrOp 0.00005562 OO R 0.0000004048
@FXR 0.00004687 O XXy 0.0000009494
YoYo -0.0001106 XXX 0.000001689

k9
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Table 2

Term

Yelp

Xp¥r
XeXp

F°F

(continued).

XT Calculation

Coefficient

0.03852
-1.008
-0.002943
-0.00005678

0.001371
-0.001353
-0.0004787

-0.000005388

OT Calculation

Coefficient
~0.5435
-0.7357
-0.9774
0.06257
0.05558
0.001392
0.0001726

-0.0002686

Term Coefficient
XFXFOF 0.00006907
XFOFOF -0.000001147
OFOFOF 0. 0000001064
OFYFYF 0.0001739
OF¢F¢F 0.000004742
XFXROF ~0.000007467
XRXROF -0.000005994
XROFOF -0.0000007639

Y,. Calculation

T

Term Coefficient
1 -0.3920

YF 0.06151
¢F 0.1876
XRYF -0.01394
xRéF 0.002396
XYy -0.01706
xFéF 0.004329



Table 2 (continued).

O

Calculation

Term

Coefficlent

5.331
-5.325
0.04422
0.06709
0.08207
-0.01167

-0.01999

¢ Calculation

RC

(Predicts the measured value)

ORC Calculation
(Predicts the measured value)
Term Coefficient

1 -8.431

XR 1.610

XF -1.291

OF -1.001
XRXR -0.02314
XFXF 0.04468
OFOF 0. 0006566
XRXF 0.003866
XRGF ~0.007637

Path Length Calculation

Term

Coefficient

9.446
-2.628
-0.9352
-0.09967

0.007082
-0.003101

0.c09789
~0.004969

0.001944

Term

1

Xy

OO

Dy Xp

D; Op

2.136
-0.006886
-0.003171
~0.01578

0.0005288

0.00004625
-0.000004341

0.0003550

0.000006287
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ITI. EXPERIMENTAL TECHNIQUE

Pion-nucleus scattering experiments are diverse and, as yet,
most of the information from such work is not fully realized.
There are numerous variations on scattering experiments, for example
the measurement of total or charge-exchange cross sections. This
thesis experiment concerns itself with one of the more fundamental
scattering techniques, the measurement of elastic differential cross

sections .

A Definition
Consider the following situation: A beam of pions of known

momenta, and of intensity I pions/cmz-sec, is directed on a target

0
containing a number, Doy of nuclei in each cm2 orthogonal to the
incident beam. All pions scattered in one second into a solid
angle d?, located relative to the incident beam at scattering angle
®S’ are detected and their momenta are measured. Some of the pions
will induce an excitation of the nuclel with which they collide.
The momenta of these pions will be less than that of the momenta of

elastically scattered pions which do not excite the nucleus. The

elastic differential cross section is defined as

(dc/dQ)E = NE/n (9

TIO ’
where NEdQ is the number of pions elastically scattered into the

solid angle df) per second. An inelastic differential cross



section measures the number of pions scattered into a solid angle
d? in one second, which have lost a specified amount of energy to
nuclear excitation.

By far, the easiest component of the differential cross section
to measure is the value nn. It requires only the determination of
the mass of the target and its area incident to the incoming pica
beam, assuming, of course, that the target thickness and density
are uniform, Suppose such a uniform target contains a single species

of nuclei of atomic mass A and has a mass of w grams. 1Its incident

area is B cm2. Then n, may be calculated with Avogadro's number,

N, = 6.0222/gm~mole:

nn = wNa/BA . (10)
In spite of the fact that B has the units of area, for purposes of
calculating the crosgs section, nn is taken to be a pure number. The
density of targets used in this experiment is shown in Table 3. All
targets were thin rectangular sheets measuring 8 in. in the vertical
direction and were several millimeters thick. The lead and nickel

targets were six inches wide. The beryllium, carbon, and silicon

targets were four-and-a~half inches wide.

The Normalizing Ratio

It is not possible to measure the solid angle which the spectrom-
eter presents to scattered pions. The optics of the spectrometer
magnets are very complex, as has already been pointed out, and more

than one aperture defines the solid angle acceptance in the

53



54

Table 3.

The mass density of targets used in this experiment is
listed below. The density 1s an area density incident to
the incoming beam. Each target was relatively pure, con-
taining better than 927 by welght of the particular
nucleus shown. Error in the density is less than two
percent for every target. The targets were a few milli-
meters thick. Average pion energy loss in each target is

indicated for ¢S = ¢ = 0. En = 162 MeV.

T
Energy Loss Density
Nuclens (MeV) (g/cm’
%Be 0.184 105
12, 0.484 252
2804 0.634 366
81 0.461 292
208, 0.341 289



spectrometer. Furthermore, the spectrometer solid angle is a
function of the spectrometer central momentum and of the difference,
§, between central momentum and the momentum of a scattered pion.
The solid angle may also be a function of the jaw settings in the
EPICS channel, the charge sign of pions used, and of field strength
in the channel separator. It is nevertheless possible to measure
scattering cross sections of nuclei if the differential cross sec-
tion of a single nucleus at a particular scattering energy is ac-
curately known. In such a case, spectrometer scattering measure-
ments may be compared with the accepted value of the cross section
at a certaln energy, enabling the measurement of differential cross
sections on other nuclei at that energy.

There is one nucleus for which the differential cross section
may be precisely calculated, lH. A physicist at the Los Alamos
Scientific Laboratory has made a calculation of the cross section
of pion scattering from hydrogen74 based on the derived phase shifts
of pion-proton scattering. His results, while considered more
accurate than measurements of the pion-hydrogen cross section, such
as those made by Bussey,75 agree, within quoted error, with the
measured values. Calculated cross sections have a total error less
than 27Z.

While it might seem possible to determine the spectrometer

solid angle for a particular configuration of the EPICS system by
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comparing spectrometer measurements with the calculated cross sec~
tion, even this is not practicable because it is not feasible to
measure the pion beam intensity, IO’ on a scattering target. The
intensity, IO’ is a function of the jaw settings in the channel,

the separator field, and of the central momentum of the channel, and
the shape and position of the scattering target. The measurement

of I0 is predicated on a knowledge of the ion chamber-target
orientation and the relative number of different types of charged
particles which compose the beam. But as was shown in Table 1, the
percentage of pions in the beam 1s known to no better than *3%.

This alone introduces unnecessary error into a cross-sectional measure-
ment. Comparing spectrometer scattering measurements on hydrogen
with the calculated pion-hydrogen cross section obviates any need

to measure solid angle or I As long as parameters of the EPICS

0
system that affect IO and d?? remain unchanged, then the scattering
information from a target containing hydrogen may be used to cali=~
brate the scattering data from any of the other targets.

In this experiment, normalization was made to the pion-hydrogen
cross section in a roundabout fashion. The differential cross
section for pion scattering from 12C at 162 MeV has been recently
measured using the EPICS system.76 Normalization of the 120 cross

section was derived from the pion-hydrogen cross-sectional calcula-

tions. Cross sections measured in this thesis experiment are



directly normalized to the carbon cross section by measuring scatter-
ing from a carbon target. A ratio of the known cross section of
pion~carbon scattering to the 'vield" for pion-carbon scattering
measured by the spectrometer in this experiment provides the cross
seciion to yield ratio, which implicitly contains the solid angle

and beam intensity iuformation needed to normalize the scattering
data from beryllium, silicon, nickel, and lead targets. The con-
figuration of the EPICS system was maintained nearly unchanged

during the entire experiment. That is, spectrometer central momentum,
channel central momentum, separator field, and scattering target
height were not changed,

A direct normalization to the pion-hydrogen cross-sectional cal-
culations was not chosen for this experiment because the light
hydrogen mass causes a large value of § at large values of ¢S’
and requires the change of spectrometer magnetic fields in order to
accept scattered pions. Changing large magnetic fields is a time-

consuming process which slows down the acquisition of data.

The Scattering Yield

Some percentage of pions which scatter from anv of the targets
used in this experiment do so inelastically. They lose kinetic
energy by exciting the scattering nucleus. It is worthwhile to
distinguish inelastically scattered pions from those that are scat-

tered elastically because it Is thought that the mechanisms for the

o1
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two types of sgcattering are different. It may be possible to learn

about both mechanisms by gathering both types of scattering data.

Missing Mass

The kinetic energy of an elastically scattered pilon 1s, of
course, not the same as that of the incident pion. The scattered
pion energy depends on the mass of the target nucleus as well as
the direction of incident and scattered pion momentum. Additiornally,
some kinetic energy is lost as a pion passes through the finite
thickness of the scattering target.

Except for a few measurements, the angle of the scattering
target, relative to the incident particle beam Wr, was half the value
of the central spectroneter angle, Wg, relative to the incident beam.
This ensures a constant solid angle subtended at the spectrometer.

It is also desirable to rotate the target half as much as the spec-
trometer because of pion energy loss to ionization in traveling
through any target. If the spectrometer was at 90° and the target
plane remained perpendicular to the incident beam, then a scattered
pion might have to traverse the entire width of the target before
entering the spectrometer. Fig. 12 shows a yz-plane cross section
through the target and indicates the path of several scattered pions.
The angular acceptance of the spectrometer in the yz plane is about
seven degrees and all scattered pioms which enter the spectrometer
travel in a nearly parallel direction. It can be seen then, from

Fig. 12, that the path length through the target is about the same



Fig. 12.

SCATTERING TARGET

SPECTROMETER ENTRANCE

The path length through the target is approximately the
same for all pions scattered into the spectrometer.
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for all scattered pions. This 1s true for all values of target

angle, mT, such that wT

The average energy loss of pions passing through a target when

= wS/Z.

Wg = Wp = 0, is listed in Table 3 for all five scattering targets.
The average energy loss increases with Wg where Wy = wS/Z. The mean
value of the kinetic energy carried by a pilon into a nuclear colli-
sion in the target is the pion's kinetic energy upstream of the

target minus half the mean energy loss in that particular target.

In a scattering experiment one must, in general, reach a compromise.
The thicker the scattering target used, the greater is the intensity
of particles scattered from the target, but also greater is the un-
certainty in the exact value of incident particle energy at the scat-~
tering nucleus, and greater too, is the energy spread of scattered
particles due to ionization losses in the target. In this experiment,
the maximum change in the mean value of incident pion energy on a
scattering nucleus was mainly due to the momentum dispersion of the
incident pion beam, which corresponds to an energy dispersion of about
1.5% near 162 MeV. However, energy losses in the target before col-
lision with a nucleus also contribute a small amount to the variation
of incident energy. The target angle, W ranged from near 0° to

45° during the experiment. This represents a change in mean incident

pion energy or 0.125 MeV in the silicon target. Rotation of any of

the other targets resulted in smaller change.



The value measured hy the EPICS system which is equivalent to
pion energy lost to nuclear excitation is called the missing mass.
An elaborate relativistic kinematics calculation determines missing
mass. The values that must be fed into the computer for this
calculation include the incident pion momentum which is a function
of the scattered pion momentum, and the direction of the momentum of
the scattered pion. The experimenter must input the atomic mass
of the target nucleus, the average pion energy loss in the target

and the target angle, w the central momentum of the channel and

T
spectrometer, and the central angle of the gpectrometer relative to
the incident charged particle beam, ms. The missing mass calculation
compensates for pion energy loss in the target prior to the collision
with a nucleus and for the energy lost in traversing part of the
target after scattering. The calculation also transforms the values

X 6 Y., and GT, measured by the spectrometer, to the plane

T> "T° T
of the scattering target, which is not, in general, perpendicular
to the central ray running through all the spectrometer magnets.

A histogram may be constructed of the missing mass values of
pions entering the spectrometer. It is useful to divide the solid
angle of the spectrometer into several partitions, each of which
more closely defines the scattering angle ¢S’ of pions entering
that partition. This division was made by using test software to

restrict the ¢T values of those pions whose missing mass values

were histogrammed. Figure 13 displays a histogram of missing mass
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Fig. 13.

MISSING MASS

A histogram of missing mass is shown for positive pion
scattering from 2°Si. The incident pion energy is

162 MeV. The leftmost peak counts elastically scattered
pions, while the first peak to its right indicates those
pions which excited the first inelastic level of the
nucleus at 1.78 MeV, A small bump between markers four
and five is caused by pion excitation of the level at
4.61 MeV. The peak between markers five and six is due
to pions which have lost 6.88 MeV to nuclear deformation.
Angular acceptance is 2.4 deg. ¢S = 35.6 deg. The six
markers fall at energies ~2.0 MeV, 1.2 MeV, 2.9 MeV,

4.2 MeV, 6.2 MeV, and 8.1 MeV relative to the zero value
of elastic scattering.



values of those positive pions scattered from 2851 whose angular

values, 9., lie between -1.2 deg and 1.2 deg. Since the central

T
spectrometer angle, u%, was 35.6 deg in this instance, the scat-
tering angles, ¢S' of pions histogrammed lie between the two limits
34.4 deg and 36.8 deg.

The missing mass values were measured for those pions in one of
three angular bins. A bin of width 2.4 deg centered on the spectrom-
eter was set up to measure the missing mass of inelastically scatter—-
ed pions. Two bins of 1.2 deg in width bisected the 2.4 deg bin.
These smaller angular bins deterrined the missing mass of elastic
plons. The smaller bins provide less uncertain measurement of @S,
but the number of elastic pions which are scattered into a 1.2 deg
bin in a given time is only about half the number which would be
scattered into the larger 2.4 deg bin. The cross section for elastic
scattering is usually so much larger than an inelastic cross section
that the better angular resolution at the expense of intensity is
justified for elastic scattering.

Test software is also employed to ensure that of those charged
particles causing a hardware trigger, protons initiate no histo-
gramming. Protons which are accepted by the spectrometer loose
more energy in the scintillators than do particles traveling nearer
the speed of light, such as pions, muons, and electrons (see Fig.
10). A test gate is set on the value of energy loss in the scintil-

lators and theresult is that no significant number of protons
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initiate the histogramming and scatter plot programs. Though the
charged particle bea contains measurable numbers of muons, electrons,
and protons (see Table 1), scattering of muons and electrons into
the spectrometer is small. The amount of muon and electron scat-
tering may be calculated and its effect may be subtracted from
measured scattering data to give purely pion-scattering cross
sections. The calculation of the scattering of electrons and muons
will be presented in a later chapter.

It might be expected that a good missing-mass calculation of
pion-nucleus scattering would result in discrete values of missing
mass. There is, after all, no energy lost to nuclear deformation
in elastic scattering and the first few excited states of those
nuclei examined in this experiment are reasonably well separated
from the ground state and from each other. As Fig. 13 shows, pions
which have excited the first inelastic state in 2851 at 1.78 MeV,
are clearly separable from elastically scattered pions. The central
scattering angle is 35.6°. Scattering from excited states at
4.61 MeV and 6.88 MeV is also visible. However, every peak in-
corporates more than a single value of missing mass and each peak
continuously melds into adjacent peaks. Even between widely
separated peaks there is some background. Figure 14 shows a miss-
ing-mass histogram of the same pion scattering as Fig. 13 displays,
except that the central scattering angle is 23.6°. Scattering to
the inelastic states at this angle is very weak relative to elastie

scattering, so that the elastic peak shape is better seen here.
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Fig. 1s4.

A missing-mass histogram for positive pion scattering

from *®si at 162 MeV incident pion kinetic energy is shown.

The angular acceptance is 2.4 deg. &_, = 23.6 deg. In-
elastic states are very weakly excite§ by pions at this
angle. The six markers represent energies of -2,0 MeV,
1.2 MeV, 2.9 MeV, 4.2 MeV, 6.2 MeV, and 8. MeV.
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The width of the missing-mass peaks is primarily a consequence
of measurement error in the EPICS system. As has already been
pointed out, the position resolution of the spectrometer wire
chambers, coulomb scattering and energy degradation in the vacuunm
windows, uncertainties in the exact beam optics, and energy degrada-
tion in the scattering target, limit energy resolution of the EPICS
system. There is also a source of natural line-broadening that is
unrelated to any apparatus. When a charged particle is accelerated,
such as occurs if it is scattered from a target, a number of photons
are radiated according to statistical probability. There is a
small chance that the particle will 1lose a great deal of energy to
electromagnetic radiation and a much better chance that it will
loose only a little energy in this way. For example, only 3.5% of
all negative pions with 162 MeV kinetic energy, scattered at 90 deg
from 208Pb, lose more than 2 MeV of energy to radiation. Figure 14
gives an indication of the radiative tail on the missing-mass peak
shape. Note that the right edge of the peak depicts those elastic-
ally scattered pilons that have radiated significant amounts of
energy.

It is thought that the missing-mass values so conspicuous on
the left of the elastic peak in Fig. 14 are caused by muons. How~
ever, elastically scattered muons from the target should be assigned
values about the same as the missing-mass values of elastic pions.
Rather, it may be muons created by pion decay in the spectrometer

that account for the few values to the left of the elastic peak.



When a pion decays into a muon and neutrino, the muon can have
a higher momentum than the pion. Such an anomalously high momentum
can result in misassignment of missing mass on the high energy side
of the pion lastic peak. Most often the muon will diverge from
the path of the pion that created it. If the pion decay occurs
dovmstream of the front wire chambers in the spectrometer, it is
possible to select out many of the product muons. The angle of a
pion at the front chambers, and dipole magnet optics, allows for
the prediction of pion angle at the rear chambers. If the pion
decays downstream of the front chambers, it is likely that the angle
of the muon through the rear chambers is not in agreement with the
angle predicted by pion trajectory at the front chambers. All miss-
ing mass histograms are gated by a test on rear-focus angle pre-
diction compared with the measured angle at the rear focus. That
some muons seem to cause missing-mass assignment on the high energy
side of the pion elastic peak is a sign that the angle test is not
totally effective.

There are, in fact, quite a few tests which act as gates on
the missing-mass histograms, excluding from the histograms the values
of particles which cannot be identified as pions scattered from the
target. Energy loss in the scintillators and the angle check are
just two of many gates.

It is essential that all seven operating wire chambers function

properly, if the momentum of a pion is to be measured correctly.
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But the wire chambers are not 100% efficient and are, in fact, less
efficient detectors of protons and muons that of pions because of

the different speeds of the particles. Occasionally a wire chamber
will malfunction when a charged particle passes through it. In

such a case, the time check sum tc [see equation (5)] will not attain
its constant value. When this happens in any wire chamber, the
particle that triggered the detection system wiil not contribute to
any missing-mass histogram. Other tests set limits on the coordinate
values of acceptable particles. If one of the coordinates ST’ OT’
YT’ or ¢T indicates a particle entering the spectrometer that did

not come from the scattering target, then again, the missing-mass
histograms are not augmented by the missing-mass value corresponding
to that particle's momentum. The coordinates of a particle at the
front and rear wire chambers are also tested for spurious values.

To determine the number of pions represented by a missing-mass
peak, whether the elastic peak or any inelastic peak, a fitting
program integrates the area under that peak between limits set by
the experimenter, subtracting off the area of a specified background.
Those muons that are products of pioa decay in the spectrometer
and are not tagged by the angle test can be handled by setting a
proper background below each fitted area. The dotted line in
Fig. 15 shows a typical background. The area under the dotted line

is subtracted from the integrated area, in this case including two
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Fig. 15. An energy spectrum is shown for negative pion scattering
from °%Ni. A fitting program calculates the area between
cursors two and three below the peaks and above the back-
ground (dotted line). The five lower markers represent
the following energies: ~2.0 MeV, 0.8 MeV, 2.2 MeV,
3.8 MeV, and 5.1 MeV.
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peaks, between cursors 2 and 3 in the drawing. Even if the back-
ground area does not exactly correspond to all decayed muons, con-
sistent fitting technique on carbon scattering along with scat-
tering from the other four nuclei eliminates the problem with
muons from pion decay. Suppose the background is consistently set
too small. Then the cross section to yield ratio for carbon (the
normalizing nucleus) will be smaller than its value had all decayed
muons been accounted for properly. Clince this ratio is used to
normalize the cross sections for pion scattering on the other four
nuclei, those cross sections (whose yields include muons) will be
correct.

It is not unusual for the first inelastic peak in a missing-
mass histogram to fall on top of the radiative tail of the elastic
peak. The versatility of the histogram fitting routine allows both
peaks to be fitted properly. Both Figs. 15 and 16 depict histo-
grams generated by negative pion scattering from 58Ni at 162 MeV.
In the latter figure, the first inelastic peak is fit. The
background, under the dashed line, is subtracted from the inte-
grated area between cursors 2 and 3. The fitting method shown in
Fig. 15 calculates the area under both the elastic and first in-
elastic peaks exclusive of background. The background shown in
Fig. 16 represents the radiative tail of the elastic peak (see
Fig. 14) so that the area above background is entirely due to scat-
tering to the 1.45 MeV state in nickel, Subtracting this area from

the area under both peaks yields the area due to elastic scattering.



i | 1
T 1 T
o 7
i ]
. 2|l 3 4 .
J

) _ ]
IJ x‘ - = W
171 1 T T T T
! 2 3 4 5
MISSING MASS

The same spectrum as depicted in Fig. 15 appears here.
The background under the first inelastic peak (1.45 MeV)
represents the radiative tail of the elastic peak.

Fig. 16.
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The typical background beneath another inelastic state is shown in
Fig. 17. This histogram was generated by scattering positive pions
from a target of 208Pb. The integrated area is again between
cursor 2 and cursor 3.

The overall energy resolution for this experiment, as embodied
in the missing mass histograms, was nominally 400 keV at an incident

energy of 162 MeV. Figure 18 represents the missing-mass spectrum

of positive pion scattering from 9Be.

Yield Corrections

The area under an elastic peak in a missing-mass histogram
provides much of the information needed to calculate NEdQ, the number
of pions elastically scattered into the solid angle d of the
spectrometer. There are, however, a good many corrections which
must be applied to the number of pions counted in an elastic peak
before a proper yield value is determined. Yield need only be
multiplied by cross section to yield ratio and target density to
complete the cross-sectional calculation.

The number of pions which intersect the scattering target
during the lZength of a particular experimental run is proportional
to the integral over time of ion chamber current during the run,
assuming that ion chamber-target orlentation is standard. While it
is not possible, nor necessary, to measure the beam flux, Io, on

the scattering target, it is essential that the number of pions
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The energy spectrum for scattering of ﬂ+ from 29°Pb is
shown. Under the inelastic peak at 2.62 MeV is a typical
background. As usual, the area under the peak will be
integrated between cursors two and three. The three
markers below the plot frame indicate energies of

-2.0 MeV, 2.0 MeV, and 3.62 MeV.
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Fig. 18. Scattering of positive pions from Be generated this
typical spectrum. The three markers indicate energies
of -2.0 MeV, 1.9 MeV, and 3.5 MeV.



hitting the target during a run be measured. It was common for the
LAMPF proton beam to shut off intermittently during an experimental
run so that measuring the length of time of a run was no indication
of the number of incident pions on a particular target.

During this experiment neither ion chamber proved itself vacuum
tight. The gas inside each chamber slowly leaked. The rate of loss
of gas was fairly constant, with the upstream chamber leaking faster
than its downstream companion. The operating gas in each chamber
was confined to a fixed volume so that as the gas pressure fell at
a uniform rate, the density of gas also fell at a constant rate.
This caused a steady rate of drop in ion chamber current per par-
ticle flux through the chamber.

An alternative method for measuring the relative flux of pions
on the scattering target was provided, though in an erratic fashion,
by a toroidal coil surrounding the proton beam, upstream of the A-1
production target. Recall that the A-1 target rotates in the 800 MeV
proton beam, creating pions which are collected by the EPICS channel.
The toroidal coil accurately measures the proton beam current; how~
ever, the proton beam position on the A-1 target was not steady and
the coil measurement thus gives only a crude determination of the
intensity of pions hitting the scattering target at the end of the
EPICS channel. Shown in Fig. 19 is a plot of the ratio of the total
charge passing through the toroid during an experimental run to a

value proportional to the total charge generated by the downstream
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Fig. 19. The ratio of proton beam intensity near the A-1 target

to pion flux in the downstream ion chamber is plotted in
arbitrary units for each experimental run. When the A-1
target quit rotating, the value of this ratio increased
at an accelerated rate,



ion chamber in the same time. Each point on the plot represents

this ratio during a single run. Only runs of positive pion scat-
tering are shown, but all these runs were contiguous in a time
stretching over four days. Ignoring the erratic behavior caused

by the change in the proton beam position on the A-1 target, the
plotted values for the first three-and-a-half days are well represent-
ed by a straight line of moderate slope. This line is roughly
sketched through the points. The slow decrease in gas pressure in

the downstream ion chamber would justify a straight line compatible
with the one sketched.

The precipitous increase in the specified ratio after three-and-
a-half days, as indicated in Fig. 19, might present a quandry.
Measurement of the pressure of the operating gas in the ion chamber
did not confirm a much larger gas leak starting after three-and-a-
half days. 1t was eventually discovered that the A-1 target mechanism
was responsible for the anomalous measurements. The electric motor,
which should rotate the target, malfunctioned, probably due to
radiation damage. When that happened, protons began to destroy the
target so that, with time, fewer pions were created for a given pro-
ton flux.

A correct scattering cross section cannot be calculated without
compensating for the ion chamber leak. It is imperative that the

relative number of plons intersecting the scattering target be

T
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determined in a fashion that is consistent for all runs. This could
not be done 1f the falling ion chamber efficiency were ignored. The
straight line sketched in Pig. 19 is used to correct for the ion
chamber leak. For a particular run, some standard value, in this
case the ordinate value of the line at zero days, divided by the
line's ordinate value at that run, specifies the ratio, RI’ which
corrects the scattering yield for ion chamber leak. Deterinration

of the A-1 target has no effect on scattering measurements except to
marginally decrease the flux in the EPICS channel, lengthening the
time necessary for data acquisition. Negative plon-scattering —
measurements were performed immediately after the positive plon scat-
tering. The ion chamber leak remained uniform during the entire
experiment so that a straight line of slope the same as that of the
line in Fig. 19 was used to correct the yleld for negative pion scat-
tering.

After each hardware trigger generated in the fast electronics
by the spectrometer detection system (see Fig. 9), the computer
initiates a busy signal while measurement data is processed. During
this time, no additional scattered pions can be measured. But there
is a signal, tagged "particle" in the electronics diagram, which
indicates a scattered pion even if the computer is busy. The occur~
rence of each "particle" signal is counted by a scaler. Another
scaler counts the number of pions which result in hardware triggers.

The ratio, RT’ of this last scaler count to the number of occurrences



of the "particle'" signal during a particular run specifies the per-
centage of pions entering the spectrometer which were processed by
the computer. It is assumed, of course, that the properties of

those piong not causing hardware triggers correspond to the pro-

perties of measured pions. Thus, wuen the computer has time to

analyze the properties of every plon entering the spectrometer,
that missing-mass spectrum is assumed to look exactly the same as it
would 1f, say, only 207 of scattered plons were analyzed.

Not every pion scattered into the spectrometer survives the
trip from the scattering target to the rear wire chambers. TIn fact,
most do not. Rather, the majority of scattered pions decay to muons
before they have traveled completely through the spectrometer. The
half life for charged pions is 1.808 x 10--8 sec in the pion rest
frame. Suppose a beam contains positive pions of 161.5 MeV kinetic
energy. Then the half life of the pions in the laboratory frame is

At = at/-pH/? (10)

wherz At = 1.808 x 10—'8 sec and 82 = vz/cz. Half the pions in the
beam have decayed during a length

2.1/2
) /

Ly = vAt = vAt/(1-B = PcAT/mn . (11)

where P represents the pion momentum in units of MeV/c and m has
the units of MeV/cz. Thus,

LH = 3,868P cm , (12)
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and, in thius casge, with P = 267 MeV/c, LH = 10.35 m. Path length
throuph the spectrometer 1y 12.77 m, so well over half of the pions
which had a scattered energy of 161.5 MeV would decay before reach-
ing the rear wire chambers.

If there are N plons acattered into the spectrometer, the

number of plons that will decay in a certain time interval is pro-

portional to the number of pilons that exist at that time. Thus,

dN/dt = -AN(t) (13)

and
-At
N(t) = N(D)e s (14)

where A 18 equal to 1/1. T is the mean lifetime for charged pions,
2.603 x 10-.8 sec. Scattered pions with 161.5 MeV kinetic energy
take 22.32 nsec in thelr own rest frame to travel from the scatter-
ing target to the rear of the spectrometer. Accerding to

equation (14), only 43% of these pions survive the trip. The sur-

vival fraction, R, = N(t)/N(0), specifies the fréction of scattered

S
plons, at any momentum, which do not decay as they travel through

the spectrometer. RS was calculated by the computer, for each
angular bin into which pions scattered using the calculated sc.ut~
tering energy. Since muons are eliminated from the missing-mass
histograms by the angle test and proper fitting technique, the count
of pions in a peak of the histogram must be divided by RS to give the

number of pions actually scattered into the spectrometer. Again,



the assumption Is made that picns which decay would yield the same
missing-mass spectrum as those piens that survive.

It is not possible to include the entire radiative tall of a
peak in the missing-mass histogram when intergating the area under
that peak. A computer program has been written, based on the cal-

77 78
culations of Borie and Sogard, which determines the area lost
by cutting off a pertion of the radiative tail. The calculated

fraction of area lost, RA’ must be added to the fitted area under a

given peak to cnsure the proper scattering yield.

The soltd angle of the spectrometer into which pions scatter is
a function of &, the difference between the scattered pion momentum
and the central momentum of the spectrometer. Much of the configura-
tion of the EPIc¢cS system must not be varied while a scattering
experiment 1s in progress. As detailed earlier, the actual values
of spectrometer solid angle, d, and incident pion intensity, IO’
cannot be measured. Changes in jaw-setting in the channel, central
spectrometer momentum, and other factsrs cause unknown changes in dQ
and/or IO' Scattering from the normalizing carbon nucleus must be
performed with the same setup as scattering from all other nuclei in
order to keep di? and I0 constant. There is, however, one problem.
As the spectrometer itself is rotated toward larger values of wS, the

momentum of elastic pions scattered into the spectrometer decreases,

This means that & decreases as the spectrometer is changed to larger
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scattering anglea, and df: 15 a function of 4. Pigures 20 and 21

show the relative change in dl with 4 for two of the angular bins.

Note that only changen in d7? with 4 are relevant. The actual value

of the solid angle 18 never measured. The ratlo, RO' of the relative

value of d0 at a particular value of 4 to some arbitrary number is

uged to correct acattering yfeld. For the 2.4° angular bin,

the dependence of d2 on & 1s similar to that shown in Fig. 21.
Usually the scattering target angle, mT. was get to half the

value of the spectrometer angle, W+ The pion beam 1s not as wide
as any scattering target, so when the target is not perpendicular
to the incident pion beam, more nuclei are in the beam. This cor-
responds to an effective change in s the number of target nuclel
in the pion beam. One may correct a scattering yield for this effect
by multiplying by Cos W

At spectrometer angles, Wg s greater than 90° mechanical pro-
blems prohibited the angle of the scattering target from being as
large as half the value of Wg+ Measurements indicated that the
solid angle of the spectrometer was a function of the difference
(wT - wS)/2, though the solid angle changed no measurable amount
with Wy when Wy was equal to wS/Z. Figure 22 shows the solid-angle
dependence on the variable x, where ¥ is the ratio Cos(wS - wT)/Cosz.
For those few runs during this experiment for which X was not equal

to one, the solid angle of the spectrometer required correction.

Again it should be pointed out that the values of d in Fig. 22 are
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only relative valuen. di {4 not ansigned any abgolute value. The
ratio, RZ' of dii at & certain value of s, to the di¢ value for y = 1,
wag used to modlfy the scattering yield for those runs where the
value of b WIS nOt equal to half the value of We »

The occurrence of a hardware trigper, generated by the detection
cquipment In the spectrometer, does not guarantee that each of the
seven operating wire chambers fn the spectrometer functioned pro-
perly.  No wire chamber was 1007 efficient as measured by the value
of Lc In that chamber. UWhen LC did not have the constant value
expected, the wire chamber which produced this spurious tc value was
considered to have malfunctioned. Under normal conditions, each of the
four front wirce chambers functioned properly better than 987 of the
time. Each of the three rear wire chambers had a better than 937 effi-
clency. Every wire chamber must operate properly in order to measure
plon momentum. So if not every wire chamber functions as 1t should
when a plon passes through the spectrometer, then test software
excludes from the missing-mass histograms the value of that pion.

The ratio, R specifies the fraction of pions for which all wire

C’
chambers performed adequately to the total number of pions scattered

into the spectrometer.

It 1s more likely that a muon, decayed from a scattered pion,
will cause any wire chamber to malfunction than it is that a pion
will cause such a malfunction. Figure 23 shows a histogram of the

value of the angle check during a particular experimental run.
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Angle Check

The angle check histogram is depicted for a particular
run. Particles whose values lie outside of the markers
one and two do not contribute to the missing mass histo-

grams.
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Those particles whose predicted angle at the rear wire chambers

agreed with the measured angle at the rear chambers are depicted
within the peak between markers one and two. Most of the particles
depicted outside of the markers are muons from pion decay downstream
of the front wire chambers. There are also some muons whose angle
check values fall within the peak shown. However, by selecting
particles whose values lie in a very narrow width at the peak centér
most muons are excluded. It is found that the wire chamber efficiency
is better for those particles with an angle check value near the
center of the peak than it is for all particles whose values lie
between markers one and two. Since pion scattering is to be measured,
not muon scattering, the wire chamber efficiency for just pioms is
required. Thus, the value of the ratio, RC’ is modified to reflect
wire chamber efficiency for pions only.

In most cases, the overall wire chamber efficiency was about 85%.
Thus, if 100 pions scattered into the spectrometer, only 15 would
induce any of the 7 wire chambers to malfunction. The wire chamber
efficiency is a function of charged particle flux through the chambers.
Occasionally during this experiment, because of high flux, overall
wire chamber efficiency decreased to near 80%.

The pion-scattering yield is calculated from the area under a
missing-mass peak, the ion chamber current during the experimental
run, and the corrections outlined above. Let AE be the area under

the elastic peak, minus background, in a missing-mass histogram and



let Q be a value proportional to the total charge generated in the
downstream ion chamber during the run. The corrected elastic-scat-

tering yield is given by the formula
Y, = AERI(l + RA)Cosz/QRTRCRSRORX . (15)
An inelastic yield would be found by substituting for AE the

area under the particular inelastic peak of interest.

It now remains only to multiply a yield by the cross section to

yield ratio and the target density in order to get a cross section.

The Cross Section

The cross section to yield ratio used to normalize a scattering
yield is a function of the charge sign of incident pions. The beam
flux transported through the EPICS channel is not the same for

positive pions as it is for negative pions. The intensity of the

negative pion beam is three to five times less than the positive beam.

The scattering yield for both positive and negative pions on C
was measured with a standard configuration of the EPICS system. The
yield was determined gt various spectrometer angles, Wg s though the
normalizing ratio of cross section to yield, RY’ should not be a
function of wg- There is no reason for either the incident pion
intensity, IO’ nor the spectrometer solid angle, d, to vary with
the spectrometer angle, g - And, no correlation is found between
the scattering yield and Wg « Appendix B tabulates the pion differ-

12 . . ,
ential cross section on C. This cross section is the basis for

the normalizing ratio RY'

89



90

The solid angle into which pions scatter in the spectrometer
depends on which angular bin collects those plons. For this reason
the ratio, Ry, is different for each angular bin. Table 4 lists
the measured values of the pion-carbon scattering yield for each
angular bin and the cross section to yield ratio corresponding to
each yield. The average ratio for each bin is the value used to
normalize the scattering data of this experiment. For positive
pion scattering the weighted average values of RY and the average

relative errors are the following:

2.4 deg Bin -1.2 deg Bin 1.2 deg Bin
1.199 + 0.054 mb/sr 1.177 + 0.057 mb/sr 0.9341 * 0.046 mb/sr

For negative pion scattering the normalizing ratios are:

2.4 deg Bin -1.2 deg Bin 1.2 deg Bin
1.141 * 0.031 mb/sr 1.079 * 0.032 mb/sr 0.8632 * 0.026 mb/sr

That the normalizing ratios are different for each angular bin,
testifies to the fact that the solid angle of each bin is different.
It is worth noting, however, that RY is not correlated with Wg e

The scattered particle flux into the spectrometer is very high
at small scattering angles. In fact, it was impossible to measure
positive pion scattering cross sections at angles near or below 20°
without modifying part of the EPICS setup. Scattered beam intensity
at small angles caused the front wire chambers in the spectrometer

to completely malfunction in some instances. The main LAMPF proton




Table 4. The elastic yield and normalizing ratio is shown for carbon

scattering at 162.1 MeV. Errors given are relative error.

17 ,1%c - 2.4 deg Bin
Y A Y o Ry Oty
E "r'E (deg) (mb/st) (mb/sr)
40.29 2.31 33.2 1.291 0.155
2.485 0.162 45.2 1.232 0.129
0.9730 0.0720 47.6 1.100 0.125
0.2349 0.0281 50.0 1.120 0.178
0.7298 0.0526 59.6 1.309 0.147
1.055 0.089 69.2 1.194 0.149
0.4474 0.0365 78.8 1.162 0.143
1.2 deg Bin, ¢T = ~-0.6 deg
+
Y A Y O Ry ety
E r E (deg) {mb/sr) (mb/sr)
46.41 3.08 32.6 1.239 0.131
3.159 0.230 44.6 1.209 0.136
1.249 0.105 47.0 1.144 0.137
0.3549 0.0476 49.4 1.057 0.185
0.6793 0.0611 59.0 1.289 0.167
1.110 0.115 68.6 1.152 0.165
0.5225 0.0521 78.2 1.100
1.2 deg Bin, ¢T = 0.6 deg
¢ +A
Y A Y S Ry rRY
E “"r'E (deg) {mb/sr) {mb/s1r)
45.60 3.09 33.8 1.041 0.112
2.559 0.198 45.8 0.9000 0.106
0.9762 0.0892 48.2 0.7888 0.103
0.1968 0.0355 50.6 0.9909 0.2184
1.007 0.083 60.2 1.023 0.123
1.315 0.1315 69.8 0.9278 0.130
0.4942 0.0492 79.4 0.9611 0.1345
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Table 4 (continued).

n_,lzc - 2.4 deg Bin
Y +A_Y % B’; ey
E “r E {deg) mb/sr) (mb/sx)
231.1 12,1 18.8 1.255 0.086
1.885 10.3 21.2 1.209 0.082
91.43 5.33 28.4 1.094 0.077
63.15 3.73 30.8 1.118 0.079
44 .39 2.38 33.2 1.113 0.074
1.302 0.087 63.2 1.091 0.085
1.283 0.087 66.8 1.130 0.089
1.2 deg Bin, ¢T = ~0.6 deg
+
Y +A Y 2 B‘; oty
E ““r'E (deg) (mb/sT) (mb/sr)

229.1 13.5 18.2 1.331 0.095
226.6 12.9 20.6 1.068 0.074
108.3 7.26 27.8 0.9972 0.078
71.46 4,81 30.2 1.077 0.084
50.09 2,97 32.6 1.088 0.078
1.370 0.116 62.6 1.007 0.094
1.422 0.117 66.2 1.027 0.094

1.2 deg Bin, ¢T = 0.6 deg

iArRY

o]

YE iArYE gdgg) (mgysr) (mb/sr)
303.8 17.3 19.4 0.8986 0.0625
272.4 15.1 21.8 0.7783 0.0532
101.4 6.69 29.0 0.8925 0.0689

73.07 5.18 31.4 0.8786 0.0715

51.82 3.15 33.8 0.8587 0.0625

1.607 0.134 63.8 0.8961 0.0827

1.539 0.137 67.4 0.9292 0.0906



beam intensity was decreased from about 300 pA to about 150 PA for a
short period in order to facilitate the measurement of small-angle
positive pion scattering on the EPICS system. This resulted in an
attenuation of the positive pion intensity on the EPICS scattering
target of about one half, and allowed the front wire chambers to
operate properly. The negative pion beam delivered by the EPICS
channel is les intense than the positive pion beam, and a lower
proton beam intensity was not needed to measure negative pion scat-
tering at small angles.

The scattering yield of positive pions on carbon was also
measured at this reduced beam intensity and compared with the pion
differential cross section at the appropriate angle. This particu-
lar normalizing ratio provided the basis for calculating all the
cross sections measured at reduced beam intensity. The normalizing

ratios at reduced intensity were the following:

+
T
2.4 deg Bin -1.2 deg Bin 1.2 deg Bin
(mb/sr) (mb/sr) (mb/sr)
1.440 % 0.143 1.330 £ 0.143 1.079 + 0.118

With the proper normalizing ratio, RY’ the pion differential

cross section is calculated by the prescription:

do/dQ = RY(nC/nT)Y ’ (16)
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where nC is the number of carbon nuclei in a cm2 of the carbon
target and n, is the number of nuclei in a cm2 of the scattering

target in question.

Error Analysis

It is customery to divide the error analysis of an experiment
into two parts: systematic errors and random errors. While that
division wiil be important in the analysis that follows, it is also
necessary to make the distinction between relative and absolute
errors. A differential cross section on a particular nucleus is a
list of quite a few values, the measurements at each scattering
angle. It turns out that part of the error in the cross-sectional
values is the same for each value, regardless of scattering angle.
This uniform error is referred to as absolute error.

The total error in the value of the normalizing ratio, RY’
gives the absolute error in differential cross sections derived in
this experiment. Since every measured scattering yield is multi-
plied by RY to produce a cross section, then, obviously, the error
in RY will propogate into every cross section.

The total error in RY is the sum of both the absolute and
relative errors caused by errors in the carbon cross section and
the carbon yield. The 2bsolute error in pion-carbon cross sections
is estimated at four percent. The absolute error in any carbon

yield is certainly smaller than relative errors in the yleld, and



will be assumed to be insignificant. So, the total error in a RY
value is made up of the absolute error in the carbon cross section
plus relative error.

Quite a few measurements of carbon-scattering yields were made
for both positive and negative pion scattering. This redundancy
allows one to handle the relative error in the normalizing ratio,
Ry, statistically. If differences between values of RY are con-
sidered to be due to purely random fluctuation, then the best value
of both RY and its calculated relative error may be determined by
standard statistical methods.79 Differences between values of RY
were found to be statistically consistent. The best values of RY
and relative error, ArRY, were quoted earlier. The total error in

RY is the sum of the absolute and relative error:

AtRY = 0.04 RY + ArRY . (17)

Total error of the normalizing ratio RY is about nine percent for
both 1.2 deg angular bins. The total error of RY is slightly lesc
than this for RY evaluated on the 2.4 deg angular bin.

The relative error that is assigned to a particular value of
a pion-scattering cross section is caused by many factors. One
contribution to the relative error is the statistical uncertainty
of the peak area and the background of the missing-mass histogram
considered. A Poisson probability distribution is assumed to

govern the area of both the peak and background. The relative
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error in the number of elastic pions, or inelastic pions, scattered
from a particular excited nuclear state, into a certain angular bin,
is the square root of the area under the peak in question in the
missing-mass histogram plus the square root of the subtracted back-
ground. Another contribution to the relative error in the cross
section is the uncertainty in ion chamber measurement. The error
in the charge flow measured in an ion chamber during a given ex-
perimental run, due both to random fluctuations and systematic
effects, was found to be abown.t three percent. The change in solid
angle of the spectrometer with momentum difference 8, has an error
of two percent. At those large scattering angles for which it was
impossible to take the target angle as half the spectrometer angle,
an additional relative error of five percent is introduced into the
cross section.

The wire chamber efficiency measurement also adds its part to
the relative error of a cross-sectional value. The uncertainty in
efficiency of the chamber for pions only is the source of the error.
The efficiency of the chambers for all charged particles which pro-
duce hardware triggers is well kmown. This last efficiency is ac-
curately determined by counts of CAMAC scalers, but some particles
inducing hardware triggers are not pions. The error due to un-
certainty in the true pion efficiency of the chambers is about two

percent,



The relative error in a differential cross-sectional value is

given by the formula,

do/dQ[(ArA/A)z + 0.09)% + 0.0 + (0.03)%11/2

A_(do/dQ)

or

(18)

2]1/2

A_(do/ds) do/dQ[(ArA/A)z + (0.041)

where ArA is the relative error predicted by statistics in the area,
A, of a missing-mass peak. Each contribution to the relative error
of the cross section is added in quadrature because each contribu-
tion is independent of the others. For those measurements where

w,, was not equal to half the angle, ws, the relative cross-sectional

T
error 1s increased by the value 0.05 added in quadrature.

By definition, the absolute error of those cross-sectional values

which were measured at a reduced proton beam current of 150 pA is
the same as the absolute error for all other cross-sectional values;
the relative error of these few values is quite a bit larger than
the relative error in other cross-sectional measurements. One must
add in quadrature the relative error in RY’ calculated at a single
angle during low beam intensity, (call this DrﬁY)’ and the relative
error in the average value of RY’ determined during normal intensity
runs, (call this Dr<RY>)’ to determine the relative value of those

cross sections measured at low intensity. Thus,
_ o2 2
D_(do/d@); . = (do/dR); [(D R)” + (D _<Ry>) (19)

2.1/2
+ (DrYLow) ’
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where YLow is the scattering yield from some nucleus calculated at

low beam intensity.

68



IV. THEORETICAL ANALYSIS

The scattefing of pions from nuclei is a complicated many-body
problem that has admitted no analytical solution from first principles,
without broad initial and intermediate assumptions. This is true in
spite of the fact that the free pion-nucleonr in*sraction is reasonably
well understood. Even in the region of the pion-nucleon (3,3) reso-
nance, where very few of the affected pions are scattered elastically,

the situation is improved only slightly.

Elastic Pion Scattering

A beam of pions incldent on a nucleus may be described in quantum
mechanical terms as a plane wave impinging on a scattering center. If
the nucleus elastically scatters incoming pions via a spherically sym-

metric potential then the resultant wave will be of the form80

() = XL 4 £ (9) i (20)
E.Z' € k T s

which represents both the unscattered portion of the incident wave and
the spherical wave scattered from the nucleus. Here k is the wave num-
ber of the incident plane wave and fk(e) is, of course, the scattering
amplitude. Furthermore, the differential cross section is given by
L = g @]

In analogy with GibbS,81 it can be shown that the scattering ampli-
tude is actually proportional to the matrix element of the scattering
potential.
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In a non-relativistic approximation the pion-nucleus interaction

may be described by the Schrodinger equation:
X+ V(r)- D) 4}5(5) = 0. (21)
Note that the wave function may be expanded in sphericzl harmonics:
b (@) = 4m ¥y, () YR Ye). (22)
k= L L L

Now, since,

(E - KV, (D = (E-Ke™SL+ ¥r) 4, (o) =
v(r) Y, (), (23)

the wave function may be expressed formally with an explicit plane-

wave initial boundary condition:
0@ = eEEy @ -0 e u . (24)

Equation (24) is expanded by the insertion of unity, where,

1= f8(er")ar' = gy JeE T EEDaprar. (25)

With the kinetic energy and total energy operators explicitly speci-

fied, the scattered wave function is



-ik

r 2 ik''r Vot
5 = T V(Y (',

ik. —_ = ' 1
WD) = e =T v T oo Ak gy e
(26)

where i is the reduced mass.

The transition matrix is defimed to be the last integral in the

final equation:

t' ) = ooy SR Ve g art (27)

So,

fker

Qo
t(k', k) 1%L
Y == € dk'. (28)

- 2
‘PE(}_’_) = e + E kz_k|2+i.n

The addition of in in the denominator above, ensures that far from the
scattering center, where total energy and kinetic energy may be equal,
no singularity results. The wave function at infinity will be repre-
sented by an outgoing wave. The transition matrix is a common tool of
scattering theory.82 It plays essentially the same role as the scattering
amplitude, as will be shown below.

Recalling the expression of wk(g) in spherical harmonics, the tran-

sition matrix may be written

2 A A co
(k) = T B YD BN [ e V) vyl 3,00 ar

T (21]')3
= ' o m* "
= Iy Yy (k") Yy (%), (29)
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so that

r? V(") Yo (r") jz(k',r')dr'. (30)

EREN]
o, 8

ty (k,k') =

By actually performing the integration in equation (28), one can

see the relationship of the transition matrix to the scattering ampli-

tude. Set
2u . t(k',k) ei'-ls"'£ 2U 47 g m . m%x "

= =+ 2 e L - : .
1z T]Z f kz—k'2+in d__ls h2 — im 1 Yl(k) Yﬂ, (t)

k'? 3, (k',r) tp(k',k)
s v dk’ . (31)

o 8

Since the integral is even,

o0
_2u 2m Loom o om¥ ~ k' ja(k',r) tp(k',k)
I=5% Z,i R0y, (r)_i i = ak

and

R . oo K 2Tk, r) + BTk, 1)) t,(k',K) dk'
AT r Y Yoo f % L g
2m ° k2-k'2+1in

As r goes to infinity,
~ x A - 1, -—il !
Yg(k) YE (r) o k' (i~ lell Ty At -1k r)tl(k',k)dk'

s

T2 2um
w2 I r . kK2 - k'Z + in
(32)

Since
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' - % '
tz(-k ’k) - (_1) tﬂ.(k ;k)’ (33)

one may integrate the first piece in (32) in the upper half-plane so

that k'++i, and the second piece is integrated in the lower half-plane,

using (33) to yield

ikr

~ * ~
I=pum? % Y‘}L‘(k) Y‘;L‘ (r) £, (k,K). (34)
T

Notice that for elastic scattering, k+*k' for large values of r.

From (20), (22), (28), (31), and (34) it 1s seen that
£(8) = u2m) ek’ ,k); k'=k, (35)

which is the anticipated result.

The Watson Series

To obtain the Lipmann-Schwinger equation it is only necessary to

— -—- ".
multiply equation (28) by (2m) 3 V(r) e ik''r and integrate over r:

2]_] V(_I_(.' k")t(_lg",‘z_()
t(_k"’_}f) = V(}S”’_IS) + T]? f k,z —_ klvz + in d_l‘(' (36)

This equation usually appears in scattering theories in its operator

notation:

t =+ Vet (37
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where

1=
R

. (38)

Also define

(39)

| &
]

IR
]

| =

If a pion interacts with a nucleus other than hydrogen, multiple
scattering off more than a single nucleon must be considered. Because
of this, pion-nucleus scattering is complicated. It is possible, how-
ever, to develop an infinite series which describes the repeated pion-
nucleon scatterings inside a nucleus to all orders. This series is
known as the Watson multiple-scattering serie583 and, following Gibbs
development once again, the series may be generated from the Lipmann-
Schwinger equation, (36), (37).

For a nucleus composed of A nucleons the Schodinger equation has

the form

4
K+ & Vi+Hy-E)¥=0. (40)
=1
The interaction between a pion and an individual free-nucleon is rea-
sonably well known, but the pion-nucleon potential, Vi, is modified
by its nuclear environment in a poorly understood fashion. Further-

more, the nuclear Hamiltonlan, gN, incorporates much of the informa-

tion still to be learned from nuclear science. EN’ therefore, is by



no means known a priori. But, assume HV has the following eigenctates:
had

ﬁﬁ ¢n (ri, ra2, ...,rA) = En ¢n (ry, r2, ...,rA) (41)

and define

1 =

- 1
& ifrTr-v-ny WUETE-I,

. (42)

With the plane-wave boundary condition as before, the picn-nucleus

wave function is

b= eXT g IV Y. (43)

The transition matrix for this particular quantum-mechanical system

is defined as before:

A
- '.
T = gy S e T v vdr - ingi(y,_g). (44)

1 -ik

'l
Multiplying equation (43) by ?i?jg'e EZVi and integrating over

r, then, for each nucleon in the nuclear medium,

N
Iy =Y+ Y 9y ~'§1 - (45)
3=
To eliminate_I{i in favor of T , define
1
L EYL Yoty (46)
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Then,
by = Vg * by gg V= A+t g9 Y- (47)
Substituting for Vi in equation (45) yields

. (48)

The last equation may be iterated to disylay the multiple-scatter-

ing nature of the process which is occuring in the interaction :

jii f’.i .(lN EJ + Jii .-.t_i QN ij ‘QN _t.-.k + ... (49)
k#]

T.o= t, +
—~i

The first term in this equation represents scattering from each of the
A nucleons in the nucleus. The next term indicates that the pion wave
impinging on each nucleon contains a component due to single scattering
from the A-1 remaining nucleons. Going a step further, the pion wave
incident on each separate nucleon also contains components of double
scattering from combinations of two nucleons. Ei is interpreted as

the pion-nucleon transition matrix in the nuclear medium.

Equation (49) is the Watson multiple-scattering series. It repre-
ser*s a step forward in solving the pion-nucleus scattering problem
only if the series can be quickly truncated, meaning that higher
orders of multiple scattering are not as important as the lower orders
of scattering. This is often the case in pion scattering and is parti-

cularly so near the (3,3) resonance.



Elastic pion scattering requires that the nucleus return to the
ground state after the interaction with an incident pion. To parti-
cularize the exact multiple-scattering equation, (48), to elastic

scattering, project out the ground state expectation values:

ol <olts|n><a|zjlo>
<olzylo> = <olg;fo> + VI ACE G0
j#i

The probability that a particular nuclear state, [n>, will be excited

by pion interaction is, in general, unknown, and therefore the gross

assumption must be made that even during multiple scattering the nucleus

remains in its ground state. In effect, E; is set to zero and the nu-
clear Hamiltonian,lgN, is ignored. This assumption is called the co-
herence approximation, and since intermediate states other than the
ground state are ignried, the resultant calculation of <o[Zi,o> will
be too absorptive. Scattering to intermediate excited states is

treated as lost flux. With the coherence approximation,

~

- > G
<Ti> <ci> + <t;> Yo .Z. <Tj> y (51)
i
where G S — The wave function is antisymmetrized so all

o TE-F i

~

<Ti> are identical as are all <ti>. Thus

~ ~

<T> = A<t> + A<t> G AL s, (52)
—0 A

If the following definition is made:
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<T> = é;;—l <T>, (53)

then, in analogy with the Lipmann-Schwinger equation,

~

<T> = (A-1)<t> +(A-1)<t> G, <T> . (54)

The term éil is known as the KMT factor, and, in a minor way, takes
into account scattering of higher than first order. To solve the last
equation, the second term on the right is dropped, effectively ignor-
ing all but first-order scattering. Pions that interact with nuclei,
especially those pions whose energy is near the (3,3) resonance energy
of about: 180 MeV, are predominantly absorbed by the nucleus. Thus,
the pion-nucleus interaction near the (3,3) resonance can be justifiably
thought to have little multiple elastic scattering.

The first order optical potential, Uy, is defined to be the first

term on the right of equation (54):
Uo = (A-1)<t>. (55)

Knowing the form of Uy is now all that is necessary to solve the
Schrddinger equation. (Assuming, of course, that the first-order op-
tical potential is a sufficiently good approximation to the pion-
nucleus potential.)

Kisslinger observed that at resonance the pion-nucleon interac-
tion is dominated by the p-wave, and therefore postulated that the
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tirst-order optical potential ought to take the form:84

Us = (A-1) (bo + b1 q-9")S(q'-), (56)
where q is incident pion momentum and

s(q'-q) = f M (4D Tg 2, (57

The two strength parameters, bo, by are complex constants. In coor-

dinate space the Kisslinger potential becomes
U = (A-1)(bo p + b1 YoV, (58)

with p representing the nuclear mass density.

The Optical-Model Fitting Program

Several computer programs exist which may be used to analyze the
data generated by elastic pion scattering. Some of these programs
calculate scattering cross sections based cn an initial set of input
parameters that include values of the nuclear mass distribution and
the strength parameters, by, b1, of the first-order optical poten-
tial.85’86 Another program, called FITPI,87 calculates cross sections
after fitting the scattering data for the best values of the strength
parameters and other parameters. None of these programs have been used
for final analysis of the data of this experiment for several reasons.

The values of the optical potential strength parameters which are

correct for free pion-nucleon scattering are not expected to accurately
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describe pion-nucleus scattering. Because of the coherence approxima-
tion, the first-order pion-nucleus optical potential will be too ab~
sorptive. This *vill be reflected in the imaginary values of the
strength parameters. Additionally, the nuclear environment affects
the way pions interact with an individual nucleon,88 and the strength
parameters for pion-nucleus scattering must reflect this nuclear en-
vironment. Therefore, a program which fits the scattering data for
the best values of the optical potential strength parameters is nec-
essary. The FITPI program is not considered adequate for iiiis task
because its formulation does not include a consideration of the finite
range of the pion-nucleon interacton. Instead, a first-order
optical-model fitting program which compensates for the finite inter-
action range89 has been applied to the elastic scattering data of this
experiment. This program was written by physicists at the Los Alamos
Scientific Laboratory.9

The non-relativistic Schrodinger equation is not an adequate starting
point for the calculation of pion scattering at 162 MeV incident energy
- pions are relativistic at that energy. Instead, the Klein-Gordon
formula is used. But the first-order optical model, based on trunca~
tion of the Watson multiple-scattering series, retains its validity.
The first-order optical potential is inserted in the Kiein-Gordon
equation and this is the foundation of the fitting program used to
analyze the pion-scattering data.

The Klein-Gordon equation has the form

.EZ _ pzcz = m 2c”. (59)
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The momentum operator is familiar: p = -ihV. But the energy opera-
tor must include the strong interaction as well as the electromagnetic
interaction. The Coulomb potential, Vc’ is included with the energy,
where it transforms as the time-like component of a four-vector. The
nuclear interaction presents a bit more trouble. If the optical poten-
tial is to be included with E, it must transform in the proper manner.
It is assumed that, indeed, Uy does transform as the time-like portion
of a four-vector simply because little is actually known about the
Lorentzian properties of 20.91 Substituting £ - E—chgo the Klein-

gordon equation now is

(E=V_-Uo)® ¥ = (mo®c* - c?n?V?) y . (60)

The terms ZVCQO and goz are arbitrarily dropped so that
(E?-2V E + V ? - 2EU0)Y = (mo“c® - c*n®V¥)y . (61)
The Kisslinger potential with the range formalism is used, Us

ea’ OL2+k22 , .
(A - 1)(b0+ blgﬁ%é (az(+ qA)Y&% FapES S5(q" - gq), where o is the range

and k is the incident pion wavenumber, and the mass density distribu-
tion, P, is taken to be a two-parameter Fermi distribution. While

it is true that the optimum density distribution for all nuclei is
not the two-parameter fermi, pions incident on nuclei are quickly
absorbed and experience only the outer fringes of the density dis-
tribution, It is reasonable to expect that the two-parameter Fermi
distribution will adequately describe the fringe of all nuclear

matter distributions.
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The electromagnetic interaction of pions with nuclei is, of course,
weaker than the nuclear interaction. Thus a very simple, spherical,
uniform-charge distribution is used to calculate the Coulomb potential.

As mentioned above, an important part of the first-order optical
calculation of pion-nucleus scattering is a pion-nucleon interaction
range. The actual value of the range was in dispute at the time of
this experiment, so provision was made in the computer program to
allow insertion of various range values.

The optical-model program uses the least-squares method92 to fit
parameters of the model to the differential cross-sectional data. Only
five parameters may be fit by this particular computer program. They
are the real and imaginary parts of the two strength parameters b0 and
b1 and the absolute normalization of the cross-sectional data. It is
possible, however, to fit other parameters "by hand". For example,
different values of the pion-nucleon range may be inserted into the
program and the quality of the fit of the optical model to the data
may be evaluated for each different range value. In a similar fashion,
the two parameters of the Fermi distribution, namely the half-density
radius and skin thickness, may be varied to provide a best fit to the
scattering data.

Additional Calculations

Pions interact differently with neutrons and protons. The free
pion-nucleon interaction is such that, in the region of the (3,3)
resonance, where the p-wave predominates, the scattering amplitude

for positive pions on protons is about three times larger than the



scattering amplitude for positive pions on neutrons. Likewise, nega-
tive pions are scattered from neutrons with a scattering amplitiude
about three times larger than the amplitude for negative pion scat-
tering from protons. Because of this, pion-nucleus scattering may
provide evidence of differences in the matter distributions of
protons and neutrons that compose nuclei, if such differences exist.
Electron-and proton-scattering experiments indicate that there are
differences.93 However, the Kisslinger potential, as implemented in
the optical-model fitting program used here, provides the same matter

density for both the proton and neutron distribution.

Calculating the Effective Mass Distribution

If a given sign of pion-scattering data is manually fit for the
best mass distribution parameters, (by using different distribution
parameters as initial values in the fitting program) the parameters
will, in the main, represent either the proton or neutron nuclear
distribution, depending on which kind of nucleon interacts most strong-
ly with that sign of pion. By comparing both the positive and negative
plon-fitted mass distributions it is possible to calculate the values
of the effective proton and neutron distributiuvms of a given nucleus.
This is so in spite of the fact that the computer fitting program accommo-
dates only a single-mass distribution to describe the nucleus. If oy
is the distribution fitted to positive pion scattering by the program
and p_ is the fitted distribution for the negative pion-scattering data
on the same nucleus, then the effective neutron and proton distributions

for the nucleus are related by the approximate equalities:
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o~ XPptNem | (62)
3Z + N
Z Pp + 3N pp
- N e (63)

Z + 3N

where Z is the number of protons and N the number of neutrons in the
nucleus. It is assumed that the incident pion energy puts the inter-
action in the vicinity of the (3,3) :esonance where the p-wave domi-~
nates, and a given pion interacts about three times more strongly with
one kind of nucleon than the other. The computer program allows only
a two-parameter Fermi distribution, so,

Po
P(r) = — = (64)

r—c

1+e 2
with ¢ the half-density radius, z the diffuseness, and p¢ the normali-
zation.

Expanding p(r) to second order about r=c gives

pO p()
pr) & = = 2 (r=c). (65)

Expanding the three distributions in each of the two equations, (62)
and (63), generates two equations in six unknowns (including po as aﬂ

unknown variable):

1 1
3z 0., I - q(r-cp)] + Npop [% - Z’;;(r-cn)]

1. (66)
~ (3ZHN) pot [z - 7—(r-c)1,
_ +



L. 1 (- VRN P .

2 0y - 72 (- )] + Moy, [5- 7 - e
P n (67)
3y - L

e > (Z+3N) po_[é i (T c_ﬂ .

These two approximate equations are linear in r and true for all values

or r in the neighborhood of ¢, so both the slope and intercept may be

equated in each case. Equating the slope in equation (66) gives

220 Pot Po-
—— 9P - 3(3Z4N) ~= - 3N + Z) = . (68)
zp 4z+ b4z _

Similarly, for the intercept, the equation is

Cp C+

—— = p3 —— -
2Z pop(2 + zp) (3Z +N) 3 Cost Gs + 42+

e (69)
1 =
(N +2) o, Cs + 770
Solving for the effective proton distribution parameters leads to

. - 22 pop
p TN o, (70)

(32-N) g2+ ~ (3W+2) 7~

cy c-
. L4y - L 4
Lp [3(3Z+N) p0+( 2 + 42+) (3N+Z) DO— ( 2 + 42—
c =
P 22 Pop

)] -22p.(71)

In an entirely analogous fashion the effective neutron distribution

parameters may also be determined.
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Z N Pon

n 3p,_ Pot (72)
(3N+Z) 75 = (32#N) 7

N
i}

- c
i [?(3N+z) po_(% + %E;) - (3Z4N) po+(s + Zﬁﬁ}z“ )
n ZN pon

2z .
n

(73)

The normalization factor, po, is specified by the volume integral

4m r? p(r) dr, (74)

[l
#
o 8

and an iterative process is used to generate three-parameter values

from only two equations. As an example, consider the neutron distri-
bution. For a starting value take pon = %-po_ - 2po+. Using this
value, 2z is calculated from equation (72). Then, ¢ is calculated from
equation (73). Using the new-found values of ¢, and z, a better value
of Pon is determined by numerical volume integration (equation (74)).
The new value of Pon May be applied to equations (72), (73) and so on
until sufficient accuracy in the distribution parameters is obtained.

It is interesting and informative to compare the density distri-
bution determined by electron scattering on a nucleus with the effec-
tive distribution resulting from fitting pion—scatteriﬁg data. 1n order
to do this, the proton charge form factor must be eliminated from the
nuclear charge distribution to yleld a mass distribution. -ThQ“{POt
mean square (RMS) mass radius of a proton distribution may be calcu-

lated from a nuclear charge RMS radius by folding out, quadratically,



the proton charge RMS radius. But this method is not useful in cal-
culating, for example, a mass-distribution half-density radius

@ssuming a Fermi distribution) from a charge distribution half-density
radius. Instead, a technique suggesied by William R. Gibbs is employed.

The appropriate charge distribution is Fourier transformed to
momentum components and the proton-charge form factor, appropriately
transformed, is divided out. Next, several mass distributions of in-
terest, each constrained to have a proper value of the RMS mass radius,
are Fourier-transformed, aiid their momentum components are compared with
those of the cransformed charge distribution. That mass distribution
whose momentum components most nearly match the charge distribution
components in a certain neighborhood is considered to be the best des-
cription of the nuclear mass distribution.

Suppose an electron-scattering experiment indicates that a Gaussian
model with specified parameters is the best fit to the 2854 proton
charge distribution. The RMS mass radius for the 2855 proton distribu-
tion is determined by quadratically unfolding the proton charge radius
from the nuclear charge RMS radius. If a two-parameter Fermi distribu-
tion is deemed adequate to describe the nuclear mass distribution of
28Si,then a family of Fermi parameter sets (half-density radius and
skin thickness) 1s collected, each set of two parameters being con-
strained to give the specified RMS mass radius. The Fourier transform
technique 1s applied to each parameter set, and that set of parameters
whose distribution conforms to the Gaussian charge distribution is con-
sidered to best describe the mass distribution of protons. For this

thesis experiment, momentum components of two distributions were compared
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in the neighborhood of 267.6 MeV/c, the incident laboratory momentum
of pions.

It is also useful to compare mass distributions of diverse func-
tional form. Proton-scattering experiments indicate the mass distri-
bution of nucleons in certain nuclei. But if these distributions
are not of the two-parameter Fermi form, then direct comparison with
the results of this experiment is impossible, since the optical-model
analysis used here accomodates only the Fermi distribution. But, both
distributions may be Fourier-transformed and their momentum components
compared.

Partial-Wave Approximation

It may be recollected from previous chapters that the differential
scattering cross-sectional values measured by this experiment are aver-
aged over a small, but non-negligible, scattering angle. It is impos-
sible, of course, to physically measure the cross section for particle
scattered into a vanishingly infinitesimal solid angle, although the
optical model for pion scattering calculates the cross section in this
limit. To accommodate measured cross-sectional values to the optical-model
theory, the data must be modified in accordance with the angular
resolution of the measuring apparatus. (The differential cross-sectional
values measured in this experiment are averaged over an angular biu of
t 0.6 deg.)

The differential scattering cross section for pions on a nucleus
may be approximated by a series of Legendre polynomials in a partial-

94,95

wave analysis. Based on the partial-wave approximation, the

effect on cross-sectional measurements of an angular resolution of
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* 0.6 deg. may be assessed, and the scattering data appropriately modi-

fied.

The fitting of arbitrary scattering-amplitude compoments to pion~

nucleus scattering data in a parial-wave analysis is described by Gibbs

et 31.96, and ig is their method that has been applied here. i least-
squares best fit is determined for the partial wave series such that

x? is minimized, where

2

2 M c,(8;) -0 (8))
X = d1i p i
11 [ By ] : (73)

The differential scattering cross section measured at a given angle,

8

\ . . .
i is cd(ei,, Ai is the error in this measurement, Op(ei) is the cross

sectional value calculated from the partial-wave series, and M is the

number of measured cross-sectional values. The values of the complex

ampltitudes, fl’ are searched and determined in order that the calcu-

lated cross section will minimize xz. The partial-wave series is

L
™
- 1 )
£,(0) = £.(0) + 53¢ Rzo (f], - £4.) (2% + 1) Py(cosB), (76)
(76)
with the Coulomb scattering amplitude given by
Ny L .8
£ (B) = = ———— e210° 2nplog 51n(2) , a7
c . 2P
2k sin (5)
and, as usual,
8) = [£_(8)]|? .
Up( ) = | p( )| (78)
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The partial-wave series is truncated at Qm’ the angular momentum of the
last partial wave included, flc is the component of fc, and no 1s the
Sommerfeld parameter, which incorporates information about the part-
icular nucleus being studied.

The pion-scattering data from a particular nucleus may be fitted
for the best values of fﬁ and the calculated differential scattering
cross section generated by that fit may then be used to correct the
data for poor angular resolution. It is assumed that the differential

cross-sectional value, measured at angle ei,od(ei), is a weighted average

of those calculated cross-sectional values in the interval oi—.659561+.6:
6,+.6

T OO
ei-.(, . |3
od(ei) = < op(ei) > = e = . (79)
i) gL(e)
6,-.6

The weighting function gL(G) is the Lorentzian line shape:

-1 0.6

a® =5 @e)r 067 . (80)
According to this procedure, the first-order modification to the scat-
tering data will follow the formula,

, p(8)
oy 85) = TR o (8;)> (81)

and an iterative process is pursued until UM(ei) converges to a value
of sufficient accuracy. Namely, GM(Gi) 1s substituted for the differ-

ential cross section measured experimentzlly at every angle 6., then
1

these new cross sectional values are again fitted with the partial-wave
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approximation and the data is modified again according to equation (81),
and so on.

Besides using the partial-wave approximation to correct experi-
mental data for angular resolution, it also provides an indication of
the very best optical-model fit that may be obtained for the modified
data. The optical-model fitting program can be thought of as providing
the value of fl in equation (76) based on a specified potential Uo.
Since the partial-wave fit searches over all values of fE’ and is
not constrained to those values which satisfy the optical potential,
then it must provide a fit at least as good as the optical-model
fitting program.

Contaminant Scattering

The EPICS piorn channel transports no more than 30 percent muons
and electrons at a central momentum of 268 MeV/c (see Table I,
Chapter II). Unfortunately, every electron or muon which scatters
from the target into the spectrometer is interpreted to be a pion
by the experimental detectors. These electromagnetically scattered
particles, if in suffucient numbers, could cause a background error
to the calculated pion-nucleus cross sections.

The differential cross section for scattering of electrons and

muons from atomic nuclei is given, in the Born approximation, by the

following formula,97

(8
do _ ze2\? cosL(Z |F(a) |2 (82)
dQ 2E 4{0 2E 2{0) °’
sin {5) 1+ —5 sin"{+
2 Mcz 2
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where M is the nuclear mass, E is the total energy of the incident
particle, and F(q) is the charge form factor. Even on a lead nucleus,
at the energy of this experiment, equation (82) should be accurate
to about 25 percent for 8<6<60 deg., and on lighter nuclei better

n
agreement will occur.98 Because of the dependence on z°, consider

the situation of electron scsttering from lead as a worst case. At
an electron momentum of 268 MeV/c, E is 268 MeV, and
, 9
do 2 2 mb
Y = .049 |F(q)] ‘CP'STE“E? . (83)
diife ,Pb sin 2

At 0 = 20 deg., F(q) = .279 (using a Gaussian density distribution),
and (EEI) _ is about 40 mb/sr. This number is divided by four
e ,Pb

ds2
before comparison with the negative pion cross section for 208Pb at

20 deg. because the particle beam incident on the scattering target
contains less than 30 percent electrons. At 20 deg. the pion-lead
cross section is about 110 mb/sr (see Appendix C). Thus, for this
single measurement, electron and muon contamination results in an
error of about ten percent. For the two cross-sectional measurements
on either side of the first minimum of the angular distribution,
electron and muon scattering adds no more than five percent to the
measured value, No other measurement ccntains as much as a one
percent contribution due to electron and muon scattering. Further-
more, the cross sections measured for pion scattering from nuclei

lighter than lead can contain only negligible error contributions

due to contaminant electrons and muons in the incident pion beam.



V. EVALUATION AND CONCLUSIONS

It is remarkable how well a simple optical-model calculation can
reproduce elastic pion scattering on the diverse nuclei of this ex-
periment. Various efforts have been made over the past few years to
calculate the elastic differential cross-section for pion scattering

99,100,161

from nuclei, all with less than complete success. It would

now seem, however, that the fi«ting program used here represents a
distinct and happy improvement.

The Best Fits to the Scattering Data

The values of the differential cross sections for elastic scat-
tering from 9Be, 288i, 58Ni, and 208Pb are tabulated in Appendix C,
both the data modified for electron and muon scattering and for the
angular resolution of the experimental apparatus and the original
unmodified data. Figures 24-31 show the modified scattering data
and the best fit obtained with the optical-model program. The worst
correspondence between the calculation and data occurs for negative
pion scattering from 208Pb and the quality of the fit is specified
by a x2 per degree cf freedom value of 1.44. This value is atypical;
the next worst value being 1.17 and a more usual value of x2 per
degree of freedom is about 1.

It can be shownlo2 that the probability of obtaining a worse x2

fit to the 56 data points for negative pion scattering from 208Pb,
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should the scattering data be measured anew, i1s only two percent.
So, statistical arguments indicate that a future experiment to remeasure
this cross section may yield a more useful data set.

It might be argued that the optical-model fitting program is
at fault for the poor correspondence between data and calculation,
but this is unlikely. The data has also been fit with a partial-
wave analysis for arbitrary scattering amplitudes and the very best
fit yielded by this data set corresponded to a value of xz per
degree of freedom of 1.45. Thus one may ronclude that this par-
ticular data set is statistically poor. On the other hand,
the cross-sectional data for negative plon scattering from 2851 is
fit exceedingly well by the optical-model program. A value of 0.70
x2 per degree of freedom (also called the reduced xg symbolized by
xi ) is obtained. There is a 93 percent chance that xi would be
worse if this cross section were remeasured.

Table 5 is a tabulation of the probality for a worse X2 opti~
cal-model fit to all the cross-sectional data of this experiment and
to the measured cross sections for pions on 12C, used to nurmalize
the data of this experiment. The spread of probability values over
the nuclei of this experiment may indicate a proper calculation of
the relative error in cross-sectional values.

The best values of all fitted parameters are listed in Table 6.
It is these parameters which provide the calculated cross sections
plotted in Figs. 24-31, The absolute normalizatiom value, Rn, for

the n_, 9Be cross section is not the result of an optical-model fit.
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Table 5. The probability that a remeasured cross section would

provide a worse fit to the optical model is tabulated for both posi=-

tive and negative pion scattering.

ions were used to normalize the data of this experiment.

11+
*Be 60.0
28g3 35.0
SeNi 70.0
208py 15.0

12c greater than 99.0

80.0

93.0

20.0

2.0

99.0

The measured carbon cross sect-
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Table 6. The fitted parameters are indicated for each cross

section. The effective mass distribution parameters, half-density

radius, ¢, and diffuseness, z, are measured in fm. The pion-nucleon

range, ¢, is measured in MeV/c. R is the absolute renormalization
n

value, bo, b1 are the optical potential strength parameters and

xs is the reduced chi-squared value.

ﬂ+,9Be ﬂ_,gBe
2 = 2 - =
Xy, 0.956 Rn 1.25 Xy 0.814 R 1.22
c= 1.92 z = 0.490 ¢ = 1.91 z = 0.510
b0 = -2.722 -2.9631 bo = -3.990 -4.6211
b1 = 3.917 10.29i b, = 4.118 12.712
o =250. o = 200.
nt, 2851 m_,2%8i
2 = = 2 _ =
Xy 1.06 R =1.34 Xq 0.700 R =1.31
c = 3.02 z = 0.465 c = 3.110 z = 0.465
bO = =-1.100 -1.4060i b0 = -0.9335 -0.39921
bl = 4,610 9.5791 bl = 4,351 8.0751
o = 250, o = 300.
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Table 6 (continued).

+ .
i ,58N1

0.914 R = 1.26
n
4.03 ¢ 2 ° 0.515
-0.2727 -1.0671
4.108 7.9224

250.

ﬂ+’zoapb

1.17 R =1.19
n
6.59 z = 0.550
-0.5500 -1.217i
4.159 6.2871

250.

"-LFBNi
x% = 1.17 R = 1.24
vV n
c= 4.00 z = 0.520
by = =0.4942 -0.8502i
bl = 3.441 8.517i
a = 250.
n ,2%8pp
2= 1.44 R =1.12
\Y n
c = 6.28 z = 0.630
by = -1.420 -1.241i
by = 5.611  10.94i
a = 350,
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There is little structure in the 7 , 9Be angular distribution and
the cross section was not measured to as large an angle as the ﬂ+,
9Be cross section. There is not enough information in this angular
distribution to allow a fit simultaneously to all the strength
parameters and the absolute renormalization value. Therefore, Rn
was chosen to have a value of 1.22 based on the renormalization
values for other cross sections and on the general behavior of the
fitting program.

The parameters of the optical-model calculation for negative
pion scattering from lead are determined with the least certainty.
The fitted value cf the pion-nucleon range lies between the values
200 MeV/c and 300 MeV/c for all cross sections except that one with
the large:t value of reduced chi squared, namely the cross section
for ﬂ_, 208Pb. Additionally, the renormalization value for this
cross section is quite different fiom the renormalization value

for the positive pion cross section on lead, a difference not as

noticeable for any other nucleus.

Cross—-Sectional Renormalization

There is a result of the optical-model fits that is unsettling,
at least at first glance: the fitted renormalization values for the
various nuclei fall in the interval 1.12-1.34 despite a measured
absolute renormalization error of 0,09 about a nominal value of

1.00 (see chapter III). The actual renormalization error irherent



in the measured data is the same valve for all cross sections of a
particular pion charge sign. So, while all the positive (or
negative) pion cross sections may be eitlier lower or higher than
their measured values, the difference is the same for all four cross
sections. The fitted renormalization values and their standard
deviations for the cross sections measured by this experiment, and
for the ni,lzc cross sections are shown in Table 7.

Two difficulties seem to exist. First, all the fitted renormali-
zation values for cross sections of a given pion charge sign are not
the same within errors. Second, the average value of these four re-
normalization values does not fall in the range 0.91-1.09 as anti-
cipated. It is possible that bnth of these problems may yield to
the same solution. The optical-model fitting program is only as
valid as the coherence approximation. A calculation10 which accounts
for elastic scattering through intermediate excited nuclear states,
in contrast to the coherence approximation, indicates that the
first-order optical model will calculate anomalously high cross
sections. This result of taking the coherence approximation should
be a function of the topography of the excited states of a given
nucleus. A glance at Table 7 indicates that the fitted renormaliza-
tion values (with the exception of values for the carbon cross
sections) are similar for the cross sections on a particular nucleus.

Another calculation,104 which corrects the first-order optical

model for the coherence approximation by actually determining the
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Table 7. The fitted values of the renormalization constant, Rn’
and 1ts approximate standard deviation are shown for the various

cross sections of this experiment and for the 12¢ cross sectioms.

at ol
Be 1.25 + 0.04 1.22
285§ 1.34 * 0.05 1.31 + 0.04
SBNi 1.26 * 0.04 1.24 * 0.05
208py 1.19 * 0.05 1.12 + 0.06
12¢ 1.22 ¢ 0.05 1.32 + 0.05



amount of pion absorption, leads to the same result. It indicates
a first-order optical model will calculate cross sections that are

too large.

efhe Fitted Strength Parameters

The fitted optical-model strength parameters mock up some
effects not explicitly accounted for by the first-order optical
model. Table 8 is a list of the strength parameters of the optical
potential derived from the fitting program and the free-strength
parameters based on the work of McKinley.l05 As expected, the
fitted value which is most nearly the same as its corresponding
free value is the real part of bl. Pion absorption effects not
handled formally by the first-order model appear mainly as modifi-
cations to the imaginary part of the strength parameters.

Additionally, since each nucleon from which a pion scatters is
immersed in the nuclear environment, the consequences of nucleon-
binding result primar;ly in fitted values of b0 different from the
free values. Because a nucleon is bound to its neighbors inside the
nucleus, the angle of pion scattering from the nucleon is diffe-ent
than it would be from a free nucleon. Explicitly calculating this
effect is known as making the nuclear "angle transform'. In parti-
cular, the "angle transform'" neglected in the first-order optical
model causes a subtraction of part of the p-wave strength parameter
b, from the s-wave strength bo’ leaving fitted values of bO which

1

are smaller and more negative than the free bo values. In spite
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Table 8. The fitted strength parameters, and free values are

shown. bf are the free valuez.

1" °Be 1, Be
by = =2.722  -2.963i by = -3.990  -4.6211
b, = 3.917  10.291 b, = 4.118  12.711
by = -0.3277  0.3876i b = -0.6609  0.56521
bl = 3.988  7.933 bl = 4676  8.8511
W+,2851 n—,ZBSi
by = -1.100  -1.4004 by = -0.9335  ~0.3992i
b, = 4.610  9.5791 b, = 4.351 8,075
by = -0.4884  0.5745% by = -0.4884  5.7451
bl = 3.992  8.562 bl = 3.992  8.5421
n+,58Ni 7, 58NL
by = -0.2727  -1.067% by = -0.4942  -0.85021
b, = 4.108  7.9221 b, = 3.441  8.5171
bg = -0.4357  0.5771i by = -0.5366  0.57031
bl = 3759 8.4471 by = 3.955  8.7391
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Table 8 (continued).

n+,2°BPb
by - =0.5500  -1.217%
b, = 4.159 6.2871
by = -0.1767 0.59451
bl = 3.220 7.7111

T—T,ZOBPb
by = -1.420  -1.241i
by = 5.611 10.941
bg = -0.7942 0.55264
bl = 4412 9.5041
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of the changes in strength parameters induced by the fitting pro-
cess, all scattering matrix elements corresponding to the fitted

optical potential are computed to be unitary.

Results of the Fit

It is possible to calculate the effective mass distributions
which yield a best fit to the scattering data for the optical model.
The method, based on the different fits to positive and negative
pion scattering on a @ingle nucleus, was outlined in the last
chapter. Figures 32 and 33 show the effective two-parameter Fermi
distributions for 58Ni obtained with the optical~model fit and a
comparison with the neutron and proton densities given by proton-and
electron~-scattering experiments. The proton charge size is removed
from electron-scattering results to yield a proton mass density as
outlined in the previous chapter. All plotted densities are nor-

o0
malized so that the volume integral 47 jo rzp(r)dr is equal to one.

At energies near the (3,3) resonance, an elastic pion is
likely to be lost before it penetrates far into any nucleus.

The center of the nuclear mass distribution is not probed effective-
ly by piont at the energy of this experiment. The pion is expected
to be more sensitive to the nuclear density in the neighborhood of
the 0.2 density point and Figs. 32 and 33 seem to bear this out.

Figure 34 is a plot of the proton mass density of 2881 given by
electron scattering and of the effective proton and neutron mass

distributions from the-optical model fit. The effective proton
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density specified by the optical-model fit is clearly unacceptable
when compared with electron-scattering results, However, the ef-
fective neutron distribution frum the optical model matches the
proton distribution given by electron scattering, just as one
expects the real neutron distribution to do for this particular

nucleus.

The compilation of effective proton and neutron distribution

parameters and electronl--06 and proton—scattering93’107 results in

Table 9 includes approximations of the standard deviatiun errors.
The root mean square (RMS) proton radius of the 2881 nucleus, as
given by the Fermi parameters of the effective density from the
optical-model fit, differs from the best value from electron scat-
tering by about two standard deviations. The optical-model fit for
ﬂi,ZBSi was the only case where more than one local minimum was
found in the parameter-space of the fit. Some small possibility
exists that this may account in an unknown way for the discrepancy
between the real proton RMS radius and the effective value deter-
mined with the optical model.

The optical-model-generated effective mass distributions for
9Be are shown in Fig. 35. No good electron-scattering determination
of these distributions exists. The RMS proton mass radius shown in
Table 9 has been calculated from an electron-scattering experimentlo8

with only the limited momentum transfer range of 0.26 - 0.70 fm. .
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Table 9. The effective Fermi density parameters (c,z) are shown for

the neutron and proton distributions. Rp is the effective value of

the proton distributions RMS radius as Rn is the effective neutron

distribution RMS radius. Res is the RMS proton distribution radius

from electron scattering and Rps is the value, from proton scatter-

ing, given to the RMS radius of the neutron distribution. Errors

shown are roughly the standard deviation.

c = 1.92 % 0.03
P
2, = 0.481 * 0,008
R =2.3 * 0.05
P
R =2,37 % 0.01
es
c = 2.94 * 0,04
P

z_ = 0.463 * 0.008

+

R = 2.86 0.06

14

= 3.00 0.03

c_ = 4,05 % 0.07
z = 0.513 £ 0.012
R = 3.68 * 0.08

R =13.69 %0.01

9Be

ZBSi

SONi

]

I

1.90
0.521

2.43

3.150
0.465

2.99

3.99
0.523
3.69

3.70

t 0.04

I+

0.01

* 0.05

+ 0.06
* 0.01

* 0.06

+ 0.07

+ 0.012

* 0.08

1kh7
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Table 9 (continued).

6.73 * 0.20

(]
1]

0.511 * 0.03

N
U}

R =5.,55 *0.15

5.45 % 0.02

208Pb

n

6.10
0.673
5.34

5.611

0.30
0.03
0.15

0.08
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208

As mentioned before, the ﬂ-, Pb cross section measured by

this experiment provides an atypically poor fit to both the optical
model and the partial-wave calculation. Such a poor fit discredits
all the fitted parameters of the calculated cross section, including
effective-density parameters. Since the proton as well as the neutron
effective-density parameters depend on both positive and negative pion~
scattering results, the effective proton density, as well as the
effective neutron density of 208Pb, is not believable. For the sake
of completeness, the effective-density parameters for lead, generated
by the optical-model fit, are listed in Table 9 and the densities are
plotted in Figs. 36 and 37. Additionally, these figures show the
densities derived from electron and proton scattering. TFigure 36

also indicates the best two—parameter Fermi distribution that may be
fit to the tail of the three-parameter Gaussian distribution from

electron scattering.

The value of the pion-nucleon range fit by the optical model is
independent of nucleus. Excluding the poor fit te the ﬂ-,ZOSPb scat~-
tering data, all fitted values of the range lie in the interval
200 MeV/c - 300 MeV/c, with a best value of 250 MeV/c correspond-
ing to a length of 0.8 fm. Table 10 shows the values of the range
which give best fits for the particular functional form of the
optical model.

Wave functions, phase shifts, and various cross sections

calculated by the optical model are also valuable. Appendix D
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Table 10. Shown are the values of the pion-nucleon range for each

cross section.

°Be 250.
28g4 250.
S8Ni 250.

208py, 250.

In parenthesis is the standard deviation error.

~
(+500, -75)
(+ 50, -25)
(+ 75, -40)
(+ 60, -60)

T
200. (+100, - 60)
300. (+100, - 75)
250. (+ 75, - 40)

350. (+700, -100)
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lists the total cross section and forward scattering amplitude based

on the best optical-model fits to all the scattering data.

Conclusions

The optical model used here to fit the elastic pion-scattering
data is not, strictly speaking, just a first-order model. Allowing
the renormalization parameter in the model to assume values which
cannot really specify the true renormalization of the data appears
to mock up effects of second-order scattering in a nucleus. While
only the first term in the Watson series 1s explicitly incorporated
into the model, the free parameters account for some higher-order
terms.

Notice that the two-parameter Fermi distribution used to
specify the nuclear mass density in the optical model does not often
correspond to the optimum functional form of the nuclear distribution
as given by electron or proton-scattering measurements. So the
optical potential in this model is not precisel!y of first order,
because it does not use the exact nuclear mass density. But, except
for the peculiar case of the effective proton distribution for 288i
and the discredited lead fitted parameters, the effective mass
density values fit by the optical model are reasonably close to the
expected values, at least near the 0.2 density point.

It is no surprise that a strict first-order optical model will
not adequately fit pion-nucleus scattering at intermediate energies.

What is remarkable is that a first-order model with a significant



modification for the pion-nucleon range and adequate flexibility i
its fitted pearameters to account for effects not explicitly calcu-
lated, fits all the quality scattering data with physically reason-
able parameter values. (This excludes, of course, the aberrant
fitted proton distribution parameters of 2851, and even thesc
values lie outside accepted limits by little more than two standarcd
deviations).

Taking a large value for the pion-nucleon range in the optical-
model program gives an approximation to those fitting programs
which do not include the fornalism of range. Symptoms of neglecting
the finite range of the pion-nucleon interaction include smaller
values of the half-density radius for the effective mass distribu-
tions compared with those radii fit to the optical model with a
finite pion-nucleon range. Additionally, an optical-model fit with
no finite range formalism yields values of real b1 that are quite a
bit larger than either the free values or the values fit with the
modified optical model.

It may be possible to learn about the physics of the pion-
nucleus system from the parameter values fit by the optical model.
For example, the fitted values of the s-wave strength parameter, bo’
seem to argue the importance of the "angle transform” in the multiple-
scattering calculation, and the fitted evaluation of the pion-nucleon
range should be useful in future calculations of the optical poten-

tial. Furthermore, the weakness of the coherence approximation,
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and the importance of multiple scattering to intermediate excited
nuclear states, is hinted at by the fitted renormalization values.
The very careful analysis of the scattering data of this
experiment seems to have borne fruit. When analyzed with the
particular optical model that contains the pion-nucleon range
formalism, encouraging results are obtained. It may even be true

that the tedious, exacting, and extended work of this thesis was

really worthwhile.
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APPENDIX A

THE ANALYZER PROGRAM

SUBROUTINE PROCO4
THIS IS THE EXPERIMENTAL ANALYZER

MODIFICATIONS FOR NEW ALLCOM 27-0CT-77
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1 (TACL) RIMNCI31)) v (DRFFOCL) s RDW(1A1))

EQUIUALENCE (RCFTL»TALLI ) p LRCFT2»TA(Z) )y (RCFTI2TA(3) )

(RCFTA»TAC ) 2 (RCFTSr TALE) ) 2 (RUFPTE,TA(S) Yy
2 (RCFTZ2TAC7) )9 ARCFTEr TACE)I ) » (RCPIPsTA(D) ) »
3 (RCF10»TA(10))

EQUIVALENCE (XFRON!RDU(IJ‘))’(1HFHOIRDM(IJh))l(YFRDN’RDu(lJa’)I
1 (FHIFRROWCISA) ;9 (XREARYRTUCLES) 2 s (THRER P RLUW(156) )

2 (YREARyRICLIS73 ) » (FHTREPRIW(158) ) » ISFR1SP2RDUC1S9) ) »

3 (SFK160+RDW(160))

EQUIVALENCE (DUNMLsRIW(161) 22 (DELTASROWC162)) » (ODUMM2,RIW(163) ) e
1 (XCTOT>RDUMC16A45) s (THTIGT s RUWC165) 59 (YCTGT+RDW(166) )

2 (FHITGRUWC167) )y (THEHK »RDWC(168) ) v (FHCHRsRIW(16%) ) »

3 (PATHLRONW(170))

DIMENSION DIST1(A)eDIST2(4)yDISTI(A)»DIBTA(4)

EQUIVALENCE (DISTIC(1)oROWCI712) 0 (DIST2(1) s RDW(L173) )y
1 (DIST3(1) P RIWCLI72)) s (DISTACL) v RUW(L1BE) )y (SFR1B7»RDIUCLE7))

EQUIVALENCE (SIDELE»RIWC188)) » (S2IELEYRDW(189) )y
1 (S3DELEYRUN(190))

EQUIVALENCE (DES2Z,RIMWC191))» (FEREAMyRIWC192)) s (EREAMIRDW(193) )y
TFSFCTSRIMO194) )5 (ESFUTsRIMIL1PE) )y (RUALUH RTW(1P6) ) »

LIty =

EQUIVALENCE

(THSFCyRIUMCT97) ) e (INLOSSsREWLIP8) ) » (FUNSRIW(IZ9) )
(RGFFLO,RDW200)) 9 (FOFFDYROM(201))

(TSIRYROWCZ02) ) v (OTOF » ROWC203) ) s (XDEF P RDW(204) ) »

1 (XS1yROWC20TI )y

2
EQUIVALENCE
1
2
EQUIVALENCE

EQUIVALENCE

EQUIVALENCE
1

2

3
EQUIVALENCE

EQUIVALENCE

N -

EGUIVALENCE

(XROTGyROWC206)) y (YROTG>»RDW(207))
(RCFSCyROWCIZ1I ) » (RUFSCRIMW(2I2) ) ¢ (RCFZCyRDW(233) ) »
(RCFBCRUW (254 ) v (RCFPCyRIMC23S) ) p (RE10CsRIM(234) ) »
(RCPESHSRDWI237) )y (RCP7ByRIM(238) 29 (RCZ10RDW(239))
(ORFREF (1) sROUW(241))

(XQAD P RDUC226) ) » (THTRALYRDW(227) ) »
(YA RDWC228) ) » (PHIGALN RUW(229))

- - - s S o S v B i e 4 s S e S e

(ITMS2sIBWC231)) 2 CITHS3s ILI(252)) » (ITREF s IDUW(2533 ) »
(ITSIR» TDWC254) ) p CITVAF, TTWCD2SE) ) 9 CLITVAN IINC(256) ) »
CITHCL  IDUWKC2S7) ) p CITALR TRWC2S53) ) CITUINY TLWC259) )y
(ISF&0 IDN(260))

(IBOX IDMC261) )y CTELP o IDWC262) ) e CIGAT» INWC243))

(ISF2649IDU(264))

CISF245y IDW(265)) » (ISFR64r THW(284) )y
(ISF67s IRW(267) )y (ISFR468,y IW(248) 0y
(ISPRAy IDU(249) ) s (ISF270, TTUW(270)) s
CISP271»IDWC271) ) (ISP272, IDU(272) )

CISF273,IDW(273) ) ¢ (ISF274+ IDUW(274) ) »



o0

OO0 000060

(g NNy

a0 oo

1000
1050

bé

CISFZ7Sv INNCI75) 12 (ISF27&s IDW(278))»
2 CLSF277+ 1027721 {1SE2/8y ILUH(278) )y

3 (ISF279 IDW(279)) s (ISF280,1DW(2B80))

DIMENSION ILRFTM(10)
EQUIVALENCE (IDRFTHM(1),IDW(281))

EXIT IMMEUIATLY
IF (1123 .EQ. -12345) RETURN
TRIGGER EVENT 18 DURING REFLAY

IF (I114 .EQ. —-1224%) CALL FROCiSB
I1114=0

FRINT VALUES OF COMMON RLOCK IF I115=-12343

IF (I115 .NE. —-12343) GO TO é¢é
1115=0

CALL ASSIGN (32 LFOI‘s4)

WRITE (5¢r1000) NMAXe»IST»ITERM
WRITE (5+1050) CF

WARITE 15,1050) DRF

FORMAT (1¥,1017)

FORMAT (1X,10E12.,3)

CALL. CLCSE(S3)

CONTINUE

CLEAR ALL CALCULATED QUANTITIES
CALL VALSET(TIIW(101),520¢0Q)

COUNTER DATA

ITHS2 = IS2FT + IS2NT

ITMS3 = IG3FT + IS3INT

ITREF = (ITHMS2 + ITMS3)/2 + I101
ITS1IR = 2%ISITT -~ ITREF + I102

T31R = FLOATC(ITS1R)*,01

ITVAF = 2%IV4FT - LITREF + 1103
ITVAN = 2KIVANT - ITREF + 1104
ITMC: = ICI1FT + ICINT - ITREF + I103
ITulF = 2xIJIFY - ITREF + 1106
ITJIN = 2%TJINT - ITREF + I107

SINELE=FLOAT(IS1AAY /7100,

S2DELE = FLOATC(IS2PA)YFLOAT(IS2NA)
S3DELE = FLOATC(ISIFA)XFLOAT(IS3NA)
LES23 S2NELEXS3DELE

DES23 = DES23%k.25
DES23=DES23/100.

S2NELE = SQRT(S2DELE)/100.

S3DELE = SQRT(S3DELE)/100.
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aLL INTGRZ (RIW(188),IDW(188)r4)

C SKIF RESI OF CALCULATIONS IF FROTON,.
THE TEST SUBROUTINE IS USFD TO ELIMINATE PROTONS EY SETTING LIMITS
ON THE ENERGY 1.0SS IN THE SCINTILLATORS.

CALL ALLTST(1)
IF (TSTNOK(4) .AND, I128.NE.-12345) G0 TO 450

DRFREF(S)=ITREFXR245
DRFREF(6)=ITREFXR246
DRFREF(9)=]TREFXR247
BRFREF (10)=1TREF*R248

IF INT(120) = -12345 TURN OFF CHMBRS

o0

IF(I120.NE.~12345) CAlLL CHMBRS
CALL INTGRZ (RIW(101),»IDW(101),10)

O

IF (I124,NE.-12345) CALL ALLTST(2)

FOR EXAMPLEs, R2S4s, EQUIVALENT TO 1COM(3848),1S THE Z
FOSITIGN NF CHAMEBER 2.

[ Ny Relv]

X24=R254-R252
X14--R2G4-R251
X13:-R253~-R201
IF{AES(X132}.LE.10,) X13=10,
IF(ARS(X24),LE.10.) X24=10,
1F (ARS(X14) . LE.10,) X14=10,
THFRO = 1000, %(C(4)~C(2))/X24
FHIER = 1000, ¥(0(3)-C(1))/X13
IF{AES(THFRO) .GT.250.) THFRO=250.
IFCARS(FHIFR? +GT.2100.) FHIFR=100.
XFROGN = C(4)
c L<4) 13 THE X POSITIONs GIVEN BY CATHODE DELAY CIRCUIFIRY»
[ IN CHAMRER 4.

YFRON = C(3)+FHIFRK(R254-R253)%.001
X={R2554+R260-RIS5-RIG6IK WS
IF (ABS(X) LT 4 10)X=1,

IF (I125.NE.~12345) CALL XDRFT

Yrl = (CLS) + C(6)IXK.5
YY2 =C(10)

XX1=RCF5&6

XA2=RCFP10

THRER = 1000.k{(XX2-XX1)/X
FPHIRE = 1000.%(YY2-YY1)/X

XREAR = XX1

YREAR = YY1
IFCABSCTHRERY + BT+ 500, ) THRER=500.
IF(ARS(FHIRE) «GT«100.)PHIRE=100.

DETERMINE THOSE VALUES WHICH DEFEND ON FITTED COEF-~
FICTENTS OF LINEAR EQUATIONS.,

CALCULATE FOLYNOMIALS

o000 Go
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OO0 o000

]

o000 OO0 OcCO0O0

NO0 00000

IF INT(121) = -12345 TURN OFF FOLYNOMIALS

IF (INY(121) .NE. -12345) CALL MULTIS
DTOF=TS1R-PATHL

LDELTA=DELTA-TGTXD

FHITG=FHITG + R261

ZF=1 .~ (THTGTHTHTGT + FHIGT¥FHTGT)%,SE-§&

ZROT = -YTGTASTHOIF/(ZFA*CTHDIF + FHIGTXSTHRIFX1.E-3)
XROTG = XCTGT + THTGTHZROT*1.E-3

YROTG = YCIGT + PHTGT*ZROTX1.E-3

SIMFLE RELTA LLOSS CALCULATION
0L0ss = XROTG/10, ~ DELTA

IF(I110.,LE.O) 1110 = 161
IFC(I111.,LE.O) Il11 =

CALKIN FERFORMS RELATIVISTIC KINEMATIC CALCULATIONG.
IF 1125 = ~12345 TURN OFF CALKIN
IF (I12G.NE.-12343) CaALL CALKIN (Ii10.1111)

CALCULATE FUN TERMS

IF (I12% NE. -12345) CALL FUNNY
CHANGE UNITS OF ANGLES HEFORE CONVERSION 70 INTEGERS
AFTER CHANGEs 1CHANNEL=0, 1t4ILLIRADIAN

THFRO=THFRO%0, 1
FRIFR=FHIFR¥0.1
THRER=THRER¥0 1
FHIRE=FHIRE*O0.1
TRHTGT=THTGTX0.1
FHITG=FHITG*0.1
THCHR=THCHK*Q, 1
FPHCHK=FPHCHK%0 . 1
THSFC=THSFCY0.1

CONVERT REALS TC IMTEGERS
IF INT(122) = -123453 TURN OFF FLOAT 70O INTEGLR CONVERSION
IF (INT(122).NE.-12345) CALL INTGRZ(RDW<1013,10NC101)5150)

COMMENT OUT INDIRECT GATESyEBOXESSELLIFSES
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Appendix B. Elastic pion-carbon cross sections at 162 MeV were
used to normalize pilon scattering from beryllium,
gilicon, nickel, and lead.

Listed below is the differential cross section for elastic

pion scattering on 12C. This cross section provided the normaliza-

tion for those scattering yields measured during this experiment.

.t

b 1

’S do/dQ (do/dQ)
10.50 467.1 39.71
12.50 406.1 34.97
14.50 365.1 29.79
16.50 329.2 27.63
17.50 292.2 23.04
19.50 256.4 19.59
21.50 214,1 16.89
24,20 157.9 10.08
26.60 125.2 8.462
29.00 93.36 6.417
30.20 70.05 4.537
32.60 55.88 3.651
36.20 33.61 2.334
37.40 24.77 1.644
38.60 19.54 1.303
39.80 15.21 1.0357
41.00 10.96 0.7692
43.40 5.425 0.13816
45.80 2.302 0.1769
48.20 0.7566 0.07024
50.56 0.1956 0.02745
53.00 0.1689 0.02360
54.20 0.2832 0.02811
56.60 0.5601 0.04950
59.99 0.8773 0.06707
61.40 1.171 0.08437
63.80 1.264 0.08937
66.17 1.330 0.09238
67.40 1.355 0.1156
68.60 1.277 0.08915
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Appendix B continued

‘n+
o o1
S do/dQ (do/dR)
71.00 1.160 0.08026
73.40 1.05235 0.07291
75.80 0.7959 0.05730
78.20 0.5825 0.04352
80.60 0.3561 0.02867
83.00 0.2278 0.01995
85.40 0.1358 0.01348
87.77 0.06642 0.009250
90.20 0.04632 0.006960
92,60 0.03727 0.006300
95.00 0.04541 0.006780
97.40 0.08100 n.01237
99.80 0.09190 0.01311
102.20 0.1552 0.02058
104.60 0.1656 0.01662
107.00 0.2335 0.02097
109.40 0.2238 0.02065
111.80 0.2159 0.02013
114.20 0.2298 0.02118
116.60 0.2230 0.02006
119.00 0.2040 0.01834
120.20 0.2137 0.01854
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Appendix B continued

|=

A
T
Ys do/dn (do/d2)
12.50 445.1 105.5
14.50 413.6 97.93
16.50 334.1 81.33
18.50 298. 4 70.47
20.50 236.5 55.88
23.00 161.3 12.90
25.40 146.7 a.904
27.80 113.4 7.653
30. 20 79.22 5.361
32.60 56.96 3.856
35.00 37.83 2.591
37.40 23.28 1.650
39.80 13.92 0.9961
41.00 9.897 0.6720
43.40 4.679 0.3760
45.80 2.388 0.2121
48.20 0.7916 0.08732
50.60 0.2693 0.04250
53.00 0.3123 0.04274
55.40 0.6183 0.06282
57.40 0.8574 0.07667
60.20 1.09468 0.08807
62.60 1.2779 0.1016
65.00 1.4140 0.1065
66.20 1.5165 0.1215
68.60 1.4129 0.1131
71.00 1.1290 0.09192
73.40 1.04195 0.08509
75.80 0.7538 0.06801
78.30 0.4756 0.05955
80.60 0.3371 0.04360
83.00 0.1865 0.02378
85.50 0.1530 0.02672
89.50 0.05959 0.01267
93.50 0.04310 0.01448
99.50 0.08171 0.01990
105.50 0.1680 0.02863
111.45 0.2168 0.03532
117.40 0.2024 0.03928
118.40 0.1490 0.02818
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Appendix C. Listed on the following pages are the positive and
negative c.m. cross sections for this experiment. The first
compilation shows the unmodified data In the order ¢.m. cross
section, cross section error, and c.m. angle. The next compila-
tion lists the data modified for angular resolution and contaminant

electromagnetic scattering.
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FOLLOWING 1S 2 COMPILATYON OF THE MONTIFIED DATA IN THE ORDER C,M, ANGLE,
AND CROSS SECTION ERCR,

C.M.

CROSS SECTION,

eRaPB(Ple,PI+)200PE

2P, 62009
21,800p0
°l.eanppn
PU.prren
25%.,upaga
26, 60002
°l.80002
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3z, 2"
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33.9ee¢2
15,307
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66,30020
67.52022
67.5ean2
6R,T73a0N
¢9,90000
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79,2000
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196, 00000
194,20702
163,06
16%,3999¢
t3n,ACP0Q
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1ar.neeee
77.49000
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2h,28
13.46
b.180

1. 844
3.685
S«690
5,492
_R.872
13.P1000
165, 32900
1A 26229
19,4420
19, 4dpep
19.852
12.180
17.57008p
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10, 70020
7.6572¢
S.2%4
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L4173
+H182
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1.027
1.8162P
216923
2.lUBo2n
1,151
2.82%
2.70800
2.27ud0
2e.2100Q
1.A4420
1,040
«9Q312
62420
51270
,2282

. 26UQ
1238

“

23;9nuee
16,9??09
S,?Quﬂﬂ
6,3?700
u,bbuﬂa
a,aa?ﬂﬂ
lﬂ,SbﬂOO
{2.22200
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8'56000
5,70?9ﬂ
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fu,qeana
3. 68600
2,190
1.323%
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1,20000
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1,73600
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'RbEQG
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L 49809
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'I7Q90
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,IIHJG
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’

!
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77.10 + 13347
78,31 2227
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R9,1apeq LYY
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11, Tagan » 17887

PPBPR(PIm,Pfe)2:2aPB
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17,0700 421,270

1R, 23000 163,7
19,40003 95,70
cP.h20pR 12R,A

2l.8202% 1846,09999
2l.apzpr 29p,100P1

24, 20000
25.42000

322,82
319,3¢

Fh.hOARP 278,4P702)
27.83e20 237,73000
29,0000 BRI, ABARY

30,27 199,7
31442 69,01
12,60 26.22
13,90 Be2if
3S.pp 2+288
36,32 S»?26
317.5ar0p 14,010
8,T2007  25,50Rp9
41,1000 62,75
up,3eapn  35,11000
44,70mre@ 28, 39¢¢p
uS.%0008 21.29700
4B, 3n 7.25¢
49,52 2,758
Se., 70 9518
51,90 3579
54,3a000 1.842
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2128
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'nGSSO
’asqaa
,EHSSa
’nxasi
,oaazq
,03925
,?usao
’FSR!G
'BSZEQ
'??RIQ
12159
.Randy
2108
2044
,PGTYG
p 1487
'92873
,93151
,nasam
e Plu8a
,vzuas
ny2ut
,asuzs
'a;mss
'93396
«A3554

Sx;aaaae
27.75Aa0
9,77a
6,500

, Te36
9(57600
15,7anae
15,3uP80
16'78099
!5,!1"90
IE'QHHBG
10.3173p
6,726
4.330
1,980
+8349
-!ﬁﬁ]

s 5067

, 12360
1288200
'3.833
2, 60520
1,9150a
1.49732
6720

¢ 3298
174y
0S8y
02780
3248
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77.12 »A3347
78,32 «P2227
719,50 ,09135

g, 10 .1870
Af.90000 « 274
B3, 10000 240432
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45,5000 T
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302,20 1he .7
31,42 65,01
32.62 26,22
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35,00 2.288
36,30 5.P26
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48,30 Tes54
49,62 2.758
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S1,90 «3579
S3,10 1.3192
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»0172

23128

o224
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,asqaa
pRu3sSa
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pPun29
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,90390
'03810
p 73209
’PEAIQ
’elsvg
.P2047
'.atzs
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27.7598p
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, _T+36
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lS'ilﬂﬂﬂ
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6,726
4,330
1.920

s A%080
230019
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]'91590
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2 1748

+ PRSY
L2780
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32,62 26.€2
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36,30 S. P26
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41,1000 42.75
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48,30 7.254
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51,90 «3579
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) P2R19
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.93554
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27.7%900
9.770
6,500
T.36
o;s7ueu
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15, 30000
16,7800
15,1100
12,90100
xe.sxggo
6,726
4,330
1,900
L8300

, 3001
«S06a
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1.88200
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149700
.6720

« 3298
.1744

+ ARGy
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Appendix D. The real part of the forward-scattering amplitude
and the total cross section based on the optical-model fit to
scattering data are shown. The forward-scattering amplitude is
calculated from the components of the Coulomb scattering matrix,
S;, and the S-matrix components, SQ, due to both the Coulomb and

nuclear interactions:

max
A 1
£00) = 37 3a1 :E: (22-1)(52—85).
2=0

Using f(o), the optical theorem provides total cross sections:

= Am
of ” Imf(o).

T
Re[£(0)] o p(mb)
+
T, Be -0.8214 570.8
T, Be -0.1669 689.5
nt, 284 -3.765 1144.0
m,28%s4 4.145 1179.0
LN -11.72 1352.0
T ,58Ni 13.25 1467.0
nt, 208py -17.34 ~2506. 0
T ,2%pp 18.21 -3644.0
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