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GEOLOGICAL STRUCTURES FROM TELEVIEWER LOGS 
OF GT-2, FENTON HILL, NEW MEXICO 

P a r t  1: Feature E x t r a c t i o n  

Ker ry  L. Burns 

ABSTRACT 

Pa t te rns  i n  r e f l e c t e d  sonic i n t e n s i t y  recognized 
d u r i n g  examination o f  te lev iewer  l ogs  o f  basement 
g n e i s s  a t  t h e  H o t  Dry Rock S i t e ,  Fen ton  H i l l ,  New 
Mexico, are due t o  geo log ica l  f r a c t u r e s  and f o l i a t i o n s  
and t o  i n c i p i e n t  breakouts. These fea tu res  a re  ob- 
scured by a r t i f a c t s  caused by we l l bo re  e l l i p t i c i t y ,  
t o o l  o f f - c e n t e r i n g ,  and t o o l  o s c i l l a t i o n s .  An i n t e r -  
a c t i v e  method, developed f o r  e x t r a c t i o n  o f  the s t r u c -  
t u r a l  features ( f r a c t u r e s  and f o l i a t i o n s ) ,  uses human 
percept ion as a p a t t e r n  de tec to r  and a chi-square t e s t  
of harmonic form as a p a t t e r n  d i s c r i m i n a t o r .  From 
imagery o f  GT-2, 733 s t r u c t u r e s  were recovered. The 
acceptance r a t e  of the d i s c r i m i n a t o r  was 54%. Despi te 
these p o s i t i v e  r e s u l t s ,  the general conclusion o f  t h i s  
study i s  t h a t  intensi ty-mode imagery from Fenton H i l l  
i s  n o t  d i r e c t l y  i n v e r t i b l e  f o r  geo log i ca l  i n f o r m a t i o n  
because o f  tne complexi ty o f  the te lev iewer  imaging 
process. Developing a forward model o f  the 
i n t e n s i  ty- imaging process, o r  conver t ing to c a l i p e r -  
mode imagery ,  o r  d o i n g  b o t h  w i l l  be necessa ry  f o r  
h i g h - f i d e l i t y  f ea tu re  e x t r a c t i o n  from te lev iewer  data.  

I. INTRODUCTION 

A. Scope o f  This Report  

We have developed a method o f  e x t r a c t i n g  s t r u c t u r a l  data from te lev iewer  

imagery us ing as t r i a l  data some extremely poor imagery from GT-2 a t  Fenton 

H i l l .  Th is  r e p o r t  descr ibes some o f  the fea tu res  t h a t  have been recognized 
and a simple method o f  p a t t e r n  d i s c r i m i n a t i o n  f o r  geolog ica l  s t r u c t u r e s .  
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Questions addressed i n  this repor t  a r e  (1) what features  i n  the rock or 
on the wellbore surface can be detected w i t h  a televiewer? ( 2 )  w h a t  is the 
phys ica l  p rocess  t h a t  e n a b l e s  t h e m  t o  be d e t e c t e d ?  and ( 3 )  how may t h e  
instrument or data processing be modified to improve de tec tab i l i ty?  Two 
spec i f ic  questions a r e  ( 4 )  how could the aperture of f rac tures  be measured 
w i t h  t h i s  instrument? and ( 5 )  is the observed diffuse texture,  interpreted a s  
f o l i a t i o n ,  due to resolut ion of d i scre te  laminae or to  a d i f f r a c t i o n  e f f e c t  
from a f i e l d  of unresolved objects? 

Technical terms t h a t  require some explanation a r e  shown i n  caps a t  t h e i r  
f i r s t  appearance, for  example, DETECTABILITY 
6. The Hot Dry Rock Geothermal Energy Program 

Dri l l  hole GT-2 (Geothermal Test well No. 2)  was d r i l l e d  i n  1974 to a 
total  depth of 2932 m (9619 f t )  a t  the Fenton Hill geothermal si te i n  the 
Jemez Mountains of northern New Mexico ( P e t t i t t  1 9 7 5 ~ ) .  The upper 0.73 km was 
i n  a cover of volcanics and sediments and the remaining 2.27 km i n  a basement 
of Precambrian metamorphics, predominantly hornblende-bioti te grani te  gneiss. 
T h i s  borehole, along w i t h  i t s  neighbor EE-1 (Energy Extraction hole No. l ) ,  
was used, i n  1975-1980, to prove the s c i e n t i f i c  f e a s i b i l i t y  of extract ing 
energy from hydraulically f ractured rock. T h i s  research program, the Hot Dry 
Rock Program, is  current ly  continuing w i t h  two hot ter  and deeper we1 1 s .  

C. Geological Environment of GT-2 
Descriptions of the geological environment include the geology (Pur tymun 

1973; Purtymun e t  a l .  1974; Kintzinger and West 1976; Kintzinger e t  a l .  1978); 
petrology (Perkins 1973); geohydrology (West 1974); and seismicity (Slemmons 
1975). 
D. Previous Studies  of GT-2 

Descriptions of GT-2 include d r i l l i n g  operations ( P e t t i  tt 1975a ,b , c )  ; 
temperature ( A l b r i g h t  1975); hydrology (West e t  a l .  1975a); geophysical logs 
(West e t  a l .  1975b; West and Laughlin 1976); geology (Purtymun e t  a l .  1974); 
petrology (Heimlich 1976; Laughlin and Eddy 1977; Laughlin e t  a l .  1983); iso- 
tope geochemistry (Brookins e t  a l .  1977; Zartment 1979; Brookins and Laughlin 
1983); microcracks (Simmons and Eddy 1976) ; permeability (Del i s l e  1975; Trice 
and Warren 1 9 7 7 ) ;  i n  situ s t r e s s  (Aamodt 1974, 1977); and thermal conductivity 
( S i b b i  tt 1976). However, descr ipt ions of macroscopic s t ruc ture  a r e  limited t o  
observations of recovered core,  and the televiewer remains the best  hope for  
measuring rock-mass properties i n  si t u .  
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11. THE TELEVIEWER INFORMATION-GATHERING SYSTEM 

A. Downhole Viewina Inst ruments 

Three d i f f e r e n t  inst ruments a re  used f o r  i nspec t i on  o f  boreholes.  The 

STRATASCOPE i s  an o p t i c a l  per iscope t h a t  i s  i n s e r t e d  i n t o  a d r i l l  ho le  and 
used to look  f o r  " s p l i t s "  o r  "pa r t i ngs "  between s t r a t i f i c a t i o n s  i n t e r s e c t e d  by 

the we l l  (Eas t  and Gardner 1964). The BOREHOLE CAMERA i s  an o p t i c a l  wide- 
angle camera t h a t  i n t e r m i t t e n t l y  takes p i c t u r e s  downhole. Four d i f f e r e n t  

types o f  cameras are  descr ibed by Dempsey and Hickey (1958), Jensen and Ray 
(19651, M u l l i n s  (1966), and Kotyakhov and Serbrennikov (1964). An example o f  

borehole camera images i s  shown i n  Zemanek e t  a l .  (1970, F igure  5, p. 259). 
The BOREHOLE TV i s  an o p t i c a l  wide-angle v ideo camera t h a t  r e t u r n s  an image t o  

a t e l e v i s i o n  screen a t  the surface. One type, descr ibed by Br iggs  (1964), i s  
used to inspec t  the c o n d i t i o n  of overburden and mine openings i n  coal  mine 

subsidence con t ro l  work. The TELEVIEWER i s  a sonic scanner t h a t  scans the 

we l lbore  and r e t u r n s  e l e c t r o n i c  imaging data, l i n e  by l i n e ,  t o  a sur face 

recorder ,  as descr ibed by Zemanek e t  a l .  (1969, 1970) and Hinz and Schepers 
(1981). The te lev iewer  i s  a borehole scanner and i s  s i m i l a r  to a i r c r a f t  and 

sa t e l l  i t e  scanners. 

B. I n fo rma t ion  Flow 

The tel eviewer i n  forma t ion-ga t h e r i  ng system compri ses th ree  subsys tems : 
data a c q u i s i t i o n ,  f ea tu re  ex t rac t i on ,  and geo log ica l  o r  geotechnica l  i n t e r p r e -  

t a t i o n .  DATA A C Q U I S I T I O N  comprises ins t rument  design, opera t ion ,  record ing,  

and playback. FEATURE EXTRACTION i s  e x t r a c t i o n  o f  geo log ica l  o r  geotechnica l  

fea tures  from the played-back record ing  o r  from recons t ruc ted  images. 

INTERPRETATION i s  i n t e r p r e t a t i o n  o f  ex t rac ted  fea tures  f o r  parameters of ge0- 

l o g i c a l  o r  geotechnica l  s ign i f i cance .  This  r e p o r t  i s  concerned w i t h  fea tu re  
e x t r a c t i o n .  

111. TELEVIEWER DATA A C Q U I S I T I O N  

A. F i e l d  Operat ions i n  - GT-2 

The USGS f i r s t  conducted t e n t v i e w e r  surveys o f  GT-2 between dep hs o f  

3270-3350 f t  and 3445-3590 f t  i n  mid 1974. These surveys were n o t  o r i e n t e d  

because t h e  magnetometer f a i l e d  t o  o p e r a t e  a t  t empera tu res  i n  t h e  h o l e  

( P e t t i t t  1975a). The present  logs,  supp l ied  by Bob P o t t e r  o f  LANL, were r u n  
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by Scot t  Keys of the USGS i n  December 1974. They are  not mentioned i n  P e t t i t t  
(1975b,c). 
B. Description of Instrument 

A schematic drawing of a borehole televiewer is  g i v e n  i n  Figure 1. The 
USGS televiewer consisted of a piezoelectr ic  transducer, rotat ing r i g h t -  
handedly, t h a t  converted ref lected sonic in tens i ty  to  e l e c t r i c a l  s ignals .  The 
s ignals  were brought uphole and were used to  drive the in tens i ty  of a cathode 
ray oscil loscope. The CRT sweep was triggered by a magnetometer when the 
sensor crossed the magnetic meridian. The CRT t race height was advanced by 

1 

Figure 1. Schematic diagram of the original borehole televiewer. Symbols for  
downhole hardware a r e  A. piezoelectr ic  transducer, B. f l  uxgate magnetometer, 
and C. drive motor. Symbols for  downhole e lec t ronics  a re  D .  or ientat ion pulse 
generator, E. 2000-Hz o s c i l l a t o r ,  F. t ransmitter pulse generator, G. signal 
gate ,  H. amplif ier ,  and I .  detector.  Symbols f o r  uphole e lec t ronics  a r e  J. 
amplif ier ,  K. sweep generator, L. d e p t h  potentiometer. The oscil loscope 
Controls a r e  M. Z-axis, N. horizontal sweep, and 0. ver t ica l  sweep. Modified 
from Zemanek e t  a l .  1969, Figure 1 ,  p.763. 
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one scan l i n e  fo r  each r o t a t i o n  o f  the sensor. The CRT image was recorded 
w i t h  a Po la ro id  i n s t a n t  camera. Each image covered an azimuth range o f  360" 

and a nominal depth range of 20 ft. Televiewers have two modes o f  operat ion.  
I n  the INTENSITY MODE, the ins t rument  measures i n t e n s i t y  o f  the r e f l e c t e d  

pulse and w r i t e s  an image t o  f i l m  i n  which the f i l m  dens i t y  i n d i c a t e s  rece ived 
i n t e n s i t y ,  depending upon the f i l m  response c h a r a c t e r i s t i c s .  I n  CALIPER MODE, 

the ins t rument  measures f l i g h t  t ime o f  the sonic  pu lse i n  t r a v e l i n g  to the 
we l lbore  and back so t h a t  an image recons t ruc ted  from t h i s  data po r t rays  the 

geometry o f  the wel lbore.  The USGS records  o f  GT-2 a re  i n  i n t e n s i t y  mode. 
C. Inst rumenta l  Parameters 

P i e z o e l e c t r i c  t ransducers w i t h  a 1.3-MHz frequency are  used. The ve loc-  
i t y  o f  sound a t  a depth of 3000 m i n  b r i n e  a t  0°C i s  1500 m/s (Forsythe 1954, 

Table 299, p. 307). By the l i n e a r  approximat ion o f  Howell (1959, p. 182), 
t h i s  v e l o c i t y  may be ex t rapo la ted  to 2076 m/s a t  250°C. The wavelength i s  

then 1.6 mm. The propagat ion constant,  K, def ined as 2*/wavelength, i s  3.9 
cyc l  es/mm. 

The we l lbore  i s  nomina l l y  a c i r c u l a r  c y l i n d e r .  I n  the plane normal t o  

the we l l bo re  ax is ,  the we l l bo re  sur face resembles a rough, concave m i r r o r .  

Rays emi t ted  by the t ransducer a re  brought  back i n t o  focus a t  the center  o f  
the t ransducer a t  the center  o f  the wel lbore.  The rad ius  o f  the concav i ty  

ranges from the nominal we l lbore  diameter, 9-5/8 in., t o  about 13-1/4 in . ,  o r  

from 244 to 377 rrm. A r e t u r n  pu lse can be i d e n t i f i e d  and the time o f  f l i g h t  

measured accu ra te l y  t o  a d is tance o f  0.2 mm. 
I n  diameter ( D )  the face o f  the t ransducer i s  about 3/4 i n .  and i s  about  

1 i n .  from the center  of the wel lbore.  The beam spreads i n  t r a v e l i n g  from the 

face o f  the t ransducer to the wel lbore.  A r u l e  o f  thumb i s  t h a t  the beam dou- 

b l e s  i n  w id th  i n  a d is tance kD, where k i s  the number o f  wavelengths i n  D. 
This r u l e  y i e l d s  a spreading angle o f  about  5 "  f o r  t h i s  inst rument .  The t rans-  

ducer then subtends an a rc  l e n g t h  o f  about 8 mn a t  the wel lbore.  The INSTANTA-  
NEOUS FIELD OF VIEW ( o r  IFOV) has a r a d i u s  o f  4 nnn a t  the we l lbore .  Other 

p r o p e r t i e s  of a c y c l i n d r i c a l  p i e z o e l e c t r i c  t ransducer a re  descr ibed by Zemanek 
(1971). 

The transducer r o t a t e s  a t  3 rps,  so a t  a logg ing  speed o f  20 f t / m i n ,  the 

ALONG-TRACK or SCAN-LINE spacing on the we l lbore  i s  9 scan l i n e s / f t  o r  34 mm. 
A t  5 f t / m i n  logg ing  speed, the a long- t rack  spacing i s  8.5 mm. The transducer 

i s  f i r e d  a t  128 sho ts / revo lu t i on  tha t ,  f o r  a 9-5/8-in.-diam wel lbore,  i s  a 
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CROSS-TRACK o r  SHOT spacing o f  6 mn. The IFOVs f o r  two ad jacen t  shots have a 

l i n e a r  over lap o f  62%, which means t h a t  two successive shots a re  q u i t e  Well 

c o r r e l  a t e d  . 
The te lev iewer  o u t p u t  f o r  GT-2 was w r i t t e n  to a CRT w i t h  the v e r t i c a l  

ramp s e t  so t h a t  two ad jacen t  scan l i n e s  had about 10% SIOELAP, and the CRT 
d i s p l a y  was then recorded w i t h  an i n s t a n t  camera. The r e s u l t i n g  frames had a 

scan- l ine l e n g t h  o f  60 mm, reco rd ing  a cross- t rack r o t a t i o n  through 360" and a 
frame h e i g h t  o f  57 mm, reco rd ing  20 f t  o f  wel lbore depth along-track.  The 

spacings were about 2 shots/mn across-track and, a t  a l ogg ing  speed o f  20 
f t /min,  about 3 l ines/mm along- t rack.  A t  a l ogg ing  speed o f  5 f t / m i n ,  the 

a long- t rack spacing was about 12 l i n e s / m .  The PIXEL o r  PICTURE ELEMENT, 
which was in t roduced by Schade (1948b) as the spot  on the image corresponding 

to the IFOV on the ob jec t ,  was 0.5 mn across- t rack and from 0.1 t o  0.3 mm 
a long- t rack.  

I V .  FEATURE DETECTION 

A. I n t e n s i t y  and Densi ty  

The t e r m  INTENSITY a p p l i e d  to a waveform i s  the usual p roduc t  o f  complex 

ampl i tude w i t h  i t s  conjugate value (Joos 1958, p. 724). When a f i l m  i s  ex- 

posed, the exposure E i s  the product  o f  i n t e n s i t y  by time. The r e s u l t a n t  f i l m  
DENSITY, D, i s  a non l i nea r  f u n c t i o n  o f  E termed the c h a r a c t e r i s t i c  curve o f  

the f i l m .  Th is  u s u a l l y  has a RAMP p o r t i o n  i n  which D = G*LN(E) + H (Campbell 
1962), where G and H a re  constants f o r  the f i l m ,  G being the f i l m  GAMMA and 

LN the usual Naperian logar i thm.  The dens i t y  o f  a te lev iewer  image i s  there- 
fore a f u n c t i o n  o f  detected r e t u r n  i n t e n s i t y ,  CRT phosphor c h a r a c t e r i s t i c s ,  

and f i l m  response (Schade 1964). 
B. D e t e c t a b i l i t y ,  Measurab i l i t y ,  and V i s i b i l i t y  

The term r e s o l u t i o n  i s  defined i n  terms o f  the Rayleigh c r i t e r i o n  (Waters 
1981, p. 270), which g ives the minimum angular separat ion f o r  d i s t a n t ,  h igh- 

c o n t r a s t  p o i n t  ob jec ts .  For nontelescopic systems the Rayleigh spread func- 
t i o n  i s  n o t  the o n l y  obscur ing mechanism, and a v a r i e t y  of d i f f e r e n t  measures 

have been developed. A f t e r  Welch (19721, we use the terms DETECTABILITY, mean- 
i n g  the a b i l i t y  to determine whether a known o b j e c t  can be detected o r  no t ,  
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and MEASURABILITY, t h e  a b i l i t y  t o  make measurements o f  s i z e  and o the r  proper- 
t i e s ,  such as the aper tu re  o f  f r a c t u r e s ,  from o b j e c t s  detected on the imagery. 

VISIBILITY i s  used to mean both d e t e c t a b i l i t y  and m e a s u r a b i l i t y  (Dunt ley 1948; 
Schade 1948a) . 

Schade (1948a,b, 1964) examined v i s i b i l i t y  o f  rec tangu la r  bar  t a r g e t s  i n  

t e l e v i s i o n .  De tec t i on  r e q u i r e d  a minimum c o n t r a s t  between bar and background 

o f  1.8: l .  The number o f  TV l i n e s  r e q u i r e d  to d e t e c t  h igh -con t ras t  (1OOO:l) 

and low-contast  (1 .6 : l )  t a r g e t s  i s  2.8 and 4, r e s p e c t i v e l y .  I n  s a t e l l i t e  r e -  

mote sensing, the m u l t i s p e c t r a l  scanner system (MSS)  has a 79-m IFOV and a 
56-m cross- t rack i n t e r v a l  a t  the ob jec t .  Colvocoresses (1972) used Schade's 

TV c r i t e r i a  t o  p r e d i c t  r e s o l u t i o n s  o f  136 m and 180 m f o r  h igh-  and low- 
c o n t r a s t  targets ,  r e s p e c t i v e l y .  Bachofer (1973) and Haas e t  a1 . (1972) used 

a d i f f e r e n t  method to est imate about 70 m f o r  medium-contrast t a r g e t s  and v e r i -  
f i e d '  t h a t  est imate from imagery. Rosenberg (1971) expla ined the d i f f e r e n t  

r e s u l t s  as a d i f ference between r e s o l u t i o n  and d e t e c t a b i l i t y .  NASA (1972, p. 
F-22) sa id  the t h e o r e t i c a l  l i m i t  o f  d e t e c t a b i l i t y  was 1/2 IFOV. 

C. St ructures,  Features, and A r t i f a c t s  

Geological  f ea tu res  a r e  induced p h y s i c a l l y  r e a l  o b j e c t s  on the sur face o f  

the wel lbore such as vughs, chips, breakouts, and geologica l  s t r u c t u r e s .  Geo- 
l o g i c a l  s t r u c t u r e s  a r e  n a t u r a l  o r  induced j o i n t s ,  f a u l t s ,  cleavages, f o l i a -  

t i o n s ,  and bedd ing .  S t r u c t u r e s  obse rved  on GT-2 i n c l u d e  f r a c t u r e s  and 
gne iss i c  f o l i a t i o n ,  the l a t t e r  comprising d i s c r e t e  bands and f o l i a  as w e l l  as 

d i f f u s e  f o l i a t i o n s  such as p r e f e r r e d  o r i e n t a t i o n .  Another n a t u r a l  f e a t u r e  on 
GT-2 i s  chipp ing o r  s p a l l i n g  on the t r a c e  of d i s c r e t e  s t r u c t u r e s  such as 

j o i n t s  or t h i n  micaceous f o l i a .  The ch ips are p o s s i b l y  i n c i p i e n t  breakouts. 
A r t i f a c t s  a re  features on the imagery t h a t  do n o t  correspond t o  phys i -  

c a l l y  r e a l  o b j e c t s  on the wel lbore.  Televiewer imagery has reco rd ing  a r t i -  
f ac ts  i n  common w i t h  r e t u r n  beam v i d i c o n  (RBV) imagery (C la rk  1981) and geo- 

m e t r i c  a r t i f a c t s  i n  common w i t h  MSSs on s a t e l l i t e  o r  a i r c r a f t  p l a t f o r m s  (Masry 
and Gibbon 1973). Recording a r t i f a c t s  i n c l u d e  r e p e t i t i o n  and omission o f  scan 

l i n e s  and l i n e  dropouts between frames. Geometric d i s t o r t i o n s  i n c l u d e  d i s t o r -  

t i o n ,  harmonic shading, and o s c i l l a t i o n  p a t t e r n s  such as s t r i a e ,  s t r i p i n g ,  and 

g r a i n  e f f e c t .  

The term SYSTEM ABERRATIONS i s  used f o r  ast igmat ism due t o  d i f f e r e n t i a l  

curvature o f  the wel lbore (see, f o r  example, Joos 1958, p. 408) and spher i ca l  
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aberration due to an e l l i p t i c a l  wellbore ( see ,  for  example, Caunt 1914, exer- 
c i s e  30, p. 421) or an off-centered tool.  

Selections of imagery showing various s t ruc tures  and other natural fea- 
tures and a r t i f a c t s  a r e  shown i n  Figures 2-9. These images cover 40 f t  i n  
d e p t h ,  ranging from t o p  to  bottom as  marked and 360" i n  azimuth, ranging from 
0" to 360" e a s t  of magnetic north from l e f t  to r i g h t .  
0. Fractures 

Jo in ts  and f rac tures  a r e  open to  the wellbore or f i l l e d  w i t h  s o f t  mate- 
r i a l s  such as  c a l c i t e  and ch lor i te .  Their aper tures  probably range from hair-  
l i n e  cracks to  cracks of several millimeters. Conspicuous examples a r e  shown 
i n  Figures 2 ,  3 ,  7 ,  and 8. 

The c h a r a c t e r i s t i c  texture associated w i t h  f rac tures  on intensi  ty-mode 
imagery i s  a dark, d i s c r e t e  l inear  feature:  f i r s t ,  the ref lected intensity a t  
a p i x e l  is reduced below t h a t  a t  neighboring pixels; and second, the pixels  
w i t h  reduced i n t e n s i t y  are placed on n e i g h b o r i n g  scan l i n e s  so t h a t  they a r e  
adjacent a t  a side or  edge. We define CONNECTIVITY of a pixel i n  a fea ture  a s  
the number of neighboring pixels t h a t  a r e  a l so  i n  the feature .  Then the tex- 
tural  feature  can be def ined as  a connected object  w i t h  connectivity of one. 
Fractures a r e  visible a t  a f ract ion of the IFOV, a dimension t h a t  i s  substan- 
t i a l l y  below NASA's theoret ical  limit. The reason f o r  t h i s  anomalous r e s u l t  
is probably absorption. 

The process causing absorption by f rac tures  i s  probably the "razor-blade" 
or wave-guide e f f e c t  of Weisskopf (1968). Fractures a r e  aper tures  t h a t  con- 
tinue i n t o  the rock. Rays entering an aperture a r e  diss ipated by re f lec t ion  
and sca t te r ing  from the sides so t h a t  this par t  of the IFOV i s  subtracted from 
the re f lec ted  i n t e n s i t y .  If the aperture is l e s s  than one wavelength, or 
about 2 mm, di f f rac t ion  over the aperture ,  as i l l u s t r a t e d  by Sheriff and Gel- 
d a r t  (1982, Figure 4.25, p. 1211, would reduce the absorbent e f f e c t .  

The e f f e c t  of absorption a t  a pixel containing a f rac ture ,  i n  r a t i o  t o  
neighboring pixels  not containing a f rac ture ,  may be estimated a s  
I(F,G,W,R,A): 

I = [ZFRW + G ( A  - E R W ) ] / ( G A ) ,  
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Figure 2. Image from 3450 t o  3490 ft 
depth. Two f r a c t u r e s  appear as s i n u s o i -  
d a l  t races  a t  about 3475 and 3480 ft. 
The two s t r a i g h t ,  v e r t i c a l ,  wide, b r i g h t  
s t r i p e s  are harmonic shading. The ver- 
t i c a l  b r i g h t  p a t t e r n  o f  d i s c o n n e c t e d  
t r i a n g u l a r  p a t c h e s  may be due t o  
breakouts. 

F i g u r e  3. Image from 2710 t o  2750 f t  
depth. A wide f r a c t u r e  appears as a 
s inuso ida l  t r a c e  a t  about 2725 ft. The 
c l o s e - s p a c e d  d i  s c o n t i n u o u s  t r a c e s  
imned ia te l y  above and below the f r a c t u r e  
may be f o l i a t i o n  a t  an angle to  the 
f r ac tu re .  
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Figure 4 .  Image from 4500 t o  4540 f t  
d e p t h .  The c l  ose-spaced d i  sconti  nuous 
traces  between about 4525 and 4530 f t  
are probably f o l i a t i o n .  

Figure 5 .  Image from 4210 t o  4250 f t  
depth.  A band i n  the f o l i a t i o n  from 
about 4212 t o  4216 f t  shows as a region 
of  d i s t i n c t i v e  textural s t a t i s t i c s .  



6320 

6340 

6360 

3830 

3850 

3870 

F igu re  6. Image from 6320 to 6360 f t  
depth. The a r t i f a c t  from about 6342 t o  
6360 f t  i s  due to the t o o l  moving w i t h  a 
non ro ta t i ng  transducer. This i s  a t  the 
s t a r t  o f  a run. Between about 6320 and 
6342 ft, the l i n e a r  patches s l o p i n g  
downward to the r i g h t  a re  a g r a i n  
e f f e c t ,  p o s s i b l y  due t o  o s c i l l a t i o n s  as 
the t o o l  accelerates.  The dark h o r i -  
zon ta l  l i n e s  i n  a bundle a t  about 6335 
f t  a re  scan- l ine dropouts. 

F igure 7. Image from 3830 to 3870 f t  
depth. The i r r e g u l a r  dark l i n e  a t  3850 
f t  i s  a s teep ly  d ipp ing  f r a c t u r e .  The 
t r i a n g u l a r  b lack  patch a t  3852 f t  i s  an 
i n c i p i e n t  breakout . 
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2730 

2750 

2770 
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Figure 8. Image from 2730 t o  2770 f t  
depth. The two s t r a i g h t ,  v e r t i c a l ,  
wide, b r i g h t  s t r i p e s  are  harmonic 
shad ing .  The s teep,  g e n t l y  c u r v i n g ,  
narrow b r i g h t  l i n e s  are  s t r i a t i o n s .  The 
harmonic shading may be r e c t i l i n e a r  due 
t o  the wel lbore being a quadr ic  c y l i n -  
der, w i t h  the s t r i p e s  being generators 
o f  the c y l i n d e r .  

F igure 9. Image from 5000 t o  5040 f t  
depth. The a r t i f a c t s  appear t o  be the 
same as f o r  F igure  7 .  The o b l i q u i t y  may 
be due t o  the we l lbore  being r i f l e d ,  the 
t o o l  being bad ly  of f -centered,  o r  f a i l -  
ure o f  the magnetometer tri gger . 

5020 

5040 
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where A i s  the area of the IFOV, R i s  the rad ius  o f  the IFOV ( 4  mm i n  t h i s  

case), W i s  the w id th  o f  the f rac tu re ,  and F/G i s  the r a t i o  o f  c o e f f i c i e n t s  O f  

r e f l e c t i o n  f o r  the f r a c t u r e  and country  rock,  respec t i ve l y .  I f  i n t e n s i t y  i s  

reduced by a p r o p o r t i o n  P, then I = 1 - P. A reduc t i on  i n  r e f l e c t e d  i n t e n -  

s i t y  to P = 0.1 y i e l d s  W o f  about 0.6 m, which would be, approximately,  the 

sma l les t  de tec tab le  aper ture.  

Measurab i l i t y  i s  d i f f e r e n t  from d e t e c t a b i l i t y ,  and aper tu res  below the 

IFOV are unmeasurable by m e t r i c a t i o n  on intensi ty-mode imagery. Poss ib ly  they 

could be measured i f  the r e f l e c t e d  i n t e n s i t y  were known, i f  the c o e f f i c i e n t s  
o f  r e f l e c t i o n  were known, and i f  a model o r  numerical s imu la t i on  were a v a i l -  

ab le  to evaluate p a r t i c u l a r s  such as the d i f f r a c t i o n  and wave-guide e f f e c t s  
f o r  s p e c i f i e d  j o i n t  aper tures,  j o i n t  a t t i t u d e s ,  ho le c a l i p e r ,  t o o l  p o s i t i o n  i n  

the hole,  sonic  v e l o c i t y  i n  the borehole f l u i d ,  and transducer 
c h a r a c t e r i s t i c s  . 
E. F o l i a t i o n  i n  Gneiss 

F o l i a t i o n  i s  due t o  several  d i f f e r e n t  minera log ica l  ob jec ts  having a wide 

range o f  s izes.  Here we c l a s s i f y  them in to  three s i z e  ranges. The sma l les t  
i s  a minera l  G R A I N ,  ranging from 0.3 t o  5 mm i n  diameter. The n e x t  s i z e  i s  a 

d i s c r e t e  minera l  FOLIUM, or  l a y e r  o f  minera ls ,  rang ing  i n  th ickness from 
about 5 t o  about 30 mm. The l a r g e s t  s i z e  i s  a d i s c r e t e  minera l  BAND, such as 

a f e l s i c  l aye r ,  ranging i n  s i ze  from about 20 m to about 6 m. Spacing of 
f o l i a t i o n s  along a l i n e  i s  more complex than spacing f o r  j o i n t s  because the 

f o l i a t i o n s  are se lec ted  a t  random from, a t  l e a s t ,  these three d i f f e r e n t  s i z e  
d i s t r i b u t i o n s  and because they are  nested; t h a t  i s ,  a band may be f o l i a t e d  

and a f o l i u m  i s  always gra iny .  Mean spacings o f  3 mn f o r  gra ins,  10 mm f o r  
f o l i a ,  and 30 mm f o r  bands were est imated from hand specimens o f  gneiss sirni- 

l a r  to t h a t  a t  Fenton H i l l ,  from the Santa Fe s k i  bas in  (F igure  10).  
The f o l i a t i o n  a t  a coarse sca le  ( f o l i a  and bands) comprises DISCRETE 

m ine ra log i ca l  ob jec ts  because a dec i s ion  c r i t e r i o n  can be found based upon 
p ropor t i ons  o f  quar tz ,  fe ldspar ,  and mica, which would p a r t i t i o n  the rock  i n t o  

f i n i t e ,  bounded, connected ob jec ts .  However, the f o l i a t i o n  a t  a f i n e  sca le  
( g r a i n  sca le )  i s  a p re fe r red  o r i e n t a t i o n ,  as de f ined by Turner and Weiss 

(1963, p. 3941, and i s  determined by g r a i n  shape. I t  i s  a DIFFUSE f o l i a t i o n  
o r  minera log ica l  p a t t e r n  parameter. The s p a t i a l ,  two-dimensional Four ie r  

t ransform (as descr ibed by Davis and Preston 1972; Preston and Davis 1972) of 
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Figure 10. Spacing of f o l i a t i o n s  i n  hand specimen of gneiss.  
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both gneisses and sedimentary rocks i s  d i f f e r e n t  f o r  h i g h  and low spa t ia l  f r e -  
quencies. The low-frequency objects a re  d i s t i n c t  f o l i a  and bands, w i t h  a f l a t  
(DC)  spectrum i n  one d i r ec t ion ,  w i t h  dominant s p a t i a l  frequencies i n  two per- 
pendicular direct ions i n  t h e  r a t i o  0.1:O or  0.03:O m-'. The high-frequency 
objects are  f i e l d s  of elongated grains, 
F. Discrete Foliation 

The coef f ic ien t  of ref lectance varies between adjacent f o l i a .  The ampli- 
tude of a secondary wave ( r e f l ec t ion  or d i f f r ac t ion )  i s  proportional to the 
in tens i ty  of the incident wave and to the s i z e ,  densi ty ,  and b u l k  modulus of 
the ta rge t  minerals (Waters 1981, p. 292). The most important difference i s  
probably i n  b u l k  modulus between feldspar ,  mica, and quar tz ;  representat ive 
r a t i o s  a re  1.55:1.18:1 (Forsythe 1954, Table 840, p.  740).  T h i s  would make 

-1 w i t h  a r a t i o  of about 0.3:0.2 mm . 
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f o l i a t i o n  a low-contrast t a r g e t  on Schade’s c r i t e r i a .  The close-spaced, paral- 
l e l ,  t h i n  layers  above and below the f rac ture  i n  Figure 3 may be d i s c r e t e  
f o l i a .  

1. Mineral Bands. Bands a r e  expressed as  regions of d i f f e r e n t  f i r s t -  
and second-order textural  s t a t i s t i c s  ( a s  defined by Julesz 1975). An example 
i s  shown i n  Figure 5. 

2. Folia.  Discrete l i n e a r  objects  t h a t  a r e  not f rac tures  a r e  both b r i g h t  
and dark. When we use Equation (1) w i t h  the same density threshold, P, of 0.1 
b u t  w i t h  the low ref lectance cont ras t  F:G of 1:1.5, the m i n i m u m  detectable  
w i d t h  i s  3.5 mm. Grains of this width a r e  not long enough to continue over 
several adjacent scan l i n e s ,  so the only objects detected i n  this way a r e  
t h i n ,  prolonged mica f o l i a  (dark) or t h i n  f e l s i t i c  veins ( b r i g h t ) .  They have 
been ident i f ied  on GT-2 imagery by the diffuse textural  fea tures  a t t r i b u t e d  to 
f o l i a t i o n  t h a t  paral le l  both of them. An example i s  shown i n  Figure 4. W i t h -  
o u t  this confirmation, t h i n ,  dark micaceous f o l i a  cannot be d i s t i n g u i s h e d  from 
fractures .  The ident i f ica t ion  is  confirmed on GT-2 by a correspondence be- 

tween some f e l s i t e  veins ( l i g h t )  and peaks on gamma-ray logs and between some 
dark veins and peaks on ca l iper  logs. In t h i s  case, the image fea tures  corre- 
spond to  real objects ,  and the IFOV g r i d  i s  acting a s  a low-pass f i l t e r .  
G .  Diffuse Foliation 

Diffuse s t ruc tures  appear on imagery as  f i e l d s  of f i n e  s t r i a e  of h i g h  
spat ia l  frequency, which a re  detected by their obl iqui ty  and consis tent  paral- 
le l ism over d e p t h s  of more than 5 f t .  The  textural  s t a t i s t i c s  of the d i f fuse  
texture have not been quantified.  Texture can be described as  a pattern of 
paral le l  b r i g h t  l i n e a r s  of h i g h  spa t ia l  frequency. Examples a r e  shown i n  F ig -  
ures 3 ,  4, and 5. 

Preferred or ien ta t ions  a r e  f i e l d s  of elongated grains ,  w i t h  a r a t i o  of 
spat ia l  frequencies i n  two perpendicular d i rec t ions  of about 0.3:O.Z mm . 
The diffuse f o l i a t i o n  m i g h t  be an eigenfeature of this  texture. 

Mechanisms by which this  structure becomes v i s i b l e  a r e  unknown. Possi- 
b i l i t i e s  include spurious resolution (Hotchkiss e t  a l .  1950, 19511, edge d i f -  
f ract ion (Keller 1961; Trorey 19701, a phase grating (McLaren e t  a l .  19701, 
and Mach banding (Morrone e t  a l .  1986). Not knowing the spec i f ic  mechanisms 
responsible for  the diffuse texture, we cannot know whether the correspondence 
between geological objects on the wellbore and textural  features  on the image 
i s  one-to-one or many-to-one, t h a t  is ,  whether the features  a re  real  objects  

-1 
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o r  rainbows. For example, Morrone e t  a l .  (1986) descr ibe Mach bands as "para- 

dox i ca l  bands o f  l i g h t  and dark" due to " l a t e r a l  i n h i b i t i o n  i n  the v i s u a l  

system. I' 

Dif fuse f o l i a t i o n  i s  found on USGS intensi ty-mode imagery from GT-2 and 

EE-3A. However, i n t e n s i  ty-mode imagery made w i t h  o the r  inst ruments had n o t  
shown the d i f f use  f o l i a t i o n ,  perhaps because t e x t u r e  may be e a s i l y  destroyed 

by e l e c t r o n i c  reco rd ing  processes such as automat ic ga in c o n t r o l  o r  by r o u t i n e  
image-enhancement processes such as scan- l ine e q u a l i z a t i o n .  

H. Breakouts 
Fractures and t h i n ,  dark micaceous seams f r e q u e n t l y  have small  t r i a n g u l a r  

wedges a t  i n t e r v a l s  along t h e i r  t race.  An example i s  shown i n  F igu re  7 .  
These ch ips o r  s p a l l s  may be chattermark due t o  t o o l  abras ion o r ,  more l i k e l y ,  

i n c i p i e n t  breakouts o f  the type repo r ted  by Plumb and Hickman (1985). 
I .  Harmonic Shading 

Shading, a tonal  gradat ion descr ibed by Clarke (19811, i s  pronounced on 
the te lev iewer  imagery o f  GT-2. Examples are shown i n  F igures 2, 3, 4, 6, 7, 
and 8. The e f f e c t  i s  v e r t i c a l  banding o f  the images i n t o  a l t e r n a t i n g  over-  
and underexposed s t r i p s .  I n  many places, the shading i s  r e c t i l i n e a r ,  t h a t  i s ,  

i n  s t r a i g h t  s t r i p s  running p a r a l l e l  o r  a t  low angle to the a x i s  o f  the w e l l -  

bore. The f i l m  dens i t y  v a r i e s  across- t rack as a harmonic f u n c t i o n  o f  azimuth, 

namely COS(Z*Azimuth), hence the name ''harmonic" shading. The major cause o f  

harmonic shading i s  probably n o n c i r c u l a r i  t y  o f  the we l l bo re  and o f f - c e n t e r i n g  

o f  the t o o l .  The angle o f  inc idence o f  the sonic r a y  w i t h  the wel lbore sur-  

face changes w i t h  azimuth i n  such a way as to form two reg ions o f  enhanced 

spec t ra l  r e f l e c t a n c e  (D.T. Georgi) .  
Useful geo log i ca l  i n fo rma t ion  can be obta ined on ly  i n  narrow s t r i p s  a t  

the passage from b r i g h t  to  dark where the exposure f a l l s  on the ramp i n  the 
c h a r a c t e r i s t i c  curve of the f i l m .  The i n s t a n t  f i l m  used f o r  f i e l d  reco rd ing  

has l i m i t e d  c o n t r a s t  range,  so t h e  e f f e c t  o f  shad ing  i s  seve re  l o s s  o f  
i n fo rma t ion .  

The s t r i p s  a re  r e c t i l i n e a r  above 4500 f t  depth, b u t  the p a t t e r n  degener- 

a tes to a s p i r a l  below t h a t  depth (F igu re  9 ) .  One explanat ion i s  t h a t  the 

wel lbore i s  shaped as a quadr ic  c y l i n d e r  above 4500 f t  b u t  i s  r i f l e d  below 
t h a t  depth. Other explanat ions are f a i l u r e  o f  the c e n t r a l i z e r s  o r  the magne- 

tometer below 4500 f t .  
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J.  Geometric Distortions __L 

1. Affine Distor t ions.  Scanner imagery, i n  cont ras t  to  photographic or 
RBV imagery, has d i s t o r t i o n s  t h a t  a r e  due to changes i n  tracking direct ion 
through a frame. Rotation of the scanner ax is  i s  a smaller problem for  the 
televiewer, b u t  accelerat ions i n  the tracking direct ion produce nonlinear 
e f f e c t s  t h a t  a r e  uncorrectable so long as the accelerat ions a r e  unknown. The 
project ive d i s t o r t i o n s  of s a t e l l i t e  imagery (Gosh 1972; Colvocoresses and 
McEwen 1973; Kratky 1974; and Wong 1975) have a counterpart  i n  televiewer 
imagery t h a t  is due to off-centering of the tool i n  an e l l i p t i c a l  borehole. 

2. Osci l la t ion Patterns.  A pat tern of f i n e  s t r i a t i o n s  appears on GT-2 
imagery. T h i s  pattern runs near-vertical ,  t h a t  i s ,  inclined from 0" to  15" 
w i t h  the along-track direct ion.  Along each scan l i n e ,  the pattern is formed 
by a l te rna t ion  of b r i g h t  and dark pixels .  Examples a re  shown i n  Figures 3 and 
8. Grain e f f e c t  i s  s t r i p i n g  a t  an angle to the scan l i n e s  t h a t  i s  coherent 
across a m i n u t e  or more of recording time, as shown i n  Figure 6. The cause i s  
unknown i n  s a t e l l i t e  RBV imagery, according to Clark (1981). 

The s t r i a t i o n s  were or ig ina l ly  thought to be caused by scratches on the 
s ide of the wellbore. However, they were found, d u r i n g  logging of EE-3A, to 
grade i n t o  the grain e f f e c t .  Comparing imagery w i t h  char t  records of the load 
on the cable allowed us to i d e n t i f y  mechanical o s c i l l a t i o n s  as  the cause of 
grain e f f e c t .  The transducer r o t a t e s  horizontally i n  the tool a t  a r a t e  of 
about 3 Hz, and a t  the same time the tool o s c i l l a t e s  v e r t i c a l l y  a t  a compar- 
able ra te .  When the r a t i o  of the two frequencies i s  a whole number, an upward 
excursion on one scan l i n e  i s  adjacent to  an upward excursion on the next scan 
l ine .  The two excursions a r e  then i n  phase, and the result looks l i k e  a s t r i a -  
t ion r u n n i n g  perpendicular to the scan l ines .  The angle departs from 90" a s  
the r a t i o  of the two frequencies departs from a whole number. The  pattern i s ,  
therefore ,  formed by a mechanism t h a t  resembles the Lissajous e f f e c t .  A pre- 
dominant factor  i n  the frequency of tool o s c i l l a t i o n  is the length of the log- 
g i n g  cable. In images obtained from shallow d e p t h  w i t h  shor t  cables, the fea- 
tures a r e  f ine  s t r i a e  a s  i n  GT-2. In images obtained from grea te r  depth w i t h  
longer cables,  the features  a r e  a coarse grain e f f e c t  a s  i n  EE-3A. 
K. Other Image Ar t i fac ts  

Televiewer imagery has recording a r t i f a c t s  i n  common w i t h  RBV imagery 
(Clark 1981). These include repe t i t ion  and omission of scan l i n e s  and l i n e  
dropouts between frames, as shown i n  Figure 6 .  Repetition of scan l i n e s  i s  

17 



due to reco rd ing  w h i l e  the t o o l  i s  s t a t i o n a r y .  Omission o f  a l t e r n a t e  Scan 
l i n e s  i n  some frames may be due to t r i g g e r  f a i l u r e s .  Omission o f  scan l i n e s  

between frames i s  due to manual f i l m  changing. The whi te  ( a d d i t i v e )  no ise 
l e v e l  i s  high, increases downhole, and i s  probably the rma l l y  induced e lec -  

t r o n i c  noise. The most impor tan t  e f f e c t  i s  harmonic shading a t t r i b u t e d  t o  
ho le e l l i p t i c i t y  or  t o o l  o f f - cen te r ing .  This  degenerates t o  a s p i r a l  below 

4500 ft, p o s s i b l y  due to thermal f a i l u r e  o f  mechanical c e n t r a l i z e r s .  
Televiewer imagery has geometric d i s t o r t i o n s  i n  common w i t h  MSSs on s a t e l -  

l i t e  or  a i r c r a f t  p la t fo rms .  These d i s t o r t i o n s  i nc lude  o s c i l l a t i o n  p a t t e r n s  

such as s t r i a e ,  s t r i p i n g ,  and g r a i n  e f f e c t  due t o  l o n g i t u d i n a l  o s c i l l a t i o n s  o f  
the t o o l .  Geometric e r r o r s  t h a t  a re  impor tan t  i n  a i r c r a f t  systems, such as 
misal ignments o f  the CRT d i s p l a y  and the reco rd ing  camera, nonperpendicular 

arrangement o f  the r o t a t i o n  a x i s  o f  the scanner to the instantaneous f i e l d  of 
view, and inaccurac ies i n  cen te r ing  and a1 ignment o f  the scanner (Masry and 

Gibbon 1973), are i n s i g n i f i c a n t  f o r  the te lev iewer .  
L. Overa l l  Image Q u a l i t y  

Compared w i t h  the r e s u l t s  obta ined from s a t e l l i t e  scanners using modern 
d i g i t a l  reco rd ing  and playback systems, the q u a l i t y  o f  GT-2 te lev iewer  imagery 

i s  g ross l y  i n f e r i o r .  Due t o  severe harmonic shading, l e s s  than 5% o f  the 
record i s  i n  usable c o n t r a s t  range. The images had n o t  been analyzed p r e v i -  

ous l y  on t h a t  account, b u t  they were preserved a g a i n s t  the p o s s i b i l i t y  o f  a 
fea tu re  e x t r a c t i o n  system being developed. The task i s  poss ib le ,  a1 though 

d i f f i c u l t ,  us ing methods descr ibed here, where the harmonic shading i s  r e c t i -  

l i n e a r ,  as i n  F igu re  8. Where there i s  a s p i r a l  shading pa t te rn ,  as i n  F igure 

9, the task i s  extremely d i f f i c u l t  and w i l l  r e q u i r e  a more e labo ra te  i n t e r p r e -  

t a t i o n  method. These i n v e s t i g a t i o n s  have determined the nature o f  the ad- 

vanced i n t e r p r e t a t i o n  methods t h a t  a re  requi red.  Because o f  the many s imul -  

taneous f a c t o r s  involved, the method w i l l  p o s t u l a t e  a ho le shape, t o o l  l oca -  

t i o n ,  sonic v e l o c i t y  and type, l o c a t i o n ,  and o r i e n t a t i o n  o f  n a t u r a l  f ea tu res  
on the we l l bo re  surface. The p o s t u l a t i o n s  w i l l  'be v e r i f i e d  by comparing a 

s imu la t i on  o f  t h e i r  e f f e c t  on the image w i t h  the e f f e c t s  observed on the 

image. The i m p l i c a t i o n  i s  t h a t  the process o f  image format ion i s  too complex 

to be d i r e c t l y  i n v e r t e d  except i n  the specia l  case o f  a centered, v e r t i c a l  

t o o l  i n  a c i r c u l a r ,  v e r t i c a l  wel lbore.  

18 



V .  FEATURE EXTRACTION 

A. General Description 
In modern d i g i t a l  systems, the raw imagery i s  processed to  remove a r t i -  

f a c t s  and increase the signal-to-noise r a t i o  by scan-line equal izat ion,  den- 
S i  t y  smoothing, cont ras t  enhancement, and other procedures t h a t  u t i 1  i z e  redun- 
dant information. Feature extract ion is  then performed d i g i t a l l y  u s i n g  var i -  
ous pattern-recogni t ion algorithms. However, i n  this case d i g i t a l  imagery was 
not avai lable ,  so manual methods were used. 

The feature-extraction method comprised human perception of fea tures ,  
manual annotation, d i g i t i z a t i o n  of the annotations u s i n g  a pencil-type l i n e  
follower, and acceptance or re jec t ion  of each annotation depending upon a sim- 
ple pattern-recogni tion procedure. The method was applied in te rac t ive ly  w i t h  
a desk top microcomputer . 
B .  Flowsheet 

T h e  feature  extract ion subsystem is  i l l u s t r a t e d  i n  Figure 11. T h i s  flow- 
path is designed for  in te rac t ive  operation, keyed by in te r rupts .  There i s ,  
t h e r e f o r e ,  no p r e s c r i b e d  o r d e r  o f  program e x e c u t i o n .  The fo l lowing  i s  
typical .  

1. Registration. (1) F i n d  the t o p  and bottom coordinates of the image, 
i n  d e p t h  downhole, measured along the d r i l l  string. ( 2 )  Interrogate the 
wellbore survey to f i n d  the nearest  two survey points t h a t  bracket the image. 
For these two, carry forward the depths  downhole, absolute locat ions,  and ab- 
solute  o r i en ta t ions  of t h e  wellbore axis .  ( 3 )  Digit ize  the fou r  f i d u c i a l  

marks of the image and f i n d  the r e g i s t r a t i o n  matrix, M. 
2. Feature Extraction. ( 4 )  Selec t  a s t ruc tura l  t race.  ( 5 )  Dig i t ize  L 

points on the t race (L  is  generally between 10 and 30) and convert to coordin- 
a t e s  (depth downhole, magnetic azimuth) by premultiplication by M .  (6) Deter- 
mine Fourier coef f ic ien ts  of the trace.  Compare the f i t t e d  function w i t h  
actual measurements to determine goodness of f i t .  I f  the goodness of f i t  i s  
too large, r e j e c t  the t race ,  record the s t a t i s t i c s  of the rejected t race ,  and 
return to step . ( 4 ) ;  otherwise, continue. ( 7 )  Record the s t a t i s t i c s  of the 

accepted t race and carry forward the Fourier coef f ic ien ts .  
3 .  Location. (8 )  Using the constant Fourier term from ( 7 )  and depths 

downhole and absolute locations of the nearest  survey points from ( 2 1 ,  i n t e r -  
polate to f i n d  the d e p t h  downhole and absolute location of the t race.  
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Figure 11. Feature extract ion procedure: schematic flowsheet. 

20 



4. Orientation. ( 9 )  Using depth of the s t ruc ture  froin (8)  and depths 
and absolute or ien ta t ions  o f  the nearest  survey points from (21, in te rpola te  
t o  f i n d  the  o r i e n t a t i o n  of the d r i l l  hole  a t  the t r a c e .  ( 1 0 )  U s i n g  the  
Fourier phase and amplitude of the t race from ( 7 ) ,  average hole diameter from 
a cal iper  log for  this  d e p t h  and d r i l l  hole or ientat ion from (91 ,  f i n d  the 
absolute or ientat ion of the s t ruc ture .  

5. Continuation. (11) If  a l l  t races  on the image a r e  not processed, 
return to s tep ( 4 ) .  ( 1 2 )  If a l l  images a r e  not processed, return to s tep (1) .  
C. Image Registration 

Where reseau marks a r e  spaced across a scanner image, a s  i n  RBV imagery, 
position on a scanner image may be determined by nonlinear "mapping poly- 
nomials" such as  those described by Bernstein and Silverman (1971)  and by 

Masry and Gibbon (1973).  There a re  no r6seau marks on televiewer imagery, so 
we use as r e g i s t r a t i o n  points a set  of n points chosen a t  the beginning and 

m u t h  i n  degrees e a s t  of mag- 
The i t h  point  on the image 

the form -1 z- = [ x i ,  y i ,  l ] ' ,  
where I denotes transpose. The r e g i s t r a t i o n  points can then be arranged a s  
columns of the 3 x n matrix Z ,  where 

Z = 0 360 0 360 

y 1  y 1  y2  y2 
1 1 1 1 

end o f  scan l i n e s  on a frame. Let x 
net ic  north and y be the depth downho 
is assigned to  a homogeneous column 

9 

be the az 
e i n  f e e t .  
vector of 

For example, i f  the two ends o f  t h e  f i r s t  and l a s t  scan l i n e s  a r e  used, n = 4 
and 
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where y1 i s  the depth o f  the f i r s t  scan l i n e  on the frame and y2 i s  the depth 

o f  the l a s t  scan l i n e ,  i n  f e e t .  Corresponding to the n f i d u c i a l  po in ts ,  l e t  

c [a, , bl ,11' be the homogeneous coord inates o f  the same p o i n t s  as meas- -1 
ured w i t h  a c h a r t  d i g i t i z e r .  These can be arranged columnwise i n  a m a t r i x  C. 

I f  M i s  then the r e g i s t r a t i o n  mat r ix ,  o r  t rans format ion  from c h a r t  coord i -  
nates to image coord inates,  and "*" denotes row-col umn m a t r i x  mu1 t i p l i c a t i o n ,  

then 

= 

Z = M*C . 

To r e g i s t e r  the image i s  to f i n d  the p r o j e c t i v e  t rans format ion  M. One 
very s imple method i s  to use three r e g i s t r a t i o n  po in ts ,  such as the beginning 

o f  the f i r s t  scan l i n e  and the beginning and end o f  t h e A l a s t  scan l i n e  i n  the 
frame. Then n = 3, C and Z a re  square, and an est imate M o f  M i s  

A 

M = C - l * Z  . 

For o ther  values o f  n, C and Z a re  n o t  square and the maximum-likelihood e s t i -  
mator o f  M i s  the minimum-norm least-squares es t imator  r̂ l, where 

A 

M = cc ' * c l - l *~c ' * z I  ( 3 )  

-1 I n  t h i s  Equation, denotes the l - i nve rse  (Rao and M i t r a  1971, p. 50; Noble 

1976 1. 
Numerical e r r o r s  can be reduced by t r a n s l a t i n g  t o  the mean and s c a l i n g  t o  

the var iance be fore  i n v e r s i o n  ( t h e  so-ca l led Z-transform).  The r e g i s t r a t i o n  
m a t r i x  found by these methods i s  a l i n e a r  p r o j e c t i v i t y  con ta in ing  a s i m i l a r i t y  

(sca le  change), r o t a t i o n  and t r a n s l a t i o n  ( r i g i d  mot ion) ,  a f f i n e  t rans format ion  
( l i n e a r  d i s t o r t i o n ) ,  and p r o j e c t i v i t y  (Gans 1969, p. 177). The p r o j e c t i v i  t y  

22 



h 

i s  the bottom row o f  M ,  and i t  shou 
i n g  proper ly ;  t h a t  i s ,  the bottom 

t rans format ion  from c h a r t  d i g i t i z e r  
then g iven by - z = M*c. - This i s  

d be n e g l i g i b l e  f o r  an ins t rument  func t i on -  
row o f  M should be near [O,  0, 11. The 

coord inates c to we l lbore  coord inates - z i s  

a p r o j e c t i v e  t rans format ion  i n  homogeneous 

n 

coord inates so tha t ,  conver t ing  t o  r e a l  space and nonhomogeneous coord inates,  
the r e s u l t i n g  azimuth i s  ~ 1 / ~ 3  degrees eas t  o f  no r th ,  and the r e s u l t i n g  depth 

i s  z2/z3 f t  downhole. 

D. Anno t a  ti on Method 

Annotat ion was done on Xerox copies i n  order  t o  preserve the o r i g i n a l  
Po la ro id  p r i n t s .  S t ruc tu res  were o f  two types, d i s c r e t e  and d i f f u s e .  U i S -  

Crete s t ruc tu res  appeared on the image as a connected l i n e a r  t race  o f  low 
r e f l e c t i v i t y .  Annotat ion cons is ted  o f  de tec t i ng  and marking the t race  as a 

s i n g l e  l i n e  (F igure  12a). 
Di f fuse s t r u c t u r e s  appeared on imagery as f i e l d s  o f  f i n e ,  para1 l e 1  b r i g h t  

f r i n g e s  or  l i n e s .  Annotat ion cons is ted  o f  f i t t i n g  a vec tor  t rend (Agterberg 
1974, p .  494) o r  s t reaml ine,  t o  which the f r i n g e s  were tangen t ia l  (F igu re  

12b). I n  the l a t t e r  method the operator  guessed a s t reaml ine  and d i g i t i z e d  
it, and then the computer drew a b e s t - f i t  curve t o  it. I f  the computer r e -  

j ec ted  the curve, the opera tor  used the l a s t  computer-drawn curve as a guide 
t o  improving the s t reaml ine.  I f, a f t e r  several  at tempts,  the computer s t i l l  

r e j e c t e d  the s t reaml ine,  the a t tempt  to fit one was abandoned. The computer 
r e j e c t e d  46% o f  a l l  at tempts.  The r a t e  o f  annota t ion  va r ied  between 160 and 

320 f t  (depth downhole) per day, w i t h  the h igher  r a t e  d i f f i c u l t  t o  sus ta in .  
E. S t r u c t u r a l  Trace in Image Coordinates 

The o r i e n t a t i o n  o f  a plane d i s c r e t e  s t r u c t u r e  i s  de f ined by the o r i e n t a -  

t i o n  vec tor  p, which p o i n t s  normal to the plane, p o s i t i v e  down (F igure  13). 

The o r i e n t a t i o n  o f  the d r i l l  ho le  i s  def ined by the vec tor  - h, which p o i n t s  
down the a x i s  of the hole.  The t race  o f  the s t r u c t u r e  on the w a l l  o f  a c i r c u -  

l a r  d r i l l  ho le  i s  an e l l i p s e  i n  the p lane e (Goodman 1976, p. 143) w i t h  axes - s 

= - h x p and t = p x 5, where x denotes the vec tor  crossproduct.  The 

r o t a r y  te lev iewer  descr ibes scan l i n e s  normal to - h w i t h  a re fe rence a t  the 
p o i n t  where each scan l i n e  crosses the magnetic mer id ian.  I n  the r e s u l t a n t  

image (F igure  14) the l i n e s  y = cons tan t  a re  scan l i n e s ,  and the p o i n t s  x = 0 

i n  each scan l i n e  are the mer id ian  c ross ing  p o i n t s .  The l i n e s  x = cons tan t  

are generators t h a t  run  p a r a l l e l  to the a x i s  o f  the borehole. 

n c .  

n h  
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F igu re  12. Schematic appearance o f  (a)  d i s c r e t e  elements and ( b )  d i f f u s e  
f o l i a t i o n  on te lev iewer  imagery. 

F igure 13. Perspect ive view o f  a s t r u c t u r e  i n t e r s e c t i n g  a wel lbore.  Two 
d i r e c t i o n  vec to rs  a re  2, normal to the s t r u c t u r e ,  and h, the a x i s  o f  the bore- 
hole. The i n t e r s e c t i o n  o f  planes normal t o  E and h 5 a space curve. For a 
plane s t r u c t u r e ,  centered te lev iewer ,  and circular-we1 lbo re ,  the space curve 
reduces to an e l l i p s e  w i t h  semiaxes - s and - t, where - -  s = h x 2, - t = e x - s .  
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A z i m u t h  

Figure 14. Appearance of a s t ruc tura l  t race on a televiewer image. T h i s  i s  
the projection of the e l l i p s e  curve onto the sensor. Scan lines a r e  y = con- 
s t a n t ,  0 < x < 360". Generators of the wellbore a r e  x = constant,  0 < y. The 
locus of n e  zagnet ic  meridian on the scan lines is  the scan-line t r igger ,  x = 
0. T h e  projection o f  t h e  right-handed strike direct ion is  (x3 ,y3 ) .  The  pro- 
ject ion of the d i p  direct ion i s  (x4y2) .  Points - s and t a r e  projections of 
or ien ta t ions  shown i n  Figure 4. 

A plane d i s c r e t e  s t ruc ture  appears on t h e  televiewer image a s  a harmonic 
t r a c e .  T h e  p r o j e c t i o n  (from F i g u r e  13 t o  Figure 14)  i s  g i v e n  by t h e  
following: 

(1) - t, the a l t i t u d e ,  corresponds to [x4,y21; 
( 2 )  for  a televiewer ro ta t ing  clockwise, the projection of - s on the 

image is  the descending node, corresponding to  [x3,y3]. 

F. - Analytical Geometry o f  Structural  Trace 
Figure 15 i s  a view i n  the plane o f  the scanner o f  an e l l i p t i c a l  borehole 

w i t h  semidiameters a,b centered a t  1. T h e  long semidiameter is inclined a t  8 
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F igu re  15. Trace geometry f o r  an e l l i p t i c a l  borehole w i t h  an o f f - cen te red  
t e l  ev iewer . 

r = a +  cos e - s i n  e 0 
s i n  0 COS e 0 

0 0 1 

- 

t o  the X - d i r e c t i o n  ( e a s t ) .  The te lev iewer  i s  l oca ted  a t  (0,O); the center o f  

the borehole a t  5. The Y - d i r e c t i o n  ( n o r t h )  i s  t r i g g e r e d  by the magnetometer. 

The r a d i u s  vector  - r t o  the surface o f  the borehole i s  

a cos Q 

b s i n  Q 

0 

( 4 )  

The p o s i t i o n  vector  E t o  a plane through 9 w i t h  normal - n i s  given by - p 

-9)'" = 0. The i n t e r s e c t i o n  of the s t r u c t u r a l  plane and the w a l l  o f  the bore- 

ho le i s  - r = e o r  
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We now assume t h a t  the borehole i s  a r i g h t  c i r c u l a r  c y l i n d e r  w i t h  zero 

e l l i p t i c i t y  and t h a t  the te lev iewer  i s  centered. a = b, 

e = 0. Then Equat ions ( 4 )  and ( 5 )  y i e l d  the t race  i n  F igure  14, where y i s  

the a l t i t u d e ,  as 

Set q = [O,O,yol, 

S { C O S  X . }  S { s i n  x . }  1 
1 

L 
S{cos xi} S{cos xi cos x . }  1 S{cos xi s i n  xi} 

S f s i n  xi) S j s i n  xi cos x . }  1 S { s i n  xi s i n  xi} 

Th is  Four ie r  se r ies  may be w r i t t e n  

* c = S { Y i }  

A S { Y .  1 cos Xi} 

8 S { y .  1 s i n  xi} , 

Y = C  + A c o s @ + B s i n 4  . ( 7 )  

S imulat ions us ing Equat ions ( 4 )  and ( 5 )  produced t race  shapes such as a re  

found on the imagery so t h a t  the assumptions i n  the d e r i v a t i o n  o f  Equat ion (6) 
do n o t  genera l l y  apply.  However, because o f  o f f - c e n t e r i n g  and e l l i p t i c i t y ,  

the parameters i n  Equat ion ( 2 )  cannot be r e l i a b l y  est imated i f  the s t r u c t u r e s  

a re  nonplane, so the t races were f i t t e d  by Equat ion ( 6 ) .  
G. Es t imat ion  o f  C o e f f i c i e n t s  

Fo r  a d i s c r e t e  s e r i e s  o f  o b s e r v a t i o n s ,  [xi,yi; i = 1,2,  ... L], t h e  

Four ie r  c o e f f i c i e n t s  C, A, and 6 i n  Equat ion ( 7 )  a r e  found (Davis 1973, P. 

265)  as the s o l u t i o n  t o  the s e t  o f  l i n e a r  Equat ions:  

where S I )  i s  summation ove r  i f rom 1 t o  L.  T h i s  may be s o l v e d  by t h e  
minimum-norm least -squares method descr ibed prev ious ly .  
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H. Pat te rn  D i s c r i m i n a t i o n  
If ei, e2, ..., ef  a re  independent and i d e n t i c a l l y  d i s t r i b u t e d  random v a r i -  

ables,  each f o l l o w i n g  a Normal d i s t r i b u t i o n  w i t h  zero mean and u n i t  var iance, 

+ e f  f o l l ows  a chi-square d i s t r i b u t i o n  then X' = el + e2 + e3 ... 
w i t h  f degrees o f  freedom. I f  we l e t  the ei be the d i f f e r e n c e s  i n  depth be- 
tween p o i n t s  observed on the ac tua l  t race  and the corresponding p o i n t s  on the 

2 
b e s t - f i t  t race  and assume t h a t  these e r r o r s  a re  Normally d i s t r i b u t e d ,  then X 
can be used t o  t e s t  the p r o b a b i l i t y  o f  a good f i t .  

f o r  a s t r u c t u r a l  t race  i s  X : 

2 2 2 2 

For a centered te lev iewer  i n  a c i r c u l a r  hole, the chi-square s t a t i s t i c  
2 

2 x2  = S{(Yi - C - A cos xi - B s i n  xi) / ( C  + A cos xi + B s i n  xi)} , (3 )  

where SI} i s  summation over i from 1 t o  L. The chi-square t e s t  i s  then ap- 

p l i e d  as f o l l o w s  (Maise l  1971, p. 137; P a r r a t t  1961, p. 184): 

2 (1 )  Est imate X accord ing t o  Equat ion ( 9 ) .  

( 2 )  Set  f = L - 3 ( t h r e e  Four ie r  c o e f f i c i e n t s  est imated) .  
( 3 )  Set  q = 0.05 (95% p r o b a b i l i t y ) .  

( 4 )  F ind  u = i n v c h i ( q ) :  t h i s  i s  the value o f  X 2  t h a t  i s  exceeded w i t h  

p r o b a b i l i t y  q f o r  f degrees o f  freedom. 
2 

2 
( 5 )  I f  X > u, r e j e c t  the t race.  

I f  X - < u, accept  the t race .  

An a l g o r i t h m  f o r  eva lua t i ng  i n v c h i  i s  g iven i n  the f o l l o w i n g  sect ion.  

Examples o f  s t r u c t u r a l  t races  found by these methods are  i l l u s t r a t e d  i n  F igure  
16. These are  computer recons t ruc t i ons  o f  t races  t h a t  passed the p a t t e r n  d i s -  

c r i  m i  na t o r .  

I .  
The chi-square p r o b a b i l i t y  dens i t y  f u n c t i o n  i s  c ( x ; f ) ,  where x i s  loca-  

t i o n  on the p o s i t i v e  r e a l  l i n e ,  0 < x, and f i s  the ( i n t e g r a l )  number o f  

degrees o f  freedom, 0 < f. 

Numerical Es t imat ion  o f  I nvch i  I__ 

The dens i t y  (Zelen and Severo 1964) i s  
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t r a c e s  t r a c e s  
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F igure  16. Televiewer l o g s  f o r  EE-3A showing s t r u c t u r a l  t races .  

c ( x ; f )  = (ZG(f/2))-l (x/Z)(g/‘)-’ exp -x/2 . 

The chi-square cumulat ive o r  frequency f u n c t i o n  i s  C(u; f ) ,  where 

C(u;f )  = S {c (x ; f ) }dx  = I ( f /Z ,q /Z ) /G( f /Z )  (10) 
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The term S{}dx i s  i n t e g r a t i o n  over x from 0 t o  u; I i s  the incomplete gamma 

func t i on  (Tr icomi  1953); and G i s  the elementary gamna func t i on .  

Where q i s  a g iven p r o b a b i l i t y ,  the frequency f u n c t i o n  i n  Equat ion (10) 
i s  q = C(u;f) .  Th is  may be regarded as an opera t ion  C on u to g i ve  q; thus q 

= CCUI .  The inverse  may be found by 

tak ing  advantage of the f a c t  t h a t  C(u;f) tends t o  a Normal d i s t r i b u t i o n  as f 

tends t o  i n f i n i t y .  S p e c i f i c a l l y ,  f o r  f > 30 (Bury 1975, p. 2481, 

The inverse  opera t ion  i s  u = C-l[ql. 

T h a t  i s ,  t h e  v a r i a b l e  ( x / f )  1/3 i s  a s y m p t o t i c a l l y  Normal w i t h  mean 

Thus, g iven  q, we d e f i n e  the 

(1) v = i n v e r f ( 1  - q) ,  where v i s  l o c a t i o n  i n  the standard Normal d i s -  

tr i b u t i  on ; 

(2) u = fE1 - 2 / ( 9 f )  + v ( 2 / ( 9 f ) )  '/'I3, where u i s  the corresponding loca-  

t i o n  i n  the chi-square d i s t r i b u t i o n  (Zelen and Severo 1964, p. 941). 

1 -2 / (9 f )  and standard d e v i a t i o n  ( 2 / ( 9 f ) ) l / ' .  

inverse  f u n c t i o n  u = i n v c h i ( q )  as 

Computational a lgor i thms f o r  i n v c h i  and i n v e r f  a re  l i s t e d  below. 

A lgor i thm 1: i n v c h i  

i n p u t :  frequency q 
degrees o f  freedom f 

r e  t u r n  : l o c a t i o n  u 

s tep 1) f i n d  Normal l o c a t i o n :  
c a l l  i nve r f (1 -q ,  x )  

s tep 2) t ransfor in  t o  chi-square asymptot ic:  
t l  = 2 / ( 9 * f )  
t 2  = x*t1"0.5 
u = f * ( l - t l + t 2 ) ^ 3  

s tep 3 )  the procedure i s  complete. 
the r e t u r n  i s  u. 

A lgor i thm 2 :  i n v e r f  

inpu t :  frequency q 
r e t u r n :  l o c a t i o n  x 
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step 1) s e t  c o e f f i c i e n t s :  
p3 = 1.E-24 

c0 = 2.515517 
c l  = 0.802853 
c2 = 0.010328 
d l  = 1.432788 
d2 = 0.189269 
d3 = 0.001308 

q3 = -1 

step 3)  f i n d  ranges: 
( a )  q2 = q 

q2 = l - q  
q3 = 1 

( b )  i f  q2 > p3, go to s tep  (4 )  
q2 = p3 

t = l n ( l / ( q 2 * q 2 ) )  
t = tn0.5 
t l  = co + c l * t  + c2*tA2 
t 2  = d l * t  + d2*tA2 + d3*tn3 
x = t - t l / ( l  + t 2 )  
x = q 3 * x  

if q2 I 0.5, go t o  step (3b) 

s tep 4)  eva lua t ion :  

s tep 5)  the procedure i s  complete. 
the r e t u r n  i s  x. 

J .  Q u a l i t y  Cont ro l  

descr ibed i n  P a r t  3 o f  t h i s  r e p o r t .  

The accuracy and re1  i a b i  1 i t y  o f  fea tures  est imated by t h i s  procedure are  

K. Prospects f o r  Automatic Feature E x t r a c t i o n  

Human de tec t i on  fo l l owed  by a p a t t e r n  d i s c r i m i n a t o r  based on a chi-square 
t e s t  f o r  a harmonic t race  i s  poss ib le ,  as demonstrated by t h i s  r e p o r t ,  b u t  i s  

n o t  p r a c t i c a b l e  on a susta ined bas is .  A susta ined method needs to be auto-  

mat ic .  The tex tu res  are  s u f f i c i e n t l y  d i f f e r e n t  from each o the r  f o r  automat ic  

methods o f  f ea tu re  e x t r a c t i o n  t o  be poss ib le .  Ca lcu la t i on  o f  phys ica l  param- 
e t e r s  o f  the ob jec ts  appears poss ib le  i f  the te lev iewer  i s  run  s imul taneously  

i n  i n t e n s i t y  mode and c a l i p e r  mode and i s  exper imenta l l y  c a l i b r a t e d  a g a i n s t  
ob jec ts  o f  i n t e r e s t .  

The p a t t e r n  d i s c r i m i n a t o r  o f  Sect ion V.H. d i d  n o t  appear t o  be c o n s i s t e n t  

f o r  the f o l i a t i o n s .  This  i s  because f o l i a t i o n s  are  nondiscrete elements and 

the observer, i n  d i s c r e t i z i n g  them, i s  f i t t i n g  a vec to r  t rend  through a f i e l d  

o f  tangents (Agterberg 1974, p .  4941, so a t e s t  f o r  a cont inuous l i n e a r  t r a c e  

does n o t  match the types o f  e r r o r s  l i k e l y  t o  be generated. While t h i s  method 
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is probably sa t i s fac tory  for  f rac tures ,  d i f f e r e n t  pattern-recognition proce- 
dures will be required for  automatic extract ion of f o l i a t i o n s .  

Because of the many simultaneous fac tors  involved i n  the formation of a 
televiewer image, the image i s  too complex to be d i r e c t l y  inverted except i n  
the special case of a centered, ver t ica l  tool i n  a c i r c u l a r ,  ver t ica l  well- 
bore. Interpretat ion of the imagery is  not simply a matter of w r i t i n g  an elec- 
t ronic  scanner record to film and then i d e n t i f y i n g  features  by simple visual 
inspection of the image. I t  is necessary to model the imaging fea tures  and 
compare the model w i t h  the actual image i n  order to obtain a posi t ive ident i -  
f ica t ion  of natural features  or a r t i f a c t s .  Factors t o  take into account a r e  
hole shape, tool location i n  the hole, transducer c h a r a c t e r i s t i c s ,  sonic veloc- 
i t y  i n  wellbore f l u i d ,  and wellbore surface roughness as  well a s  the type ,  
location, and or ientat ion of natural features  on the wellbore surface. 
Effects to be considered include harmonic shading, mechanical o s c i l l a t i o n s ,  
and a host of e f f e c t s  such as  absorption, re f lec t ion ,  and d i f f rac t ion  f o r  
specified natural objects .  

VI. CONCLUSIONS 

A. Image Qual i ty  
The televiewer imagery of GT-2 i s  o f  grossly i n f e r i o r  qual i ty .  Due to  

severe harmonic shading, l e s s  than 5% of the record is i n  usable cont ras t  
range. Digital recording and playback a r e  essent ia l  i n  order to produce 
images of s u f f i c i e n t  qual i ty  for  sa t i s fac tory  feature  extract ion.  
6. Feature Extraction 

Ar t i fac ts  a r e  fea tures  on the imagery t h a t  do not correspond to phys i -  

cal ly  real objects on the wellbore. Ar t i fac ts  recorded on televiewer imagery 
a r e  s imilar  to those found on R B V ,  MSS, and other e lec t ronic  systems and 
include repe t i t ion  and omission of scan lines w i t h i n  frames and dropouts be- 
tween frames. Recording noise is  white (addi t ive)  noise on the imagery t h a t  
increases downhole and is  probably thermally induced e lec t ronic  noise. 

Geometric a r t i f a c t s  a r e  fea tures  on the imagery due to  changes i n  track- 
i n g  direct ion through a frame. The  transformation between the scanning spot  
on the ground and the image-writing spot on the image is  not a simple similar-  
i ty transformation. Televiewer imagery has geometric d i s t o r t i o n s  i n  common 
w i t h  RBV imagery and w i t h  MSSs on s a t e l l i t e  or a i r c r a f t  platforms. Linear 
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t ransformat ions t h a t  a re  impor tan t  i n  a i r c r a f t  systems, such as misal ignments 
o f  the CRT and reco rd ing  camera, nonperpendicular arrangement o f  the r o t a t i o n  

a x i s  o f  the scanner to the instantaneous f i e l d  o f  view, and inaccurac ies i n  
cen te r ing  and a l ignment  o f  the scanner, a re  n o t  impor tan t  f o r  the te lev iewer .  

However, non l i nea r  t ransformat ions,  such as those causing o s c i l l a t i o n  pat -  
terns,  a re  impor tan t  to fea tu re  recogn i t i on .  O s c i l l a t i o n  p a t t e r n s  c o n s i s t  o f  

s t r i a e  and g r a i n  e f f e c t .  Grain e f f e c t  i s  a coarse, d iscont inuous s t reak iness,  
running a t  an ob l i que  angle to the we l l bo re  ax i s ,  t h a t  i s  a lmost  c e r t a i n l y  due 

to t o o l  o s c i l l a t i o n s .  The slope o f  the s t reaks on the image i s  a f u n c t i o n  of 
the r a t i o  between the frequency o f  transducer r o t a t i o n  and the frequency o f  

l o n g i t u d i n a l  o s c i l l a t i o n  o f  the t o o l  suspension assembly. A s i m i l a r  a r t i f a c t  
occurs on s a t e l l i t e  RBV imagery, cause unknown, b u t  i n  view o f  t e lev iewer  ob- 

servat ions,  the cause may be spacec ra f t  v i b r a t i o n s .  The f i n e  s t r i a e  run  near- 
v e r t i c a l ,  t h a t  i s ,  c lose to the a long- t rack d i r e c t i o n .  They f i r s t  appeared t o  

be abrasion scratches on the wel lbore,  b u t  i n  imagery from EE-3A, they appear 

to grade i n t o  g r a i n  e f f e c t ,  so they may have a s i m i l a r  cause. The i r  azimuth 

v a r i e s  w i t h  depth as piecewise-damped s inuso ida l  and exponent ia l  f unc t i ons ,  
suggesting a r e l a t i o n  to damped l o n g i t u d i n a l  o s c i l l a t i o n s  o f  the t o o l .  

Harmonic shading i s  a tonal  g rada t ion  t h a t  d i v i d e s  the image i n t o  a l t e r -  
n a t i n g  over-  and underexposed v e r t i c a l  s t r i p s .  F i l m  dens i t y  v a r i e s  across- 

t rack  as a harmonic f u n c t i o n  o f  azimuth. The s imp les t  case i s  where d e n s i t y  
va r ies  as COS(Z*Azimuth). Mechanisms t h a t  have been considered inc luded  path 

a t t e n u a t i o n  and system aber ra t i ons ,  b u t  the e f f e c t  can be expla ined as due t o  
specular r e f l e c t i o n  f o l l o w i n g  S n e l l ' s  Law i n  a misa l igned m i r r o r .  The e f f e c t  

i s  then due to an o f f - cen te red  t o o l  i n  an e l l i p t i c a l  ( n o n c i r c u l a r )  wel lbore.  
I t  degenera tes  t o  a s p i r a l  be low 4500 f t ,  e i t h e r  due t o  o f f - c e n t e r i n g ,  

poss ib l y  r e s u l t i n g  from thermal f a i l u r e  o f  mechanical c e n t r a l i z e r s ,  o r  due t o  
change o f  ho le shape from a quadr ic  to a r i f l e d  c y l i n d e r .  

Natura l  f ea tu res  on the imagery i nc lude  geo log ica l  s t r u c t u r e s  and o t h e r  
p h y s i c a l l y  r e a l  o b j e c t s  on the sur face o f  the we l l bo re  such as vughs, chips,  

and breakouts. Geological  s t r u c t u r e s  i nc lude  induced f r a c t u r e s ,  n a t u r a l  
j o i n t s ,  f a u l t s ,  cleavages, f o l i a t i o n s ,  and bedding. 

Fractures and j o i n t s  a r e  u s u a l l y  open to the we l l bo re  w i t h  aper tures 

ranging from h a i r 1  i n e  cracks to several  - m i l  l imeters-wide cracks. The charac- 

t e r i s t i c  t e x t u r e  i s  a dark, d i s c r e t e  l i n e a r  fea tu re :  a f i n i t e  connected ob- 
j e c t  w i t h  c o n n e c t i v i t y  o f  one. Fractures are v i s i b l e  a t  a f r a c t i o n  o f  the 
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IFOV, a dimension t h a t  i s  s u b s t a n t i a l l y  below N A S A ' s  t h e o r e t i c a l  l i m i t .  The 

reason f o r  t h i s  anomalous r e s u l t  i s  probably  razor-b lade o r  wave-guide 
absorpt ion.  

F o l i a t i o n  i n  gneiss comprises d i s c r e t e  f o l i a t i o n s  such as gra ins ,  

f o l i a ,  and bands, w i t h  mean spacings o f  3, 10, and 30 mm, respec t i ve l y ,  as 
w e l l  as d i f f u s e  f o l i a t i o n s  such as p re fe r red  o r i e n t a t i o n  o f  g ra ins  o r  g r a i n  

boundaries. 

D isc re te  f o l i a t i o n s  are  detected because the c o e f f i c i e n t  o f  r e f l e c t a n c e  

va r ies  between ad jacent  f o l i a .  The most impor tan t  parameter i s  probably b u l k  

modulus: rep resen ta t i ve  r a t i o s  a re  fe ldspar :  mica: quar tz  = 1.55:1.18:1, 
making f o l i a t i o n  a low-cont ras t  t a r g e t  on t e l e v i s i o n  c r i t e r i a .  Thick minera l  

bands are  expressed as reg ions  o f  d i f f e r e n t  f i r s t -  and second-order t e x t u r a l  
s t a t i s t i c s .  Thin minera l  bands a re  expressed on the imagery as s t r i p s  o f  d i f -  

f e r e n t  dens i ty .  The image fea tures  correspond to r e a l  ob jec ts  and the IFOV 
g r i d  ac ts  as s imply a low-pass f i l t e r .  

D i f f u s e  f o l i a t i o n s  are  f i e l d s  o f  e longated gra ins ,  w i t h  a r a t i o  o f  spa- 
t i a l  f requencies i n  two perpendicu lar  d i r e c t i o n s  o f  about 0.3:0.2 mn-'. We 

have detected f o l i a t i o n  on imagery from GT-2 and E€-3A from the USGS i n t e n s i t y -  
mode imagery. However, i t  has n o t  been detected on intensi ty-mode imagery 

made w i t h  o ther  inst ruments.  

The t e x t u r a l  s t a t i s t i c s  of the d i f f u s e  tex tu re  have n o t  been quan t i f i ed .  

They have been descr ibed as a p a t t e r n  o f  p a r a l l e l  b r i g h t  l i n e a r s  o f  h igh  spa- 
t i a l  frequency and a l s o  as an e igenfeature.  The causes o f  t h i s  tex tu re  a r e  

unknown. P o s s i b i l i t i e s  i nc lude  spur ious reso lu t i on ,  edge d i f f r a c t i o n ,  and a 
phase g ra t i ng .  

Not knowing the s p e c i f i c  mechanisms respons ib le  f o r  the d i f f u s e  tex tu re ,  
we cannot know whether the correspondence between geo log ica l  ob jec ts  on the 

we l lbore  and t e x t u r a l  fea tures  on the image i s  one-to-one o r  many-to-one, t h a t  
i s ,  whether the fea tu res  are  r e a l  ob jec ts  o r  rainbows. 

Breakouts i n  GT-2 a r e  small t r i a n g u l a r  wedges a t  i n t e r v a l s  a long the 

t race  o f  f r a c t u r e s  and t h i n ,  dark micaceous seams. These may be ch ips o r  

chattermark due to t o o l  abras ion o r  i n c i p i e n t  breakouts due t o  s t ress  
corros ion.  

C. Automatic Feature E x t r a c t i o n  
Because o f  the many simultaneous fac to rs  i nvo l ved  i n  the fo rmat ion  o f  a 

te lev iewer  image, advanced i n t e r p r e t a t i o n  methods are  requ i red .  A conclus ion 
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of t h i s  study i s  t h a t  the process o f  image format ion i s  too complex t o  be 

d i r e c t l y  i n v e r t e d  except i n  the specia l  case o f  a centered, v e r t i c a l  t o o l  i n  a 
c i r c u l a r ,  v e r t i c a l  wel lbore.  I n  o the r  cases the imagery i s  n o t  comprehens- 

i b l e ;  t h a t  i s ,  many fea tu res  cannot be p o s i t i v e l y  i d e n t i f i e d  because a l a r g e  
number of c o n t r i b u t o r y  f a c t o r s  may be involved.  I n t e r p r e t a t i o n  o f  t e lev iewer  

imagery i s  n o t  s imply a ma t te r  o f  w r i t i n g  an e l e c t r o n i c  scanner reco rd  to f i l m  

and then i d e n t i f y i n g  fea tu res  by simple v i s u a l  i n s p e c t i o n  o f  the image. I n -  

stead, i t  i s  necessary t o  c o n s t r u c t  a model o r  numerical s imu la t i on  of the 
imaging process. This  conclus ion i s  i n  accord w i t h  c u r r e n t  t rends i n  borehole 

geophysics research and w i t h  Georgi I s  research. 
This  i n v e s t i g a t i o n  shows t h a t  components o f  such an " imaging model" i n -  

c lude hole shape, t o o l  l o c a t i o n  i n  the hole, t ransducer c h a r a c t e r i s t i c s ,  and 
sonic v e l o c i t y  i n  wel lbore f l u i d  as w e l l  as the type, l o c a t i o n ,  and o r i e n t a -  

t i o n  o f  n a t u r a l  features on the we l l bo re  surface. E f f e c t s  to be inc luded  i n  
the model i nc lude  harmonic shading, mechanical o s c i l l a t i o n s ,  and a hos t  o f  

e f f e c t s  such as absorpt ion,  r e f l e c t i o n ,  and d i f f r a c t i o n  f o r  s p e c i f i e d  n a t u r a l  

ob jec ts .  

The pos tu la tes  o f  such a model would be the type, a t t i t u d e ,  and param- 

e t e r s  o f  n a t u r a l  o b j e c t s  on the we l l bo re  surface. The pos tu la tes  would be 

v e r i f i e d  by comparing an image const ructed from the pos tu la tes  w i t h  the a c t u a l  
image as observed. 
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