Q- 280'.29 |
MASTER

PRODUCTION OF ULTRA-COLD NEUTRONS USING DOPPLER-SHIFTED
BRAGG SCATTERING AND AN INTENSE PULSED NEUTRON SPALLATION SOURCE
by

T. W. Dombeck and J. W. Lynn

with University of Missouri and Argonne National Laboratory

PP No. 79-153

TR No. 79-085

March 1979

UNIVERSITY OF MARYLAND
DEPARTMENT OF PHYSICS AND ASTRONOMY
COLLEGE PARK, MARYLAND

APPROVED FOR RELEASE OR
puéﬁ TION - O.R. PATENT ROUP
73 01 ¥ o

i DATE, ;!I
cunmmu UMLKY KL



T. W.

. Nombeck ang
with University of Mi 4w

L)’n“

Ssouri and A
Trgonne Natio
] nal Laborat
ory

PP No. 79.153

TR No. 79"085

March 1979

NOTICE

This teport was prepared a5 an account of work
sponeored by the Umted States Government Neither the
United States nor the Cnited States Departiment of
inergy, nor aay of then employees, nar any of then
conteactars, suheontractors, o thea employzes, makes
any warranty, express ot imphied, of asures any legal
tiabibsty or responsbiinty for the accuracy, completeness
ar usetulnoss 0f any mfotmation, apparatus, product o
process dislosed, or represents that it use would not
infringe prvately mwned nphts

c—

A -
AL NP Y N L
- -&u-ﬂ. 2 o

IO PN
ol ezt gy
hd j



Production of Ultra-Cold Neutrons Using Doppler-Shifted
Bragg Scattering apd an Intense Pulsed Neutron Spallation Source
T. W. Dombeck and J. W. Lynn
University of Maryland, College Park, Maryland 20742
S.A. Werner
University of Missouri, Columbia, Missouri 65201
T. Brun, J. Carpenter, V. Krohn, and R. Ringo

Argonne Naticnal Laboratory, Argonne, Illinois 60439

We present an analytic and a computer generated simulation of
the production of Ultra-Cold Neutrons (UCN) using Bragg scattering
from 2 moving crystal to Doppler shift higher velocity neutrons into
the UCN region. The calculation was carried out with a view toward
its application at the Intense Pulsed Neutron Source (IPNS) now under
constructicn at Argonne National Laboratory. This method for the
production of UCN appears well matched to a pulsed source, and we show
that the UCN can be stored in a neutron bottle at the peak flux which
can potentially be much higher than at the present high flux reactors.
The predicted density of stored UCN indicates that a highly precise
measurement of the neutron electric dipole moment (EDM) will be possible

within the next few years.
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I. INTRODUCTION

Methods ¢ produce Ultra-Cold Neutrons (UCN) have aroused considerable
interest in recant vears as potentially providing a means to carry out a
very precise search for the electric dipole moment (EDM) of the neutron,!-®
The reason feor thi: is that UCN can be confined in a "bottle'" for long

periods of tim». “nus increasing the measuring time and hence the sensi-
tivity to the reuitron EDM by perhaps as much as four orders of magnitude.7"8
In this pzper wo describe a technique in which UCN are generated by Doppler-
shifting cold nsutzons®»9,19511(n10R) produced in a pulsed neutron source,
dowr to ultra-caold velocities using Bragg reflection from a moving crystal.
We show that the deasity of UCN which can be stored in a bottle is limited
by the peak density in the source, and not by the time-averaged density.
For this reason the pulsed neutron source appears very attractive for
this applicaticn since peak fluxes exceeding 10'® n/cm?-s are expected
to become availabls within a few years.12

The obsexvaiion of a neutron electric dipole moment would be the first
example in whi<h P and T symmetries were violated in a particle interaction.
CP nonconservsiini was observed in the K: - E: decaf system,*® and many
theories attempting to explain CP violation predict, as a consequence of5
the CPT thecremr, a finite neutron EDM. Stimulated by this theoretical
speculation, a rumber of precision experiments employing magnetic-reso-
nance spectromeicis have searched for the neutron EDM., The most recent
measurement places sn upper limit on its existence of 3 X 10°2* e-cm,1%715

This 1limit has alrzady eliminated many theories which predicted larger

EDM values, however, a few exceptions remain. Among them is the prediction’

6



containers. The most recent UCN beam at the high flux reactor at the
Institute Max Von Laue - Paul Langevin (ILL), Grenoble, France is capable

5

of storing neutrons with a density of one per cm?, A neutron bottle

experiment has been proposed using this beam to perform an EDM measure-

26 8

ment with a precision of 10™ %% e-cm.?
The UCN source described in this paper is currently under construction
and will be used in conjunétion with the Argonne National Laboratory

Intense Pulsed Neutron Source (IPNS).12

This source produc2s short bursts
of fast neutrons from a spallation target bombgrded by high energy protons
(500-1000 MeV). The neutrons are then slowed in a hydrogenous moderator.
The planned UCN facility will take advantage of the.peak flux from the
moderator to fill a bottle by Doppler shifting pulses of neutrons from

i1 velocity of about 400 m/s down to the UCN region (0 to 7 m/s) using
Bragg reflection from a moving mica crystal. A shutter will let neutrons
into the bottle when the pulses arrive and close the bottle between pulses.
in this way the bottle is filled by many pulses as if by a steady beam at
the peak flux. The pulsed nature of the source results in a relatively
unimportant increase in the filling time (v one minute) compared to that
necessary at a steady-state source,

In the following section we present a brief description of the appa-
ratus and the experimental arrangement. In section III we will discuss
analytically the effectiveness of Doppler shifting cold neutrons down to
ultracold velocities while in section IV we will treat this same problem
using numerical Monte Carlo methods. The main advantage of doing this

problem apalytically-is that we can more easily examine the qualitative

dependence of the efficiency of producing and utilizing Ultra-Cold Neutrons



on the various experimental parameters. However, in order to carry the
analytic calculation to completion, it is necessary to make certain
approximations which are not necessary in the numerical treatment.
Agreement between the results of these two approaches has added significant

confidence in our estimates of the Ultra-Cold Neutron storage density

achievable at the Intense Pulsed Neutron Source.



11. APPARATUS AND BEAM CHARACTERISTICS

The Doppler Shifter Assembly is shown in Fig. 1. Neutrons leaving
the spallation target are cooled by a cold hydrogenous moderator (10 X
10 X 5 cm®)at 20°K. The calculation of the neutron flux leaving the mod-
erator involves specifics about the arrangement of the target and the
moderator. However, it appears that with the proper placement of the
moderator a time average thermal flux § of 6 X 10! n/cm?-s will be avail-

able at IPNS-I.!2? The peak of the velocity distribution for a similar

Vr
type of moderator has been measured to be 650 m/s29 and the pulse width
T is expected to be 200 us and not to change much down to a velocity of
395 m/s.

The neutrons from the moderator travel through the shielding wall
in a beam tube containing He gas at room pressure (diameter "10cm). This
tube can be constructed to act as a beam guide. The Doppler shifting
crystal is mounted in a vacuum near the edge of a rotor operating at the
same frequency and in phase with the arrival of neutrons from the moderator
(30 Hz for IPNS). The rotational sense is such that the crystal moves
away'from ths source when it is in the incident beam. The tangential veloc-
ity 3§ and the angle at which the crystal is mounted .is set by the Bragg
condition and the velocity space volume to be reflected as UCN.

After Doppler shifting, the UCN enter part of the bottle facility
through a shutter device arranged close to the edge of the rotor. The

shutter opens and closes in phase with the passing crystal and traps the



neutrons in the bottle. After many pulses the bottle will arrive asymp-
totically at the makimum density of stored neutrons; i.e., when the number
entering through the shutter equals the number of neutrons lost between
pulses.

The neutron bottle is capable of storing neutrons up to a certain
velocity (VMAX) which is determined by the limiting wavelength at which
total internal reflection® occurs off the walls. (In Table I we have
listed a number of wdll materials and their values of v

MAX*
component mixing on reflection from the walls the acceptance of the bottle

) Owing to

in velocity space is approximately a sphere with a volume 4ﬂv§Ax/3. The

velocity space volume reflected by the crystal should match this acceptance.
The sh- ter consists of an auxiliary rotating disk perpendicular to

the rotor and in phase with it. A slot cut in the disk periodically opens

the bottle entrance. The parameters for the souice, rotor, crystal, and

the shutter that will be used at Argonne Laboratory are given in Table II.
The average phase space density ﬁf;) at the source can be computed

from the time average flux and is given by

i = F 1 e WvpF (1)

4
2an

vihere Vg is the mean velocity corresponding to the moderator temperature
Q%-mv% = kT). Using the values for ¢ and Vo given above, the time average
phase space density is 0,004 n/cm®-(m/s)3 for IPNS-I, The peak phase space
density is found by dividing (1) by the duty factor fAtr, where f is the
frequency of pulses (30 Hz) and the At is the effective pulse width

(v200 pus, FWHM) yielding



np@) = 0.66 n/cm® - (w/s)? (2)

It is useful to calculate the maximum peak density of neutrons
available for containment as a figure of merit to compare with the final
stored density. The region of phase space which can be shifted from a veloc-
ity around 395 m/s to the UCN range has a volume given by 4"V&Ax/3' The
density of neutrons in this region follows from (2)

- 4 3 3 3
PMAX np T T Viax v 10% n/em (for IPNS-I) (3)

According to Lioville's theorem we cannot exceed (3) in the final bottle
density. Furthermore, this result is decreased by various inefficiencies
which arise in the Doppler-shifting and collection process. In the

following sections we attempt to identify and calculate these inefficien-

cies.



10

IIT. ANALYTICAL TREATMENT OF THE DOPPLER-SHIFTER

The main physical characteristics of Bragg reflection by a moving
crystal are well-known and have been checked experimentally.®>19211»30,31,32,33
The difficulty in applying the results of these papers directly to our
problem arises from the fact the incident beam is pulsed and that the
crystal is both rotating and translating. The analysis presented here is
based on the geometrical opportunities and constraints achievable at the
pulsed neutron source IPNS-I scheduled to begin operation at the Argonne
National Laboratory in 1980.

A. Velocity Transformations

Consider a crystal mounted rigidly to a rotor of radius R rotating
with angular frequency w as shown in Fig. 2. The reflecting planes in the
crystal are set at an angle B with respect to the local radius vector R of

the rotor (see Fig. 2a). The angle between the velocity vector ; and the

R
central ray of the incident beam is also B when the crystal passes the
beam center., It is important that this angle is not zero, as we shall
see.

If we Bragg reflect neutrons of laboratory velocity 3;L from a crystal

L3 3 3 -* . - - s
moving with velocity v,, the effective incident velocity of the neutron

in the moving system is

-+ -+ -

VaR ¥ VoL T VR . 4
The velocity of the reflected neutrons in the moving system is determined

by the Bragg relation

Y= N +%§ , (s)
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->
where G is the reciprocal lattice vector corresponding to the reflecting
<>
planes (|G| = zga, and the magnitude of the incident and reflected velocity

vectors in the moving coordinate frame must be equal,

>, R s

Rrd = ol 6
The laboratory velocity of the reflected neutrons is then

>, - ->

ViL = ViR * VR - (7

It should be noted that the above equations require

TV *?EE ) (8)

A velocity-vector diagram of these equations is shown in Fig. 2b. Tt will
be noted from this diagram that the reflected neutron velocity in the lab-
oratory frame ¢;L is zero when the incident velocity ;ﬁL is directed anti-
parallel to the reciprocal lattice vector € and equal in magnitude to?% G.
This condition can, in principle, be met for any crystal. However, in
order to keep the tangential velocity of the rotor down to some reasonable
speed, it is desirable to select a crystal for which G is fairly small.
This requires choosing a crystal which has as large a plane spacing d as
possible. In terms of availability, strength and neutron reflectivity
properties, synthetic mica seems to be the optimum choice. Another con-
sideration is also important: in order to utilize a reasonable beam area
there will necessarily be a gradient of the velocity ;ﬁ across the surface
of the crystal. Consequently, the condition for Doppler-shifting neutrons
down to near zero velocity can only be met for some fraction of the crystal
area at a given instant of time. This veloci“y gradient is, of course,

smaller the lower v,, which also requires G to be as small as possible. On

RI
the basis of the numbers for a rotor of practical dimensions, this consider-
ation seems to rule out the commonly used neutron. monochromators Cu, Be, .and

pyrolytic graphite for this application.
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B. Effective Volumes in Velocity Space

Since the crystal is necessarily imperfect, having a mosaic structure,
and the incident beam is divergent and polyenergetic, we must inquire about
the volume of neutrons in velocity space actually reflected by the crystal.
In fact, we need to know this volume at each instant of time t, and at each
position (x,y) ¢n the crystal face. We need also to calculate the inter-
section or overlap of this volume in velocity space with a sphere of radius
VMAX centered at ¢;L = 0. It is only neutrons within this sphere which are
termed Ultra-Cold and can be stored in the neutron bottle.

Suppose the phase of the rotor is such that the center of the crystal
is in the center of the beam when the center of the neutron pulse of wave-
length lnL = A;L (= 9.96 R for mica) arrives at the crystal. Call this time
t = 0, Consider also, only the center point of the crystal (x=0,y=0) for
now. Take point O to be the center of neutrom vulocity space as shown in
Fig. 3. The crystal will reflect neutrons of incident velocity ;nR in the
moving frame in the velocity-space volume B into the volume B' with an
average efficiency decreasing with increasing distance for the centroid
of B. The volume of incident neutrons as viewed in the laboratory frame
corresponding to the volume B is labelled A in this figure. Transforming
reflected neutron velocities within B' back to the laboratory frame leaves
them within the volume C centered at 3;L = 0, The Bragg angle in tThe frame
of the moving crystal is Bg- The dimensions of these volumes can be obtained
from standard monochromator theory.3* The dimensions of each of these volumes
in the Vv, plane are equal, as shown in Fig, 3. If we assume that the
transmission function of the collimator is Gaussian, and that the reflectivity
of the crystal is also Gaussian, then

Wy = Vo oy s ©
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and

[

' = v° . = = 4°
Wz = Vp N, sinB 7 VoL tanf . (10)

In the direction perpendicular to the plane of Fig. 3, the volumes A and

B are of height V;L ay, while the y-dimension of volumes B' and C is

W =v° n; + o (11)

Here N and ay are the Gaussian parameters specifying the in-plane and
out-of-plane collimations, while n. and ny are the in-plane and out-of-
pléne Gaussian mosiac spread parameters. Tiie numerical factor 2,35

(= 2/ 2%n2) relates the Gaussian parameters to the full-width-at-half
maximum (FWHM) in Fig. 3 of each of these distributions. Thus, the
boundaries of the volumes shown in Fig. 3 are meant tcv be 50% contours of
pProbability. They are actually ellipsoids. The superscripts on Ve  and

nL

+y . R . > >
VR indicates the nominal values of an and v,,.

R
The heights of the volumes B' and C are larger than those of the volumes

A and B because the out-of-plane mosaic spread of crystal broadens the
distribution of neutrons upon reflection in the y-direction. In fact,
aside from a loss of neutron density due to the efficiency of Bragg reflec-
tion, the density of neutrons in velocity space is decreased by the ratio

o

r = —
— (12)
Ny * %

due to this effect, It is thereforzs clear that i~ is desirable to make the
but-of-plane mosaic spread ny small in comparison to the out-of-plane col-
limation ay. From eqs. (9), (10), and (11) we see that the volume C of

neutrons in velocity space resulting from Bragg reflection is
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vol); = (2. 35)3w W w (2 35)% o N /a + (v L)3 tanf . (13)

The reflected intensity will be proportional to this volume and will there-
fore be zero at 8 = 0. Thus, direct back reflection in the moving frame
will give zero intensity. (There will be a vanishingly small backward
intensity due to the Darwin width, but no contribution from the crystal
mosaic spread.)
C. Numerical Values of Parameters

Before proceeding with a detailed analysis of the reflection efficiency
as a function of time t and position (x,y) on the crystal face, we will
first attempt to provide some qualitative feeling for the parameter involved,
If we choose mica as the Doppler-shifting monochromator crystal, then the
nominal incident neutron wavelength and velocity in the laboratory frame
are:

A;L =d . =9923%, (14a)

mica

and

V;L 395 m/sec . (14b)

The Bragg angle is chosen to be 61.2° giving a B of 28.8°. This
angle was chosen in order to have reflected a reasonable velocity space
volume as given by eq. (13) while keeping the rotor design within practical
limits. An optimal value of i would be 37° which yields an increase of
20% in velocity space volume at the expense of a higher rotor tangential
velocity.

Using g = 28.8°, and the arrangement shown in Fig., 3 we find

V;R = vﬁ = 225.4 m/sec (14c)

If we phase the rotor to the pulsed source which operates at 30 Hz, then
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the radius of the rotor should be

R = vﬁ/m = 1,202 m, (15)
Thus, the crystal will arrive back in the incident beam when the next pulse
of neutrons comes from the source.

It is clear that we should choose the parameters ax, ay, Nys and ny
so that the dimensions of the volume C in velocity space are comparable to
the size of a spherical volume of radius equal to the maximum velocity
neutron which can be stored in a bottle. For a bottle made of Be this
velocity is Vmax = 7 m/sec. To be explicit, suppose that the source
area is W X WS = 8.86 cm X 8.86 cm and the crystal can be placed a dis-
tance Lo = 4.8 m from the source; then

2.35 o, = 2.35 o = Y = 0,0185 rad. = 1.06° . (16)

L
Suppose also that the crystal has a mosaic width (FWHM) of

2.35 n, = 0,052 rad, = 3° 17
The dimensions of the velocity space volumes as given by equations (9),
(10), and (11) are then

2,35 Wx

7.31 m/sec.

2,35 W
y

2.35 Wz = 5.65 m/sec,

8.08 m/sec. (18)

We have assumed 2.35 ny to be 1/2°. We therefore see that W Wy, and W,
can be made comparable to ZVMAx N 14 m/sec with reasonable values of the
collimation parameters and the mosaic spread parameters. It is clear from
these numbers that it would be advantageous to be closer to the source
(than L, = 4.8 m), or to use a beam guide to aid in bringing the source

out to the crystal.
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There is another important preliminary numerical consideration:
the crystal should remain in the incident beam for a large fraction of
the time that neutrons of velocities within the sphere of radius VMAX *
centored at $;L, are arriving from the source. The pulse width at the

source for neutrons of velocity v;L = 395 m/sec is projected to be

about12:29

Teource = 200 usec. (19)

The difference in arrival times (at the crystal) of neutrons of velocities

o o _ :
an + VMAX and VoL~ V X for L° = 4.8 m is

MA
L L 2L
= - n = .
tarrival v 3 = _°v s O . Vmax 395 usec. (20)
nL ~ "MAX  “nL TMAX  (vp;) 2

Thus, neutrons which are potentially useful for storage in a bottle will
be arriving at the crystal over a time span

= = 1
Ttotal Tsource + Atarrival 595 usec., (21)

The transit time of the center of the crystal across the beam of width

W= 8,86 cm is

At - W/sinB

transit v;

We therefore conclude that the transit time of the crystal across the beam

= 773 usec. (22)

is sufficiently long to utilize all those neutrons arriving at the crystal
location which are of velocities suitable for storage upon being Doppler-
shifted down in velocity,
D. Motion of the Center of the Velocity Space Volume

We continue now to fix our attention on the center of the crystal

at x = 0, y = 0 (the origin of x,y coordinates is fixed to the crystal).
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As a function of time, this point moves across the beam. We will now cal-
culate the '"'trajectory'" of the center of the velocity space volume C in
velocity space as a function of time t. We first note that during the time
interval Ttotal’ the orientation of the crystal has changed by an angle
thotal = 6,4°, Thus, the vector 3 will have rotated by this same angle.
The effect of this rotation on the shape of the velocity space volumes of
Fig. 3 is very small, and will be neglected. However, the centers of
these volumes will move as a function of time due to the rotation of G.
This is an important effect.

Let the symbol VhL (t) describe the position of the center of volume
A as a function of time. (At t = 0, v;L(t) = C;L.) Similarly, let th(t),
V;R(t)’ and V;L(t) describe the position of the center of the volumes B,
B', and C as a function of time respectively. According to eq.(4) we
must have

> - ->
VnR(t) = VnL(t) - VR(t). (23)

Thus, the change in these velocity vectors, describing the centroids of
volumes A, B, and B' are related by

+ ¥ >
AVnR = AVnL - AVR. (24)

-

. The magnitude of the velocity vector VR is constant; however, the direction

of VR changes as the rotor turns. From geometry, we find

AVR = wtva[- cosB % + sinB 2]. (25)

We now resolve the vector Aan into components:

AVnL = AV K AV §roav, . (26)

It is clear that for the center point of the.crystal (x = 0, y = 0), which
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is under consideration now, that

AynLy =0 . @7
Since the center of the crystal has moved a distance vﬁxt in a time t in
the x-direction, we can calculate the change in Voix with the aid of Figs.

2a and 3. By similar triangles, constructed in real space (Fig. 2a) and

velocity space (Fig. 3), we have

AVan - Vnth
Vao Lo (28)
Therefore,
(vﬁsinB]t
AV = Vo ’
nLx L nL (29)

(o]

where Lo is the distance from the source to the center of the crystal at
~ ”N -> -

t = 0. We now know the X and ¥ components of the vector AVnL. We will

now show that the Z component is zero. At any time t, the centroids of

+
the volumes B and B' are connected by the vector'%ﬁ (Bragg's Law); therefore

x _ -+ ﬁ-r )
VnR(t) - VnR(t) + m G(t} ’ (30)
and
A = A+ B (31)
nR nR m *

The length of the vector ¢ is fixed. The change AG comes from the rotation
of the crystal, namely

> 0N

AG = WtGR . (32)
If we square both sides of eq. (30) and recall that Bragg scattering in

the moving frame is elastic, that is

v;ﬂi = V:R, (33)
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we then have

A

2V« G+ = 6% = 0. (34)

nR
The variation of this equation gives
Y1 - . 2 /_ﬁ_-r.-ro_
ViR AG + AVnR G + = AG = G° =0 (35)
The last term of this equation is zero, since G (eq. 3.) is perpendicular

-
to G° = -GZ. Writing out the components of the remaining dot products, we

find
VoRK .
= - = = v ai
AvnRz = G AGx vp sinB wt, (36)
where we have used eq. (32) and the fact v;R = vﬁ. Equating the Z-components

of eq. (24), we have

AVan = AvnRz * AVRz ’ (37)

From eqs. (25) and (36) we see that

AVorg = = Vg, ’ (38)
so that finally we have
Av ;. = 0. (39)

Consequently, the centroid of the volume A moves in the R direction in

velocity space, namely

(g sinB)t

> - R o A
v, = L voL X . (40)
We need to use this result to find AV AL This is easily done, since
Wy = a8 B2 (42)

Using the fact that V;L =% G, and eqs. (32) and (40) we find

vS sinf
M (1) = (B— + )t v

- oL R . (42)
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This is a very important result. It tells us that the distribution of
Doppler-shifted neutrons in velocity space moves only in a direction per-
pen&icular to the incident beam as the rotor turns. To ogbtain a feeling
for the size of this shift, suppose again that L = 4.8 m, B = 28.8°,
W = 2m(30) rad/sec, and V;L = 395 m/sec; then IAVALl = 8.34 m/sec at
t = 100 usec. Thus, we.see the centroid of the ultracold velocity dis-
tribution has shifted beyoad VMAX ~ 7 m/sec at a time t = 100 usec.
However, this is only for the center point on the crystal surface. Other
points (x,y) on the crystal will become increasingly important for various
other times t. The overlap of the Doppler-shifted reflected volume C
with a sphere of radius Vpax 3t various times at x = 0, y =0 is shown
in Fig. 4a. The formulas for calculating the overlap at other positions
(x,y) are derived in the next section. The time evolution of the over-
lap volume at x = 2 cm, y = 0 is shown in Fig. 4b.
E. Other Points (x,y) on the Crystal Face

We now wish to generalize the result for AV&L given by eq. (42) to

an arbitrary point (x,y) on the crystcl face. We again resolve AVn into

L
components as in eq. (26). From geometry, it is apparent that

=& v°
L V.

AV
5 nL . (43)

nLy

Using geometrical arguments identical to those leading to eq. (29), we find
that
- (VR sing)t + x

o
L VoL v (44)

AVan
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We now need to find ANan, which will turn out to be non-zero in this case.
Because we are considering a point (x,y) on the crystal which is further
out on the rotor at, say

R=R+ AR = R, * xcos B, (45)

>

>
the difference between V, and v° is now

R R
AV% = vy [- cosB X + sinB z] wt + wx cosB[cosB X + sinB £]. (46)

The arguments leading to the expression for AvnRz given by eq. (326) are
valid for all points (x,y). Thus, we have, using eqs. (36) and (46), the

result for AVan:
wx

&V, = &V o, + BVp. = ux cosB sinB = = sin2B . (47)

Eqs. (43), (44), and (47) are the components of the vector AV;L;

therefore, using eq. (41) and eq. (32) we have

(v sinB)t + x
> - ° R A Y 0 A wx . ’
Avl"lL(t) = VnL[ Lo + Wt]X + —Lo viL Y 5 sin2B 2.

(48)

This expression is the generalization of eq. (42) we have sought. AVAL
here, gives the position of the centroid of the velocity-space distribution
of Ultra-Cold Neutrons generated by Doppler-shifted Bragg scattering for
each time t, and for each position (x,y) on the crystal face.
F. The Efficiency of the Doppler Shifter, s

The phase space density of neutrons n, incident on the crystal is the
same when viewed in the laboratory frame as when viewed in the frame of

reference fixed to the moving crystal, that is

> > > >
no = no(r ’ an’ t) = noch; VnRa t) . (49)
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In the moving frame, the incident current density is

+> >
b of

+ > »>
JnR(rR’ ViR’ t) = VaR no( R’ VnR’ t) . (50)

The reflected current density in the moving frame is

->

T (e Vo, t) = € T o (Tus Vou, t) (51)
nR‘TR’ "nR’ DS “nR*"R? "nR’ *

This equation defines the efficiency of the Doppler-shifter. Under the
Gaussian approximations we have assumed for the mosaic structure of the

crystal, and the collimator transmission function, is simply given

“ps
by the probability conrtours of the volume B' of Fig. 3. That is

eDscsv;R) = ryopxp{-1/z(6v5Rx/wx)2 - 1/2(6v5Ry/wy)2 - 1/2(6vﬁRz/wz)2},

where (52)

SVl S V!o(t) - Vo (0) - AV (t) (53)
nR nR nR nR ! N
Yo is the unintegrated peak reflectivity of the crystal and r is given by (12).
The efficiency €pg can equally well be expressed in terms of the velocity

>
VAL of the reflected neutrons in the laboratory frame:

> _ - 2 2 2,02
€ps(Var) = TYoexpl-1/20vy,, - AVE, D°/W, - 1/2 (Vi - AVRy )°/Wy

t - 2 2
1/2(v}y, - A2 )2/W2. (54)
This form will prove more useful to us than eq. (52). It should be noted‘

that €ps is also a function of x,y,t, since the location of the centroid

Aﬁ;L is explicitly a function of these parameters as given in eq. (48).
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G. The Incident Neutron Phase Space Densicy n,
If we approximate the neutron source pulse by a Gaussian function in
time, having a FWHM = T, then the phase space density of neutrons arriving

at the crystal will be:

> -1/2 {[t * ES_EZEEE 12/ (/2 35)2} (55)
n (1‘ » > t) =n_ e ° )
o*L’ VnL P vo)?

Here Ganz gives the difference between the beam-line velocity of a given
incident neutron in the laboratory frame and the nominal incident velocity

v® , that is

nL’
= _ °
SVarz = Varz - ¥nL (56)

/v

The peak neutron phase space density is np. The factor Lo Sv n

2
1)

in the exponent of the expression (55) accounts for the fact that incident

nLz

neutrons of velocity greater than the nominal velocity V;L arrive at the
crystal at earlier times. From the geometry of Fig. 3 it is easy to show

that

8 = y!
Van Van

. (87)
Thus, we can express n, in terms of the reflected neutron velocities in
the laboratory frame.
->

H. The Source Density of Ultra-Cold Neutrons Su c

The current density j;R given by eq. (51) should be viewed as the source
density S for Doppler-shifted neutrons. It gives the number of neutruns
"emitted" at the point (x,y) on the surface of the crystal per cm? per
sec at a time t per unit volume in velocity space. Each of these neutrons

appears as a very slow neutron when viewed in the laboratory frame of

reference. That is, the magnitude of the source vector $ is the same in



24

both the moving frame and the laboratory frame, only its direction is changed

due to the coordinate transformation. Thus, we have
+|
Vn

-
§ = ——E V., Nn_ . (58)
VﬁL D.S. nR "o

or, using eqs. (51), (54), and (55) we see that

>
> V! _ 2 2 _ 2 y1g2 ' _ 2 g2
S = ;%E Y e-l/z[(VﬁLx AvﬁLx) /wx * (VﬁLy AVALX) /wy * (Van AVALZ) /wz]
aL °
. LOV;IL 2 2
x vy n o720 ¢ -(;;]7?}] / (1/2.35) (59)

In going from eq. (58) to (59) we have replaced ViR by its nominal value
which is equal to the nominal rotor velocity vﬁ as can be seen from Fig, 3.

Only neutrons having speeds below some maximum speed Viax 30 be stored
in the bottle. We then are interested in

f S 43,
Suc. T ) SNy (60)
sphere
of radius
Vinex

Instead of assuming there is a precise cutoff speed Vinax We will approximate

the neutron bottle capture probability by a Gaussian:

e

VIR

pcapture (61a)

where:

v, = 2 Vm;x/2'35 . (61b)

This approximation allows us to explicitly carry out the integration of eq.

(60). Thus, we can write the source density gu c for Ultra-Cold Neutrons
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as

_oe=l/2(vr 3V 2oL
gﬁ.c. = fe nL /"¢’ S daan ‘ (62)

The magnitude of this current density can be analytically evaluated. The

result is
— [+
Su.e. T r'YoanR I Iy I (63)
where
_ n2
A e I L L R L T
J

The dependence of Su c. ON XY, and t is contained in the functions Aj,

Bj' Cj‘ The functions z2re displayed in Table III. (For convenience we

have defined T = Tg/2.35). Note that the time t appears explicitly in

these expressions and also implicitly in AV;, AV},AV; (see eq. (48)).

Note also that we have suppressed the additional subscripts nL on the

velocities. The results depend upon the mosaic and collimation parameters

n,., ny, Oy s and ay through the definitions of wx, wy, and Wz (eqs. 9, 10,

11), and explicitly on the pulse width T and the maximum velocity Viax
2.35

( 2 Vc) i

Based on the instrumental parameters given in Table II, we have per-
formed numerical calculations of su.c. given by eq. (63). We find that
Su.c. is only a2 weak function of the y-coordinate on the crystal face. The
dependence of Su c. on the x-coordinate at various times t is shown in Fig.S5.

As tl: rotor turns and brings the crystal into the beam, Ultra-Cold Neutrons
are first generated from the left-hand side of the crystal(x > 0, see Fig. 2).
At t = 0, the crystal is at the beam center line, and the emission of Ultra-
Cold Neutrons js symmetric in x across the crystal face. As the rotor con-

tinues to turn (t > 0) the right-hand side (x < 0) becomes the primary sour.e

of Ultra-Cold Neutron production. For |t| >>T, the edges of the collimator
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will shadow a part of the crystal. For a collimator of width W (at the
crystal), the x-coordinate of the collimator edges projected onto the

crystal is given by

_W .
x, == -R8 sinB (65a)
on the left, and
=_¥_ ;
Xp= -3 RO sinf (65b)
on the right. At t = -180us, Xy = 6.39 cm, and Xp = -2.47 cm. At t = +180 us,

X, = 2.47 cm and Xp = -6.39 cm, Since the Ultra-Cold Neutron production is
small outside this time frame (-180 us < t < 180 us) we conclude fhat the
effects of this collimator shadowing consideration are minimal for a crystal
of width £ 5 cm. For a crystal of width 2 ecm, we have integrated the curves
of Fig. S over the crystal face to obtain the total production rate of
Ultra-Cold Neutrons. We display the results of this calculation as a
function of the rotor angle © = wt in Fig., 6. If we integrate this curve
over the time t, we have the total Ultra-Cold Neutron production per pulse;
the result is

Ultra-Cold Neutrons/pulse = 6,000 (IPNS-I) . (66a)
This number should be compared with the total number of neutrons in the
velocity space volume A (Fig. 3) integrated over time. This is the maximm
number of neutrons coming from the source which could potentially be Doppler-

shifted to Ultra-Cold velocities; it is approximately

=an 3 °
Npax = " 3™ Vmax Vn

L TA = 76,900. (IPNS-I) . (66b)

Here, A (= 5 cm X 2 cm) is the area of the crystal. Thus, the overall
efficiency is about 8%. The main sources of the inefficiency are that the
mosaic spread of the crystal (3°) is too small and the collimation (ax.ay)

is also too small, Using a beam guide and a 6° mosaic crystal, we expect
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that this efficiency could be improved by as much as a factor of 5. (It
is possible to artificially increase the mosaic spread in one direction by

using an aésembly of thinner crystals with wedges between. For example,

refer to the Appendix.)
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IV. MONTE CARLO COMPUTER SIMULATION

In this section we describe a more exact numerical calculation of the
Bragg reflection process to produce UCN and their subsequent collection
in a neutron bottle. The calculation was carried out for the specific
arrangement shown in Fig. 1 and the parameters in Table II, and was checked

using the analytic formulae developed in the previous section.

A. General Discussion

In order to avoid many of the apprcximations used above to describe
the details of the Bragg scattering process, the computer simulation was
carried out at a microscopic level. The crystal was pictured as a collection
of small mosaic blocks Gaussianly distributed in angle about the nominal
normal to the crystal face and each capable of reflecting neutrons with
100% probability if the Bragg angle were satisfied to within the Darwin
width (refer to the Appendix). The crystal was assumed to have finite
dimensions, and to have a mosaic angular spread Ny in the x-direction and
Ny in the y-direction. Finally, once a neutron was reflected its depth
of penetration into the crystal was noted and the neutron was permitted to
undergo multiple reflections. As the flight path within the crystal could
be fairly long, the absorption probability was also considered.

The Monte Carlo simulation begins with neutrons at the source, allowing
them to propagate through the beam tube resulting in a time-broadening of
the pulse at the crystal due to the spread in incident velocities. The
rotor angle changed with time according to § = wt + o with the phase of
the rotor o being a variable. It was set externally by optimizing the

number of neutrons reflected into the sphere in velocity space of radius

Vmax® Neutron trajectories after reflection were checked to determine if
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the neutron arrived at the bottle entrance during the time the shutter was
open. The phase angle between the shutter and the rotor was also a variable

and set externally by optimizing the total number of neutrons collected in

the bottle per pulse.

B. Scattering Process Simulation
For a given incident neutron in the crystal frame, with a velocity
vector ;;R oriented with direction cosines cosEx and cosﬁy, the probability
of finding a mosaic block :atisfying Bragg cgnditégn (5) is?®
P(x,y) = ﬁﬁ-x expl - 5 ( 5z —,Z];)]. (67)
The probability of sciattering at a point in the crystal at distances
between £ and £ + df along a trajectory is given by

-2Ls

pgdt = e £ de (68)

where Es is the probability of scattering per unit length which can be

calculated using (67)

£, = QP(x,y) (69)

- For 17.3 R neutrons and a kragg angle of 61.2°, Q is 7.9 em™ !

for the
synthetic mica crystal described in the Appendix.?® This yields an
average penetration depth of 0.0162 cm for a crystal with a 3° mosaic
spread. The average distance traveled by a neutron inside the crystal,
including multiple rescattering, was found to be about 1/3 millimeter.

It was assumed that the crystal did not rotate during the time period
(including all rescatters) that the neutron spent inside the crystal. This

last approximation was reasonable as the probability for scattering changed

by only 10% for a rotor angular change experienced in a 10 * sec. time period.
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For neutrons moving at 225 m/s in the crystal frame this would correspond
to a total flight path of 2 cm inside the crystal, far‘from the average
flight path indicated above.

The Monte Carlo results were compared with a published analytic cal-
culation of a multiple scattering problem57 and the results are shown in
Fig. 7 for single and triple reflections. The explanation of the coordinate
h is also shown in the figure. The curves are in good agreement. These
results lend confidence that the program was adequately simulating the

details of the scattering process in the cr&stal.

C. Normalization

Neutrons were randomly generated across the surface of the source shown

in Fig. 1 within some velocity volume Avx, Avy

setting of 395 m/s. The time variation of the pulse at the source was

Av minal v°
’ ” around a nomin 2L

assumed to be Gaussian in a manner which was used to obtain equation (55).

Thus the phase space density n, at the source was assumed to be

-t2/212
ng(x,y,2,V,, vy v,ut) = ny &0 /¥ (70)
where np is the peak phase space density and Tg = T/2.35 (as in the previous

section). As the average VoL © V;L the overall normalization used in the
Monte Carlo calculation for each generated neutron was
= 2
Norm = npAvavyszﬂrsszTg/NG (71
where T was the source radius and NG the number of neutrons generated in

the program.
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D. Results

In Fig. 6 we make a comparison between the predicted Monte Carlo
production rate of Ultra-Cold Neutrons S as a function of rotor angle and
the analytic results presented in the previous section. The shapes of the
curves agree but the computer simulation is 14% higher and predicts the
total UCN production rate of

Ultra-Cold Neutrons/pulse = 7,000 . (72)
The reason for the disagreement is due to the approximations made in the
analytic calculation where we ignored the time variation of the distance
from the source to the crystal, and we approximated the collimation and
Pcapture (eq. 61) by Gaussians.
Also shown in Fig. 6 is the number of neutrons collected in the bottle

(cross hatched region). This number per pulse is

Np = Ultra-Cold Neutrons collected/pulse = 1,300 . (73)

Comparing (72) and (73) shows that the collection efficiency is about 19%.
This is the efficiency expected as the solid angle subtended by the bottle
opening is v 0.4 of a sphere while the finite time the door remains open
(3 msec) allows only 50% of the neutrons heading toward the bottle to
enter. It should be noted that the collection efficiency does not effect
the final density of stored neutrons as this depends on the flux of UCN
coming off the crystal which remains constant for many milliseconds until
the reflected cloud of UCN diffuses away. However, the filling time is
effected by the collection rate.

In Fig. 8 the velocity distribution of neutrons in the bottle is shown

for VMAX = 7 m/s. Their mean speed is V = 4.4 m/s. The deficiency of
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neutrons above 6 m/s is caused by a smaller velocity space volume being
reflected than can be captured in the bottle. This mismatch was noted
earlier in the previous section and can be corrected by a larger mosaic

spread and the use of a guide tube in the beam.

For a given Np rate, the final density Pmax to which the bottle can
be filled depends on the loss rate out of the bottle, i.e., the loss of
neutrons out of the door when the shutter is open plus the los~ss contrib-

uting to the overall bottle storage time, T

t/'rB

B* This storage time is charac-
. As noted earlier TB should be

1000 s optimally, but has been measured to be much less. Therefore, we

terized by an exponential decay e

present the values for pMAx as a function of TB.

The loss through the shutter is computed using gas kinetics assuming

that the UCN behave as an ideal gas inside the bottle. From elementary

38

statistical physics®" the loss rate per unit time through a shutter with

an area A is

v = % DAY (74)

where p is the neutron density in the bottle at time t and Vv is the mean
speed of the neutrons in the bottle,

For Tg, Np and equation (72), with Vv taken from Fig. 8; Pyax Was
estimated for IPNS and plotted in Fig. 9. The density approaches saturation
for T, v 300s and is

- 3
omax = 120 n/em® . (75)

This does not imply that T, values larger than 300s are not desirable.

B

This is clearly dependent on experimental details and can be very important

in an EDM measurement, where the sensitivity varies inversely to T.
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In Table IV the asymptotic densities and filling times are listed. .
For a 10 liter bottle these times are generally on the order of minutes
or about 6000 pulses. The total number of stored neutrons No is predicted
to be 1,2 X 10°.

In the above calculation we have assumed chat the crystal reflectivity
is 100% though it may be considerably less (refer to the Appendix). There
will also be absorption losses in the crystal holder and losses of neutrons

due to the loose fit of the shutter over the bottle mouth. The sum of

these effects could reduce the stored density by a factor of 2 or 3,

V. CONCLUSIONS

The two independent calculations presented above are in good agreement
for the production of Ultra-Cold Neutrons using Doppler-shifting at the
Intense Pulsed Neutron Source. Given the range of uncertainties the density
of stored neutrons is predicted to be between 40 and 120 n/cma. Using
these numbers to estimate the sensitivity in a proposed EDM experiment,"
we conclude that a measurement with a statistical uncertainty near 10”27
e-cm can be performed. However, a practical experiment also requires

various systemmatic effects to be reduced in order to achieve this

sensitivity,"28»14,28

Tﬁghﬁoppler—shifting method described in this paper is well matched

to a pulsed source as the Bragg reflecting crystal is only effective over

a short period of time. However, there is an advantage in using this method
to produce UCN even at a steady state source in that the primary transport

velocity is much higher (v 400 m/s)
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and the UCN are produced closer to the experimental area., The absorption
losses of UCN that can be severe in a reactor beam are much reduced.

There are a number of inefficiencies that have been identified in the
Bragg scattering off a moving crystal. The total efficiency of scattering
into a sphere of radius Viax Wes found to be v 10%. Using a guide tube
in the incident beam and a broader mosaic spread could yield a factor of
5 increase in neutron density. The remaining inefficiency is due to the
velocity differential produced across the crystal by the differential in
radius on the rotor and the time slewing of the incident pulse. Also, a
Bragg angle of 61.2° is not the optimal value for the maximum efficiency.
Building a larger rotor and moving nearer the source would help reduce
these losses. However, such modifications are limited by practical con-
siderations.

The bottle collection efficiency was found to be n 20% of the UCN
produced. As noted in the previous section this does not effect the final
density in the bottle, however the filling time is increased. Using
reflectors placed around the rotor more of the solid angle can be reflected
toward the bottle opening. In this manner a factor of 2 shortening of the
filling time may result.

The shutter mechanism insures that the bottle is filled as if by an
incident beam at the peak fiux of the source. Pulsed neutron sources can
be expected to improve their peak intensities in years to come and a
corresponding increase in density of stored UCN can be expected. On the
other hand, it is doubtful that much higher thermal fluxes from steady

state reactors are possible due to heat transfer limits and construction

and operating costs.
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There are a number of additional advantages working at a pulsed source
over a steady state reactor. Background levels are in general reduced as
the time-average flux is much lower. As the heat load and radiation damage
are smaller in pulsed sources, better cold moderators may be possible to
construct and operate than have been possible for reactors resulting in
aﬂ incyease in flux at the longer wavelengths needed for the Doppler-

shifter.
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AP2ENDIX

Details of Bragg Scattering by a Crystal

Bragg scattering off a mosaic crystal can be characterized by two
parameters: The peak reflectivity yo and the effective, in-plane mosaic
width, Nogs [rocking curve width]. If we approximate the rocking curve
by a Gaussian K then the reflectivity is

Y () = yo " A%/ gge , (A1)
where A is the orientation of the crystal with respect to the nominal
Bragg setting. In Darwin's mosaic crystal model, the probability per
unit path length for a neutron to be Bragg reflected within the crystal
is

I (8) = QU(A), (A2)
where W(A) is the distribution function describing the orientation of

mosaic grains, and Q is the crystallographic quantity:

A® |F|?
ce11 Sim 20
Vcell is the volume of the umit cell, BB is the Bragg angle, A is the

neutron wavelength, and F is the structure factor. If we assume that

the mosaic grains are distributed in a Gaussian way, then
ey = —2 < (A4)
f’iﬁ'nﬂ
For synthetic mica (Thermica)3®, having the chemical formula KMgaAISiaolez,
the d-spacing is 9.963 A , the density is 2.67 gm/cm®, and
Q=79cm?, (A5)
for a wavelength of 17.3 & (6g = 60°). The absorption length for this

crystal is calculated to be 79 cm. For a crystal of thickness T, placed
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in the symmetric Brapg reflection geometry, this model gives a reflectivity

QW(A)T/sinGB
Y() = s (A6)
1+ Q‘:I(A)T/sineB

for the cuse of zero absorption. Thus, experimentally, one approximates
this expression by eq. (Al).

"Rocking Curve' measurements were made on samples of Thermica placed
in a 2.24X wavelength neutron beam at the National Bureau of Standards
(NBS) reactor. For a 0,01 inch thickness the ''rocking curve' for a
1" X 1" piece is shown in Fig. Al. The measured FWHM after unfolding the
beam divergence was found to be 0.27° and the peak reflectivity was 4.2%.
Thinner pieces yielded mosaic spreads from 1/4° to 1/2° but lower reflec-
tivities.

As indicated in the text a crystal with a small mosaic iny and a
6.0° mosaic in x would best match the beam arrangement described in Fig.1l
and Table II. A composite crystal was fabricated with thin (0.010 inch)
pieces of Thermica sandwiched between thin (0.005 inch) wedges of aluminum
arranged to give a 6° spread in angle in the xX-direction and no additional
spread in y. The assembly composed of 15 such sub units was tested in
the NBS beam. The results are shown in Fig. A2 and show that the mosaic
spreads are different, the spread being about 6° (FWHM) in the x-direction
and about 1.25° in the y-direction. The peak reflectivity is 5% at 2,24 RA.

The peak reflectivity at 17.3R will be much higher. Using eq. (A6),

we can estimate this increase by writing

QVO)T = ¢l . (A6)
sIheB 51neB‘§ih <8g
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At A = 2,24R, 0p = 6.45°. For the assembly of crystals Yo = 0.05 at this
wavelength; this requires the constant ¢ to be

c=1.11X 107", (A7)
where A has been expressed in &, At 17.3R (éB = 60°), we then have

QW(O)T _ 1.11 X 107* (17.3)°_ 4 ¢

(A8)
sineB sin60° sin 120°

Thué, according to (A6)

Y(0) = Yo = 0.43. (A9)

A transmission measurement was performed using 18.7 X neutrons incident
on a Thermica crystal asscmbly similar to that described above. The reflec-
tivity was found to be 47% for a 1/2-inch total thickness of Thermica. This
result implies that the quantity Yo in zquations 59 and 63 may be nearer a

value of 0.5 rather than 1.0 as assumed in the calculations, in the text.

-——
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TABLE I. Limiting Velocities for Total Internal Reflection

of Ultra-Cold Neutrons

Material vMAx(m/s)a

Be 6.9
BeQ 6.9

b 8.2
Fe &.15
i %3
C 5.8
Cu 5.6
Al 3.22

a

scattering centers, a is the coherent scattering length and h is

Planck's constant.

bFerromagnetic materials have two limiting velocities depending on

_h /Na . . .
vMAx o /T where m is the neutron mass, N is the density of

the neutron spin direction relative to the magnetic field.
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TABLE II. Design Parameters For the Doppler Shifter
to Be Used at the Argonne Laboratory Intense
Pulsed Neutron Source
Source
Pulse rate 30 Hz
Beam Velocity 395 m/s

Phase Space Density
Pulse Width (FWHM)
Beam Diameter

Distance Source to Crystal

Rotor and Crystal
Radius

Bragg Angle
d-spacing

Mosaic Spread (nx)
Mosaic spread (ny)
Crystal Dimensions
Crystal Thickness

Shutter Time Interval

Bottle
Bottle Opening
VMAX (Beryllium)

Volume

0.66 n/cm® - (m/s)®
200 us
10 ¢cm

480 cm

120.2 cm
61.2 degrees
9.968 (Thermica crystal)
1/2 degree
3 degrees
S5cmx 2 cm
0.4 cm

3 ms

S5cmx 6 cm
7 m/s
10 &
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i

TABLE III. Expressions for the Functions of Aj’ [:j, Cj
A, B, C.
J J J
2
) 1 1 2AVJ’( AJ;(
(Z+-3) - oy
v W w2 w2
Cc X X X
1 ] 28V ar?
(—;—- + — - ) - .._L
“2 2 ”2
Ve y Yy y
Z ) L
1 1 Ly ,Lot ZAV'Z AV; )
(2+2+ 4 2 ! 2.2 2 (——z“+-z-)
o - -]
v Wz (an) 'rg an) 'rg W2 Wz 'rg
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TABLE IV. Bottle Filling Rates and Stored Densities®

b < 3.4 fen ©
Vaax (V/'S) €ps Np q%Ax(n/Cm ) T €5)
——
5 0.11 580 70 230
7 0.10 1300 120 200

4pssumes a 108 bottle with a 30 cm® opening.

bAssumes a5 cmx 2 cm thermica crystal with ny = 3°, nx =1/2°,
6p = 61.2° and shutter speed of 3 ms. This is the efficiency of
scattering into a sphere in velocity space of radius VMAX
“Number of neutrons per pulse entering the bottle.

dAsymptotic density of stored neutrons.

eFilling time to arrive at the asymptotic density.
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Fig. 3.

Fig. 4,
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FIGURE CAPTIONS

An overall schematic diagram of the apparatus to be used to search
for the neutron EDM at the pulsed sources at Argonne National
Laboratory. The Doppler-shifter (rotor) is currently being tested

at the ZING-P!' source. It is 2.4m in diameter and turns at 30 Hz.

This figure defines the symbols used in the text to describe the
Doppler-shifter as viewed in the laboratory (A) and as viewed in
velocity space (B). The velocity vector $k of the moving crystal
makes an angle B with the beam center line (;) when the center of
the crystal passes the beam center. The nominal Bragg angle eB

is re}ated to B by OB = m/2-8.

This diagram shows the velocity space volumes effective in the

Doppler-shifting process, and how the neutron distributions as

viewed in the laboratory (L) and in the moving (R) frames are

related, The dimensions W = 2.35 W_and W_ = 2.35 W_ are given
A A X X

by eqs. (10) and (9) respectively. The third dimension

Wy = 2,35 wy of volumes B' and C is given by eq. (11).

This figure shows the overlap (shaded region) of the Doppler

. . . . v
shifted neutrons with a sphere of radius Vinax 1P the VL v'L
plane. The top part (A) of the figure is for the point x = 0,

y = 0 on the crystal face. The bottom part (B) of the figure is
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for a point x = 2 cm, y = 0. The machine parameters used to

construct these figures are given in Table II,

This figure shows the Ultra-Cold Neutron Source intensity Su c
at various times t as a function of position x across the crystal

face. The parameters of Table II were used as input data.

The total Ultra-Cold Neutron production rate, which is the
integration of the curves of Fig. 5 over the crystal area, is
plotted here as a function of the rotor angle 6 = wt (solid curve).
The y-dimension of the crystal was taken to be S cm, while the x-
dimension was 2 cm. Also shown are the results for the Monte Carlo
simulation (dashed curve). The cross hatched region is the number
of neutrons arriving in the bottle. Parameter values were set

using Table II. The crystal reflectivity Y, was taken to be 100%.

This figure shows a comparison between the Monte Cario simulation
of multiple reflections within the crystal and the analytic cal-
culation taken from Ref. 37. The slight differences observed are
due to the finite crystal size taken in the Monte Carlo simulation

whereas the calculation assumed a semi-infinite crystal.

The velocity distribution of neutrons in the bottle is plotted.
The average velocity is 4.4 m/s for VMAX = 7 m/s. The parameters
in Table II were used as input to the Monte Carlo program, dN/dv

is the number of neutrons per unit velocity increment.
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The expected asymptotic storage density of neutrons in the bottle
after many pulses is plotted versus the bottle storage time, Tge
The parameters input for the Monte Carlo program were set using
Table 1II. The crystal reflectivity was taken to be 100%.

This histogram is the '""rocking curve" for a piece of Thermica
described in the appendix. The measurements were made at the
Nationzl Bureau of Standards reactor in a 2,24 A neutron beam.

The sample dimensions were 1" X 1" and 0.01 inch in thickness.

The two histograms presented here are the ''rocking curves" for

an assembly of thin Thermica crystals separated by wedges of
aluminum as described in the appendix. There were 15 such sub-
units having one 0.01 inch piece of mica sandwiched between 0.005"

pieces of aluminum. The resulting curves indicate a larger mosaic

width in x than in y as desired.
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