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Production of Ultra-Cold Neutrons Using Doppler-Shifted 

Bragg Scattering and an Intense Pulsed Neutron Spallation Source 

T. W. Dombeck and ,J. W. Lynn 

University of Maryland, College Park, Maryland 20742 

S.A. Werner 

University of Missouri, Columbia, Missouri 65201 

T. Brun, J. Carpenter, V. Krohn, and R. Ringo 

Argonne National Laboratory, Argonne, Illinois 60439 

We present an analytic and a computer generated simulation of 

the production of Ultra-Cold Neutrons (UCN) using Bragg scattering 

from s moving crystal to Doppler shift higher velocity neutrons into 

the UCN region. The calculation was carried out with a view toward 

its application at the Intense Pulsed Neutron Source (IPNS) now under 

construction at Argonne National Laboratory. This method for the 

production of UCN appears well matched to a pulsed source, and we show 

that the UCN can be stored in a neutron bottle at the peak flux which 

can potentially be much higher than at the present high flux reactors. 

The predicted density of stored UCN indicates that a highly precise 

measurement of the neutron electric dipole moment (EDM) will be possible 

within the next few years. 



I. INTRODUCTION 

Methods io produce Ultra-Cold Neutrons (UCN) have aroused considerable 

interest in rec.-e.nt years as potentially providing a means to carry out a 

very precise search for the electric dipole moment (EDM) of the neutron.1-6 

The reason for. thiz is that UCN can be confined in a "bottle" for long 

periods of tim.?. thus increasing the measuring time and hence the sensi-

tivity to the r.ciii ::on EDM by perhaps as much as four orders of magnitude. 7- 8 

In this p?.per wo Ascribe a technique in which UCN are generated by Doppler-

shifting cold nwi?ons4»9»10»11('\»10A) produced in a pulsed neutron source^ 

down to ultra-co"d velocities using Bragg reflection from a moving crystal. 

We show that the density of UCN which can be stored in a bottle is limited 

by the peak density in the source, and not by the time-averaged density. 

For this reason, cne pulsed neutron source appears very attractive for 

this application since peak fluxes exceeding 1016 n/cm2-s are expected 

to become available within a few years.12 

The observation of a neutron electric dipole moment would be the first 

example in vnlih v and T symmetries were violated in a particle interaction. 

CP noncons ervstr;<i was observed in the K° - K^ decay system,13 and many | 

theories attonpt.r.ng to explain CP violation predict, as a consequence of; 

the CPT theorem, a finite neutron EDM. Stimulated by this theoretical 

speculation, a number of precision experiments employing magnetic-reso-

nance spectrometers have searched for the neutron EDM. The most recent 

measurement pieces an upper limit on its existence of 3 X 10~2lf e-cm.11,-15 

This limit has already eliminated many theories which predicted larger 

EDM values, however., a few exceptions remain. Among them is the prediction16 
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containers, the most recent UCN beam at the high flux reactor at the 

Institute Max Von Laue - Paul Langevin (ILL), Grenoble, France is capable 

of storing neutrons with a density of one per cm3.5 A neutron bottle 

ejqperiment has been proposed using this beam to perform an EDM measure-

ment with a precision of 10~26 e-cm.28 

The UCN source described in this paper is currently under construction 

and will be used in conjunction with the Argonne National Laboratory 

Intense Pulsed Neutron Source (IPNS).12 This source produces short bursts 

of fast neutrons from a spallation target bombarded by high energy protons 

(500-1000 MeV). The neutrons are then slowed in a hydrogenous moderator. 

The planned UCN facility will take advantage of the peak flux from the 

moderator to fill a bottle by Doppler shifting pulses of neutrons from 

a velocity of about 400 m/s down to the UCN region (0 to 7 m/s) using 

Bragg reflection from a moving mica crystal. A shutter will let neutrons 

into the bottle when the pulses arrive and close the bottle between pulses, 

tn this way the bottle is filled by many pulses as if by a steady beam at 

the peak flux. The pulsed nature of the source results in a relatively 

unimportant increase in the filling time fv one minute) compared to that 

necessary at a steady-state source. 

In the following section we ptesent a brief description of the appa-

ratus and the experimental arrangement. In section III we will discuss 

analytically the effectiveness of Doppler shifting cold neutrons down to 

ultracold velocities while in section IV we will treat this same problem 

using numerical Monte Carlo methods. The main advantage of doing this 

problem analytically is that we can more easily examine the qualitative 

dependence of the efficiency of producing and utilizing Ultra-Cold Neutrons 

• 
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on the various experimental parameters. However, in order to carry the 

analytic calculation to completion, it is necessary to make certain 

approximations which are not necessary in the numerical treatment. 

Agreement between the results of these two approaches has added significant 

confidence in our estimates of the Ultra-Cold Neutron storage density 

achievable at the Intense Pulsed Neutron Source. 
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II. APPARATUS AND BEAM CHARACTERISTICS 

The Doppler Shifter Assembly is shown in Fig. 1. Neutrons leaving 

the spallation target are cooled by a cold hydrogenous moderator (10 X 

10 X 5 cm3)at 20°K. The calculation of the neutron flux leaving the mod-

erator involves specifics about the arrangement of the target and the 

moderator. However, it appears that with the proper placement of the 

moderator a time average thermal flux f of 6 X 1011 n/cm2-s will be avail-

able at IPNS-I.12 The peak of the velocity distribution vT for a similar 

type of moderator has been measured to be 650 m/s29 and the pulse width 

T is expected to be 200 ys and not to change much down to a velocity of 

395 m/s. 

The neutrons from the moderator travel through the shielding wall 

in a beam tube containing He gas at room pressure (diameter MOcm). This 

tube can be constructed to act as a beam guide. The Doppler shifting 

crystal is mounted in a vacuum near the edge of a rotor operating at ths 

same frequency and in phase with the arrival of neutrons from the moderator 

(30 Hz for IPNS). The rotational sense is such that the crystal moves 

away from ths source when it is in the incident beam. The tangential veloc-

lty v^ and the angle at which the crystal is mounted is set by the Bragg 

condition and the velocity space volume to be reflected as UCN. 

After Doppler shifting, the UCN enter part of the bottle facility 

through a shutter device arranged close to the edge of the rotor. The 

shutter opens and closes in phase with the passing crystal and traps the 
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neutrons in the bottle. After many pulses the bottle will arrive asymp-

totically at the maximum density of stored neutrons; i.e., when the number 

entering through the shutter equals the number of neutrons lost between 

pulses. 

The neutron bottle is capable of storing neutrons up to a certain 

velocity (v^^D which is determined by the limiting wavelength at which 

total internal reflection6 occurs off the walls. (In Table I we have 

listed a number of wall materials and their values of Vj^.) Owing to 

component mixing on reflection from the walls the acceptance of the bottle 

in velocity space is approximately a sphere' with a volume 4TTVĵ /̂3. The 

velocity space volume reflected by the crystal should match this acceptance. 

The sir cer consists of an auxiliary rotating disk perpendicular to 

the rotor and in phase with it. A slot cut in the disk periodically opens 

the bottle entrance. The parameters for the source, rotor, crystal, and 

the shutter that will be used at Argonne Laboratory are given in Table II. 

The average phase space density n(v) at the source can be computed 

from the time average flux and is given by 

n(v) = e"Cv/V2 (1) 
2ttv* 

where v̂ , is the mean velocity corresponding to the moderator temperature 

mv£ = kT). Using the values for <{!" and vT given above, the time average 

phase space density is 0 . 0 0 4 n/cm3-(m/s)3 for IPNS-I. The peak phase space 

density is found by dividing (ID by the duty factor FAR, where f is the 

frequency of pulses ( 30 Hz) and the At is the effective pulse width 

o\,200 us, FWHM) yielding 
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iipCv) = 0.66 n/ciii3 - (m/s)3 (2) 

It is useful to calculate the maximum peak density of neutrons 

available for containment as a figure of merit to compare with the final 

stored density. The region of phase space which can be shifted from a veloc-

ity around 395 m/s to the UCN range has a volume given by 4ttv^ax/3. The 

density of neutrons in this region follows from (2) 

^MAX " " p i 1 VMAX - l°3 n/c m 3 ( f o r C3) 

According to Liovilie's theorem we cannot exceed (3) in the final bottle 

density. Furthermore, this result is decreased by various inefficiencies 

which arise in the Doppler-shifting and collection process. In the 

following sections we attempt to identify and calculate these inefficien-

cies. 
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III. ANALYTICAL TREATMENT OF THE DOPPLER-SHIFTER 

The main physical characteristics of Bragg reflection by a moving 

crystal are well-known and have been checked experimentally.9'10'11 * 30'31'32'33 

The difficulty in applying the results of these papers directly to our 

problem arises from the fact the incident beam is pulsed and that the 

crystal is both rotating and translating. The analysis presented here is 

based on the geometrical opportunities and constraints achievable at the 

pulsed neutron source IPNS-I scheduled to begin operation at the Argonne 

National Laboratory in 1980. 

A. Velocity Transformations 

Consider a crystal mounted rigidly to a rotor of radius R rotating 

with angular frequency w as shown in Fig. 2. The reflecting planes in the 

crystal are set at an angle B with respect to the local radius vector ̂  of 

the rotor (see Fig. 2a). The angle between the velocity vector vR and the 

central ray of the incident beam is also 8 when the crystal passes the 

beam center. It is important that this angle is not zero, as we shall 

see. 

If we Bragg reflect neutrons of laboratory velocity v ^ from a crystal 

moving with velocity vR, the effective incident velocity of the neutron 

in the moving system is 

*nR = "nL " ' M 
The velocity of the reflected neutrons in the moving system is determined 
by the Bragg relation 
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where G is the reciprocal lattice vector corresponding to the reflecting 

planes C|G| = , and the magnitude of the incident and reflected velocity 

vectors in the moving coordinate frame must be <?qual, 

Î ARI - I%RI • <6> 
The laboratory velocity of the reflected neutrons is then 

VnL " vAR + VR ' ^ 
It should be noted that the above equations require 

v« . v . . (8) nL nL m ', 

A velocity-vector diagram of these equations is shown in Fig. 2b. It will 

be noted from this diagram that the reflected neutron velocity in the lab-

oratory frame is zero when the incident velocity vnL is directed anti-

parallel to the reciprocal lattice vector £ and equal in magnitude to^~ G. 

This condition can, in principle, be met for any crystal. However, in 

order to keep the tangential velocity of the rotor down to some reasonable 

speed, it is desirable to select a crystal for which G is fairly small. 

This requires choosing a crystal which has as lai-ge a plane spacing d as 

possible. In terms of availability, strength and neutron reflectivity 

properties, synthetic mica seems to be the optimum choice. Another con-

sideration is also important: in order to utilize a reasonable beam area 

there will necessarily be a gradient of the velocity v^ across the surface 

of the crystal. Consequently, the condition for Doppler-shifting neutrons 

down to near zero velocity can only be met for some fraction of the crystal 

area at a given instant of time. This velocity gradient is, of course, 

smaller the lower vD, which also requires (5 to be as small as possible. On 

the basis of the numbers for a rotor of practical dimensions, this consider-

ation seems to rule out the commonly used neutron.monochromators Cu, Be, and 

pyrolytic graphite for this application. 
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B. Effective Volumes in Velocity Space 

Since the crystal is necessarily imperfect, having a mosaic structure, 

and the incident beam is divergent and polyenergetic, we must inquire about 

the volume of neutrons in velocity space actually reflected by the crystal. 

In fact, we need to know this volume at each instant of time t, and at each 

position (x,y) on the crystal face. We need also to calculate the inter-

section or overlap of this volume in velocity space with a sphere of radius 
VMAX c e n t e r e d a t =0. It is only neutrons within this sphere which are 

termed Ultra-Cold and can be stored in the neutron bottle. 

Suppose the phase of the rotor is such that the center of the crystal 

is in the center of the beam when the center of the neutron pulse of wave-

length = (= 9„96 X for mica) arrives at the crystal. Call this time 

t = 0. Consider also, only the center point of the crystal (x=0,y=0) for 

now. Take point 0 to be the center of neutron velocity space as shown in 

Fig. 3. The crystal will reflect neutrons of incident velocity vnR in the 

moving frame in the velocity-space volume B into the volume B1 with an 

average efficiency decreasing with increasing distance for the centroid 

of B. The volume of incident neutrons as viewed in the laboratory frame 

corresponding to the volume B is labelled A in this figure. Transforming 

reflected neutron velocities within B' back to the laborsitory frame leaves 

them within the volume C centered at v ^ = 0. The Bragg angle in vhe frame 

of the moving crystal is 0g. The dimensions of these volumes can be obtained 

from standard monochromator theory.3* The dimensions of each of these volumes 
in the v-v plane are equal, as shown in Fig. 3. If we assume that the X z 
transmission function of the collimator is Gaussian, and that the reflectivity 

of the crystal is also Gaussian, then 
Wx = K l ax > <» 



13 

and 

Wz - vj nx sina tan* . (10) 

In the direction perpendicular to the plane of Fig. 3, the volumes A and 

B are of height v°L â ,, while the y-dimension of volumes B' and C is 

Wy ' VnL 7 n y + ay • 

Here a^ and â . are the Gaussian parameters specifying the in-plane and 

out-of-plane collimations, while n and n are the in-plane and out-of-x y 
plane Gaussian mosiac spread parameters. The numerical factor 2.35 

(= 2/ 2£n2) relates the Gaussian parameters to the full-width-at-half 

maximum (FWHM) in Fig. 3 of each of these distributions. Thus, the 

boundaries of the volumes shown in Fig. 3 are meant to be 50% contours of 

probability. They are actually ellipsoids. The superscripts on and 

v^ indicates the nominal values of vnL and vR. 

The heights of the volumes B' and C are larger than those of the volumes 

A and B because the out-of-plane mosaic spread of crystal broadens the 

distribution of neutrons upon reflection in the y-direction. In fact, 

aside from a loss of neutron density due to the efficiency of Bragg reflec-

tion, the density of neutrons in velocity space is decreased by the ratio 

r , °v r (12) 
A 2 + a2 
y y 

due to this effect. It is therefore clear that it: is desirable to make the 

out-of-plane mosaic spread t^, small in comparison to the out-of-plane col-

limation oty. From eqs. (9), (10), and (11) we see that the volume C of 

neutrons in velocity space resulting from Bragg reflection is 



14 

(vol)c = (2.35)3WxWyWz = | (2.35)3 o ^ + (vJJL)3 tanB .(13) 

The reflected intensity will be proportional to this volume and will there-

fore be zero at 8 » 0. Thus, direct back reflection in the moving frame 

will give zero intensity. (There will be a vanishingly small backward 

intensity due to the Darwin width, but no contribution from the crystal 

mosaic spread.) 

C. Numerical Values of Parameters 

Before proceeding with a detailed analysis of the reflection efficiency 

as a function of time t and position (x,y) on the crystal face, we will 

first attempt to provide some qualitative feeling for the parameter involved. 

If we choose mica as the Doppler-shifting monochromator crystal, then the 

nominal incident neutron wavelength and velocity in the laboratory frame 

are: 

A°, » d . = 9.96 A , (14a) nL mica ' v 1 

and 

'nL s 3 9 5 m / s e C ' 
The Bragg angle is chosen to be 61.2° giving a B of 28.8°. This 

angle was chosen in order to have reflected a reasonable velocity space 

volume as given by eq. (13) while keeping the rotor design within practical 

limits. An optimal value of IS would be 37° which yields an increase of 

20% in velocity space volume at the expense of a higher rotor tangential 

velocity. 

Using g =» 28.8°, and the arrangement shown in Fig. 3 we find 

vnR = VR = 2 2 5 , 4 m / s e c ( 1 4 c ) 

If we phase the rotor to the pulsed source which operates at 30 Hz, then 
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the radius of the rotor should be 

R = v°/w = 1.202 m. (15) 

Thus, the crystal will arrive back in the incident beam when the next pulse 

of neutrons comes from the source. 

It is clear that we should choose the parameters a , a , rj , and n x y x y 
so that the dimensions of the volume C in velocity space are comparable to 
the size of a spherical volume of radius equal to the maximum velocity 
neutron which can be stored in a bottle. For a bottle made of Be this 
velocity is Vj^^ = 7 m/sec. To be explicit, suppose that the source 
area is Wg X Wg = 8.86 cm X 8.86 cm and the crystal can be placed a dis-
tance L = 4.8 m from the source: then 

o 
2.35 a = 2.35 a = Ws = 0.0185 rad. = 1.06° . (16) x y ~T 

Suppose also that the crystal has a mosaic width (FWHM) of 

2.35 nv = 0.052 rad. - 3° (17) 

The dimensions of the velocity space volumes as given by equations (9), 

(10), and (11) are then 

2.35 Wx = 7.31 m/sec. 

2.35 Wy = 8.08 m/sec. (18) 
2.35 W„ = 5.65 m/sec. z 

We have assumed 2.35 n, to be 1/2°. We therefore see that W , W , and W y x y z 
can be made comparable to ju 14 m/sec with reasonable values of the 

collimation parameters and the mosaic spread parameters. It is clear from 

these numbers that it would be advantageous to be closer to the source 

(than LQ = 4.8 m), or to use a beam guide to aid in bringing the source 

Out to the crystal. 
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There is another important preliminary numerical consideration: 

the crystal should remain in the incident beam for a large fraction of 

the time that neutrons of velocities within the sphere of radius Vj^, 

centered at v°L> are arriving from the source. The pulse width at the 

source for neutrons of velocity v°L = 395 m/sec is projected to be 

about12'29 

Tsource = 2 0 0 1Jsec« C 1 9 ) 

The difference in arrival times (at the crystal) of neutrons of velocities 

VnL + VMAX a n d viL " v MAX f o r Lo = 4'8 m i s 

^tarrival = L° - L° 1 Jh<L. = 395 ysec. (20) 
nL + MAX nL " VMAX (v^)2 

Thus, neutrons which are potentially useful for storage in a bottle will 

be arriving at. the crystal over a time span 

T . = T + At . , = 595 usee. (21) total source arrival M v ' 

The transit time of the center of the crystal across the beam of width 

W = 8.86 cm is 

At - W/sing = 773 ysec. (22) transit K v ' 
We therefore conclude that the transit time of the crystal across the beam 

is sufficiently long to utili/.e all those neutrons arriving at the crystal 

location which are of velocities suitable for storage upon being Doppler-

shifted down in velocity. 

D. Motion of the Center of the Velocity Space Volume 

We continue now to fix our attention on the center of the crystal 

at x • 0, y = 0 (the origin of x,y coordinates is fixed to the crystal). 
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As a function of time, this point moves across the beam. We will now cal-

culate the "trajectory" of the center of the velocity space volume C in 

velocity space as a function of time t. We first note that during the time 

interval Ttota^» the orientation of the crystal has changed by an angle 

^total = Thus» t*ie vector G will have rotated by this same angle. 

The effect of this rotation on the shape of the velocity space volumes of 

Fig. 3 is very small, and will be neglected. However, the centers of 

these volumes will move as a function of time due to the rotation of G. 

This is an important effect. 

Let the symbol VnL (t) describe the position of the center of volume 

A as a function of time. (At t = 0, ̂ nL(t) = v°L<) Similarly, let VnR(t), 

^R(t), and ̂ L(tD describe the position of the center of the volumes B, 

B', and C as a function of time respectively. According to eq.(4) we 

must have 

^ - X l ^ ~ VrOO" (23) 

Thus, the change in these velocity vectors, describing the centroids of 

volumes A, B, and B1 are related by 

. The magnitude of the velocity vector VR is constant; however, the direction 
-y of VR changes as the rotor turns. From geometry, we find 

A$r = wtv°[- cosS £ + sing 2]. (25) 

We now resolve the vector A^nL into components: 

^nL = AVnLx x + ^ y - A V ^ S . (26) 

It is clear that for the center point of the.crystal (x = 0, y = 0), which 
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is under consideration now, that 
A V n L y = 0 . (27) 

Since the center of the crystal has moved a distance v^t in a time t in 

the x-direction, we can calculate the change in VnL x with the aid of Figs. 

2a and 3. By similar triangles, constructed in real space (Fig,, 2a) and 

velocity space (Fig. 3), we have 

AVnLx W 
vnL Lo ' (28) 

Therefore, 
(vJsinS)t 

AVnLx = T VnL ' (29) 

where L is the distance from the source to the center of the crystal at o 
t • 0. We now know the x and y components of the vector AV^* We will 

now show that the z component is zero. At any time t, the centroids of 

the volumes B and B1 are connected by the vector JJJG (Bragg1 s Law); therefore 

and 

The length of the vector G is fixed. The change AG comes from the rotation 

of the crystal, namely 

AG * WtGx . (32) 

If we square both sides of eq. (30) and recall that Bragg scattering in 

the moving frame is elastic, that is 
i/»2 = v: nR nR1 Vj£ = V* (33) 
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we then have 

2V,o • G * i G z = 0. (34) nR ra 

The variation of this equation gives 

v°R • AG + AVnR • G° + * AG • G° = 0 (35) 

The last terra of this equation is zero, since AG (eq. 3;) is perpendicular 

to G° » -Gz. Writing out the components of the remaining dot products, we 

find 
AVnRz = -% A G x s " vR s i n £ i W t ' C36) 

where we have used eq. (32) and the fact v°R = vR. Equating the z-components 
of eq. (24), we have 

AVnLz " AVnRz + AVRz • <37> 
From eqs. (25) and (36) we see that 

so that finally we have 
A V n Rz=- A V R z > <38> 

AVnLz - 0. (39) 

Consequently, the centroid of the volume A moves in the St direction in 

velocity space, namely 

(v° sin$)t 
AVnL = - V ^ L * ' C40> 

0 

We need to use this result to find AV^L. This is easily done, since 

Using the fact that v°L G, and eqs. (32) and (40) we find 

v° sin0 
nL ̂  = C J T + ^ v J l * ' 
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This is a very important rebult. It tells us that the distribution of 

Doppler-shifted neutrons in velocity space moves only in a direction per-

pendicular to the incident beam as the rotor turns. To obtain a feeling 

for the size of this shift, suppose again that L Q = 4.8 m, 6 = 28.8°, 

u> • 271(30) rad/sec, and v°L = 395 m/sec; then |Av^L| = 8 . 3 4 m/sec at 

t = 100 ysec. Thus, we.see the centroid of the ultracold velocity dis-

tribution has shifted beyond Vj^ % 7 m/sec at a time t = 100 ysec. 

However, this is only for the center point on the crystal surface. Other 

points C*,y) on the crystal will become increasingly important for various 

other times t. The overlap of the Doppler-shifted reflected volume C • 

with a sphere of radius Vj^ at various times at x = 0, y =„0 is shown 

in Fig. 4a. The formulas for calculating the overlap at other positions 

Cx,y) are derived in the next section. The time evolution of the over-

lap volume at x = 2 cm, y = 0 is shown in Fig. 4b. 

E. Other Points (x,y) on the Crystal Face 

We now wish to generalize the result for given by eq. (42) to 

an arbitrary point (x,y) on the crystal face. We again resolve AV^ into 

components as in eq. (26). From geometry, it is apparent that 

Using geometrical arguments identical to those leading to eq. (29), we find 
that 

(43) 

r _ (v° sin&)t + x 
nLx . (44) o 
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We now need to find AVnIjZ» which will turn out to be non-zero in this case. 

Because we are considering a point (x,y) on the crystal which is further 

out on the rotor at, say 
R = R + A R = R + xcos &, (45) o o 
-»- -V the difference between VR and v° is now 

= v° [- cosB x + sinB z] wt + wx cosB[cosB x + sing z]. (46) 

The arguments leading to the expression for ^v
n R z given by eq. (36) are 

valid for all points (x,y). Thus, we have, using eqs. (36) and (46), the 

result for Av T : nLz 
AVnLz = AVnRz + AVRz " W x c o s $ s i n B = T" s i n 2 g • 

Eqs. (43), (44), and (47) are the components of the vector AVnL; 

therefore, using eq. (41) and eq. (32) we have 

(v° sinB)t + x 
4vii.<» - ̂ L t - V ' ^ ' f ' ^ ' r »• 0 o 

(48) 

This expression is the generalization of eq. (42) we have sought. AV^ 

here, gives the position of the centroid of the velocity-space distribution 

of Ultra-Cold Neutrons generated by Doppler-shifted Bragg scattering for 

each time t, and for each position (x,y) on the crystal face. 

F. The Efficiency of the Doppler Shifter, e^ 

The phase space density of neutrons nQ incident on the crystal is the 

same when viewed in the laboratory frame as when viewed in the frame of 

reference fixed to the moving crystal, that is 

no - V v V ' • V v *nR' V ' W 
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In the moving frame, the incident current density is 

The reflected current density in the moving frame is 
JAr£r' « = eDS JnRC?R> vnR, t). (51) 

This equation defines the efficiency of the Doppler-shifter. Under the 

Gaussian approximations we have assumed for the mosaic structure of the 

crystal, and the collimator transmission function, e^g is simply given 

by the probability contours of the volume B* of Fig. 3. That is 

eds^AR> - - 1 / 2 ( V V 2 - ^ ^ W V 2 * ' 
where 

6*Ar e v;RCt) - v;R(0) - A^nRct), (53) 

YQ is the unintegrated peak reflectivity of the crystal and r is given by (12), 

The efficiency eDg can equally well be expressed in terms of the velocity 

v ^ of the reflected neutrons in the laboratory frame: 

eDŜ AlP " rV*P<-1/2CvALx " AVALX>2^ " V 2 ^Ly " Kly^y ' 

1/2 Klz - AVAlz)2/Wz}-C54) 

This form will prove more useful to us than eq. (52). It should be noted 

that cDg is also a function of x,y,t, since the location of the centroid 

is explicitly a function of these parameters as given in eq. (48). 
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G. The Incident Neutron Phase Space Density nQ 

If we approximate the neutron source pulse by a Gaussian function in 

time, having a FWHM = x, then the phase space density of neutrons arriving 

at the crystal will be: L <5v 
-1/2 j[t + ]2/CT/2.35) 4 (55) 

I (V I2 J V r L > vnL' V • np e , ^ 

Here gives the difference between the beam-line velocity of a given 

incident neutron in the laboratory frame and the nominal incident velocity 
vnL' tliat i s 

P o 
vnLz s vnLz " v nL (56) 

The peak neutron phase space density is n_. The factor L «5v. / (v°.)2 p o nLz nL 

in the exponent of the expression (55) accounts for the fact that incident 

neutrons of velocity greater than the nominal velocity v ^ arrive at the 

crystal at earlier times. From the geometry of Fig. 3 it is easy to show 

that 

«vnL, " vnLz* <57> 

Thus, we can express nQ in terms of the reflected neutron velocities in 

the laboratory frame. 

H. The Source Density of Ultra-Cold Neutrons S ' u. c. 
The current density given by eq. (51) should be viewed as the source 

density $ for Doppler-shifted neutrons. It gives the number of neutruns 

"emitted" at the point (x,y) on the surface of the crystal per cm2 per 

sec at a time t per unit volume in velocity space. Each of these neutrons 

appears as a very slow neutron when viewed in the laboratory frame of 

reference. That is, the magnitude of the source vector 5 is the same in 
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both, the moving frame and the laboratory frame, only its direction is changed 

due to the coordinate transformation. Thus, we have 

S " ̂  eD.S. vnR % * C58> 

or, using eqs. (51), (54), and (55) we see that 

Z VnL „ -l/2[(v\ - AV' )2/W2 + (v't - AV' ) 2/W2 + (v« - AV'r )2/W2] S = ̂ j— rYQe ' 1 v nLx nLx' x nLy nLx' y nLz nlzJ zJ 
nL L.v' 

x v° n * 1Z/ Ct/2. 35) 2 (59) 
* VR p 6 1 nL; 

In going from eq. (58) to (59) we have replaced vnR by its nominal value 

which is equal to the nominal rotor velocity v° as can be seen from Fig. 3. 

Only neutrons having speeds below some maximum speed vmax can be stored 

in the bottle. We then are interested in 

\ . c . - j * d ^ L . (60) 
sphere 
of radius 
v 
max 

Instead of assuming there is a precise cutoff speed vma x we will approximate 

the neutron bottle capture probability by a Gaussian: 

^capture I U (61a) 
Where 

c - W 2 ' 3 5 * C61b> 
This approximation allows us to explicitly carry out the integration of eq. 

(60). Thus, we can write the source density $ „ for Ultra-Cold Neutrons U« CT 
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as 

t - t (62, u.c. nL . (62) 

The magnitude of this current density can be analytically evaluated. The 

result is 

where 

Su.c. = * V p v R V ** C 6 3 ) 

/^ e-l/2[C. -B2/4A.] ( j = x > y , o r z ) . (64) 
J A. 

The dependence of S on x,y, and t is contained in the functions A., VI* C • J 

Bj, Cj. The functions ?.re displayed in Table III. (For convenience we 

have defined T = T /2.35). Note that the time t appears explicitly in s 
these expressions and also implicitly in AV', AV' AV' (see eq. (48)). X J" Z 
Note also that we have suppressed the additional subscripts nL on the 

velocities. The results depend upon the mosaic and collimation parameters 

n , n , a , and a, through the definitions of W , W , and W (eqs. 9, 10, x y a y x y • 
11), and explicitly on the pulse width T and the maximum velocity v lilaA 
,2.35 . 

Based on the instrumental parameters given in Table II, we have per-

formed numerical calculations of S given by eq. (63). We find that 
U» CI 

S is only a weak function of the y-coordinate on the crystal face. The U • w • 
dependence of S on the x-coordinate at various times t is shown in Fig.5. u* c« 
As tl.:. rotor turns and brings the crystal into the beam, Ultra-Cold Neutrons 

are first generated from the left-hand side of the crystal(x > 0, see Fig. 2). 

At t = 0, the crystal is at the beam center line, and the emission of Ultra-

Cold Neutrons j.s symmetric in x across the crystal face. As the rotor con-

tinues to turn (t > 0) the right-hand side (x < 0) becomes the primary source 

of Ultra-Cold Neutron production. For |t| » T , the edges of the collimator 
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will shadow a part of the crystal. For a collimator of width W (at the 

crystal), the x-coordinate of the collimator edges projected onto the 

crystal is given by 

xL = j - R6 sinB (65a) 

on the left, and 

xR = - | - R6 sinB (65b) 

on the right. At t = -180ys, xL = 6.39 cm, and xR = -2.47 cm. At t = +180 ys, 

x^ = 2.47 cm and xR = -6.39 cm. Since the Ultra-Cold Neutron production is 

small outside this time frame (-180 ys < t < 180 ys) we conclude that the 

effects of this collimator shadowing consideration are minimal for a crystal 

of width fi 5 cm. For a crystal of width 2 cm, we have integrated the curves 

of Fig. 5 over the crystal face to obtain the total production rate of 

Ultra-Cold Neutrons. We display the results of this calculation as a 

function of the rotor angle 8 = ut in Fig. 6. If we integrate this curve 

over the time t, we have the total Ultra-Cold Neutron production per pulse; 

the result is 

Ultra-Cold Neutrons/pulse = 6,000 (IPNS-I) . (66a) 

This number should be compared with the total number of neutrons in the 

velocity space volume A (Fig. 3) integrated over time. This is the maximum 

number of neutrons coming from the source which could potentially be Doppler-

shifted to Ultra-Cold velocities; it is approximately 

Nmax " np J vmax vnl " 76'000' C™-1) • <66b> 

Here, A (= 5 cm X 2 cm) is the area of the crystal. Thus, the overall 

efficiency is about 8%. The main sources of the inefficiency are that the 

mosaic spread of the crystal (3°) is too small and the collimation (av,av) x y 
is also too small. Using a beam guide and a 6° mosaic crystal, we expect 
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that this efficiency could be improved by as much as a factor of 5. (It 

is possible to artificially increase the mosaic spread in one direction by 

using an assembly of thinner crystals with wedges between. For example, 

refer to the Appendix.) 
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IV. MONTE CARLO COMPUTER SIMULATION 

In this section we describe a more exact numerical calculation of the 

Bragg reflection process to produce UCN and their subsequent collection 

in a neutron bottle. The calculation was carried out for the specific 

arrangement shown in Pig. 1 and the parameters in Table II, and was checked 

using the analytic formulae developed in the previous section. 

A. General Discussion 

In order to avoid many of the approximations used above to describe 

the details of the Bragg scattering process, the computer simulation was 

carried out at a microscopic level. The crystal was pictured as a collection 

of small mosaic blocks Gaussianly distributed in angle about the nominal 

normal to the crystal face and each capable of reflecting neutrons with 

100% probability if the Bragg angle were satisfied to within the Darwin 

width (refer to the Appendix). The crystal was assumed to have finite 

dimensions, and to have a mosaic angular spread nx in the x-direction and 

riy in the y-direction. Finally, once a neutron was reflected its depth 

of penetration into the crystal was noted and the neutron was permitted to 

undergo multiple reflectio,is. As the flight path within the crystal could 

be fairly long, the absorption probability was also considered. 

The Monte Carlo simulation begins with neutrons at tht source, allowing 

them to propagate through the beam tube resulting in a time-broadening of 

the pulse at the crystal due to the spread in incident velocities. The 

rotor angle changed with time according to 0 = cot + a with the phase of 

the rotor a being a variable. It was set externally by optimizing the 

number of neutrons reflected into the sphere in velocity space of radius 

v . Neutron trajectories after Reflection were checked to determine if 
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the neutron arrived at the bottle entrance during the time the shutter was 

open. The phase angle between the shutter and the rotor was also a variable 

and set externally by optimizing the total number of neutrons collected in 

the bottle per pulse. 

B. Scattering Process Simulation 

For a given incident neutron in the crystal frame, with a velocity 

vector vnR oriented with direction cosines cos£x and cos£y, the probability 

of finding a mosaic block satisfying Bragg condition (5) is35 

K1 52 
PCx.y) = y i ^ p expl - \ ( • -£.)]. (67) 

x y 'x y 
The probability of scattering at a point in the crystal at distances 

between I and Z + dl along a trajectory is given by 

PjidZ = e~^s Zsd«, (68) 
where is the probability of scattering per unit length which can be 

calculated using (67) 

Zs - QP(x,Z) (69) 

For 17.3 A neutrons and a fcragg angle of 61.2°, Q is 7.9 cm"1 for the 

synthetic mica crystal described in the Appendix.36 This yields an 

average penetration depth of 0.0162 cm for a crystal with a 3° mosaic 

spread. The average distance traveled by a neutron inside the crystal, 

including multiple rescattering, was found to be about 1/3 millimeter. 

It was assumed that the crystal did not rotate during the time period 

(including all rescatters) that the neutron spent inside the crystal. This 

last approximation was reasonable as the probability for scattering changed 

by only 10% for a rotor angular change experienced in a 10"" sec. time period. 
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For neutrons moving at 225 m/s in the crystal frame this would correspond 

to a total flight path of 2 cm inside the crystal, far from the average 

flight path indicated above. 

The Monte Carlo results were compared with a published analytic cal-

culation of a multiple scattering problem37 and the results are shown in 

Fig. 7 for single and triple reflections. The explanation of the coordinate 

h is also shown in the figure. The curves are in good agreement. These 

results lend confidence that the program was adequately simulating the 

details of the scattering process in the crystal. 

* 

C. Normalization 

Neutrons were randomly generated across the surface of the source shown 

in Fig. 1 within some velocity volume Av , Av, Av around a nominal v°T x y z z l 

setting of 395 m/s. The time variation of the pulse at the source was 

assumed to be Gaussian in a manner which was used to obtain equation (55). 

Thus the phase space density ng at the source was assumed to be 
-t2/2T2 

ns(x,y,z,vx,vy,vz,t) = np e " g . (70) 

where n is the peak phase space density and T = T/2.35 (as in the previous 1f o 
section). As the average v ^ « the overall normalization used in the 

Monte Carlo calculation for each generated neutron was 

Norm = npAvxAvyAvz7rr2vzLTg/NG (71) 

where rg was the source radius and NQ the number of neutrons generated in 

the program. 
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D. Results 

In Fig. 6 we make a comparison between the predicted Monte Carlo 

production rate of Ultra-Cold Neutrons S as a function of rotor angle and 

the analytic results presented in the previous section. The shapes of the 

curves agree but the computer simulation is 14% higher and predii ts the 

total UCN production rate of 

Ultra-Cold Neutrons/pulse = 7,000 . (72) 

The reason for the disagreement is due to the approximations made in the 

analytic calculation where we ignored the time variation of the distance 

from the source to the crystal, and we approximated the collimation and 

^capture (eq' 6 1 ) h y G a u s s i a n s' 
Also shown in Fig. 6 is the number of neutrons collected in the bottle 

(cross hatched region). This number per pulse is 

Np = Ultra-Cold Neutrons collected/pulse = 1,300 . (73) 

Comparing (72) and (73) shows that the collection efficiency is about 19%. 

This is the efficiency expected as the solid angle subtended by the bottle 

opening is ̂  0.4 of a sphere while the finite time the door remains open 

(3 msec) allows only 50% of the neutrons heading toward the bottle to 

enter. It should be noted that the collection efficiency does not effect 

the final density of stored neutrons as this depends on the flux of UCN 

coming off the crystal which remains constant for many milliseconds until 

the reflected cloud of UCN diffuses away. However, the filling time is 

effected by the collection rate. 

In Fig. 8 the velocity distribution of neutrons in the bottle is shown 

for vMjVY = 7 m/s. Their mean speed is v = 4.4 m/s. The deficiency of 
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neutrons above 6 m/s is caused by a smaller velocity space volume being 

reflected than can be captured in the bottle. This mismatch was noted 

earlier in the previous section and can be corrected by a larger mosaic 

spread and the use of a guide tube in the beam. 

For a given N^ rate, the final density P^^ to which the bottle can 

be filled depends on the loss rate out of the bottle, i.e., the loss of 

neutrons out of the door when the shutter is open plus the los^js contrib-

uting to the overall bottle storage time, This storage time is charac-
-t/T 

terized by an exponential decay e B . As noted earlier Tg should be 

1000 s optimally, but has been measured to be much less. Therefore, we 

present the values for Pj^ as a function of Tg. 

The loss through the shutter is computed using gas kinetics assuming 

that the UCN behave as an ideal gas inside the bottle. From elementary 

statistical physics38 the loss rate per unit time through a shutter with 

an area A is 

v = j pAv (74) 

where p is the neutron density in the bottle at time t and v" is the mean 

speed of the neutrons in the bottle. 

For tq, Np and equation (72) , with v taken from Fig. 8; Pj^ was 

estimated for IPNS and plotted in Fig. 9. The density approaches saturation 

for t t ^ 300s and is 
PMAX = 1 2 0 n / c m 3 ' C75) 

This does not imply that x_ values larger than 300s are not desirable. D 
This is clearly dependent on experimental details and can be very important 

in an EDM measurement, where the sensitivity varies inversely to T. 
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In Table IV the asymptotic densities and filling times are listed. , 

For a 10 liter bottle these times are generally on the order of minutes 

or about 6000 pulses. The total number of stored neutrons is predicted 

to be 1.2 X 10®. 

In the above calculation we have assumed chat the crystal reflectivity 

is 100% though it may be considerably less (refer to the Appendix). There 

will also be absorption losses in the crystal holder and losses of neutrons 

due to the loose fit of the shutter over the bottle mouth. The sum of 

these effects could reduce the stored density by a factor of 2 or 3. 

V. CONCLUSIONS 

The two independent calculations presented above are in good agreement 

for the production of Ultra-Cold Neutrons using Doppler-shifting at the 

Intense Pulsed Neutron Source. Given the range of uncertainties the density 

stored neutrons is predicted to be between 40 and 120 n/cm3. Using 

these numbers to estimate the sensitivity in a proposed EDM experiment, 

we conclude that a measurement with a statistical uncertainty near 10 

e-cm can be performed. However, a practical experiment also requires 

various systemmatic effects to be reduced in order to achieve this 

sensitivity. *»8»1'»>28 

The Doppler-shifting method described in this paper is well matched 

to a pulsed source as the Bragg reflecting crystal is only effective over 

a short period of time. However, there is an advantage in using this method 

to produce UCN even at a steady state source in that the primary transport 

velocity is much higher ('v* 400 m/s) 
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and the UCN are produced closer to the experimental area. The absorption 

losses of UCN that can be severe in a reactor beam are much reduced. 

There are a number of inefficiencies that have been identified in the 

Bragg scattering off a moving crystal. The total efficiency of scattering 

into a sphere of radius v was found to be ̂  10%. Using a guide tube max 
in the incident beam and a broader mosaic spread could yield a factor of 

5 increase in neutron density. The remaining inefficiency is due to the 

velocity differential produced across the crystal by the differential in 

radius on the rotor and the time slewing of the incident pulse. Also, a 

Bragg angle of 61.2° is not the optimal value for the maximum efficiency. 

Building a larger rotor and moving nearer the source would help reduce 

these losses. However, such modifications are limited by practical con-

siderations . 

The bottle collection efficiency was found to be ̂  20% of the UCN 

produced. As noted in the previous section this does not effect the final 

density in the bottle, however the filling time is increased. Using 

reflectors placed around the rotor more of the solid angle can be reflected 

toward the bottle opening. In this manner a factor of 2 shortening of the 

filling time may result. 

The shutter mechanism insures that the bottle is filled as if by an 

incident beam at the peak flux of the source. Pulsed neutron sources can 

be expected to improve their peak intensities in years to come and a 

corresponding increase in density of stored UCN can be expected. On the 

other hand, it is doubtful that much higher thermal fluxes from steady 

state reactors are possible due to heat transfer limits and construction 

and operating costs. 
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There are a number of additional advantages working at a pulsed source 

over a steady state reactor. Background levels are in general reduced as 

the time-average flux is much lower. As the heat load and radiation damage 

are smaller in pulsed sources, better cold moderators may be possible to 

construct and operate than have been possible for reactors resulting in 

an increase in fjux at the longer wavelengths needed for the Doppler-

shifter. 
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APPENDIX 

Details of Bragg Scattering by a Crystal 

Bragg scattering off a mosaic crystal can be characterized by two 

parameters: The peak reflectivity y0 and the effective, in-plane mosaic 

width, n0££ [rocking curve width]. If we approximate the rocking curve 

by a Gaussian. then the reflectivity is 

y (A) = Yo e" A2/i2neff CA1) 
» 

where A is the orientation of the crystal with respect to the nominal 

Bragg setting. In Darwin's mosaLc crystal model, the probability per 

unit path length for a neutron to be Bragg reflected within the crystal 

is 

2SCA) = QW(A), (A2) 

where W(A) is the distribution function describing the orientation of 

mosaic grains, and Q is the crystallographic quantity: 
Q . W (A3) 

V!ell s l n 29B 

Vcell t n e v o l u m e o f tlie cell» 9g is the Bragg angle, X is the 
neutron wavelength, and F is the structure factor. If we assume that 
the mosaic grains are distributed in a Gaussian way, then 

1 e" W(A) " . (A4) 
/"2inH 

For synthetic mica (Thermica)36, having the chemical formula KMg AISi 0 F , 
3 3 1 2 2 

the d-spacing is 9.963 A , the density is 2.67 gm/cm3, and 

Q = 7.9 cm"1 , (A5) 

for a wavelength of 17.3 A C0B = 60°). The absorption length for this 

crystal is calculated to be 79 cm. For a crystal of thickness T, placed 



c-> 

in the symmetric Bragg reflection geometry, this model gives a reflectivity 
QW(A)T/sin6R 

Y(A) - , (A6) 
1 + QW(A)T/sin9R » c 

for the case of zero absorption. Thus, experimentally, one approximates 

this expression by eq.(Al). 

"Rocking Curve" measurements were made on samples of Thermica placed 

in a 2.24A. wavelength neutron beam at the National Bureau of Standards 

CNBS) reactor. For a 0.01 inch thickness the "rocking curve" for a 

1" X 1" piece is shown in Fig. Al. The measured FWHM after unfolding the 

beam divergence was found to be 0.27° and the peak reflectivity was 4.2%. 

Thinner pieces yielded mosaic spreads from 1/4° to 1/2° but lower reflec-

tivities . 

As indicated in the text a crystal with a small mosaic in y and a 

6.0° mosaic in x would best match the beam arrangement described in Fig.l 

and Table II. A composite crystal was fabricated with thin (0.010 inch) 

pieces of Thermica sandwiched between thin (0.005 inch) wedges of aluminum 

arranged to give a 6° spread in angle in the x-direction and no additional 

spread in y. The assembly composed of 15 such sub units was tested in 

the NBS beam. The results are shown in Fig. A2 and show that the mosaic 

spreads are different, the spread being about 6° (FWHM) in the x-direction 

and about 1.25° in the y-direction. The peak reflectivity is at 2.24 A. 

The peak reflectivity at 17.3A. will be much higher. Using eq. (A6), 

we can estimate this increase by writing 

QW(0)T = cA3 . (A6) 
sxnen smQn sin 20n 
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At X a 2.24A. 0„ = 6.45°. For the assembly of crystals y» • 0.05 at this B 
wavelength; this requires the constant c to be 

c = 1.11 X 10~\ (A7) 

where X has been expressed in A. At 17.3A (6fi = 60°), we then have 

QW(0)T = 1.11 X 10-- (17.3] 3_ 0 (A8) 
sin0_ sin60° sin 120e D 

Thus, according to (A6) 
Y(0) = Yo = 0.43. (A9) 

A transmission measurement was performed using 18.7 A neutrons incident 

on a Thermica crystal assembly similar to that described above. The reflec-

tivity was found to be 47*> for a 1/2-inch total thickness of Thermica. This 

result implies that the quantity yQ in equations 59 and 63 may be nearer a 

value of 0.5 rather than 1.0 as assumed in the calculations, in the text. 
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TABLE I. Limiting Velocities for Total Internal Reflection 

of Ultra-Cold Neutrons 

Material VMAX(n,/s) 

Be 

BeO 

Feb 

Nib 

C 

Cu 

Al 

6.9 

6.9 
(8.2 
L4.15 
6.2 

5.8 

5.6 

3.22 

3. h A|a 
VMAX = m • / ~ ' w^ere m n e u t r o n mass, N is the density of 
scattering centers, a is the coherent scattering length and h is 
Planck's constant. jj 
Ferromagnetic materials have two limiting velocities depending on 
the neutron spin direction relative to the magnetic field. 
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TABLE II. Design Parameters For the Doppler Shifter 

to Be Used at the Argonne Laboratory Intense 

Pulsed Neutron Source 

A. Source 

Pulse rate 30 Hz 

Beam Velocity 395 m/s 

Phase Space Density 0.66 n/cm3 - (m/s)s 

Pulse Width (FWHM) 200 ps 

Beam Diameter 10 cm 

Distance Source to Crystal 480 cm 

B. Rotor and Crystal 

Radius 120.2 cm 

Bragg Angle 61.2 degrees 

d-spacing 9.96& (Thermica crystal) 

Mosaic Spread (n ) X 1/2 degree 

Mosaic spread (rjy) 3 degrees 

Crystal Dimensions 5 cm x 2 cm 

Crystal Thickness 0.4 cm 

Shutter Time Interval 3 ms 

C. Bottle 

Bottle Opening 5 cm x 6 cm 

vMAX (Beryllium) 7 m/s 

Volume 10 S, 
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TABLE III. Expressions for the Functions of A., [;., C. 
3 3 3 

As B. 
J 

C. 3 

c 
V c X 

2AV' X 

W2 X 

A/' 2 X 

it* X 

y 

y 

2AVJ, 
W2 y 

A^2 
»/2 

y 

v* IT : z 
• L ° > 

L t , 0 
2AV' — ) 
W2 z 

AVz' t'-
H r + ^ W2 T2 z g v* IT : z (v°.)V v nLJ g 

2AV' — ) 
W2 z 

AVz' t'-
H r + ^ W2 T2 z g 
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TABLE IV. Bottle Filling Rates and Stored Densities' 

W m / S ) 'DS ^(n/cmV 

5 

7 

0.11 
0.10 

580 

1300 

70 

120 

230 

200 

aAssumes a 10& bottle with a 30 cmZ opening. 

^Assumes a 5 cm x 2 cm thermica crystal with n = 3°, n = 1/2°, y x 
0 = 61.2° and shutter speed of 3 ms. This is the efficiency of D 
scattering into a sphere in velocity space of radius vMAY. MA A. 

Number of neutrons per pulse entering the bottle. 

^Asymptotic density of stored neutrons. 

e„. Filling time to arrive at the asymptotic density. 
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FIGURE CAPTIONS 

Fig. 1. An overall schematic diagram of the apparatus to be used to search 

for the neutron EDM at the pulsed sources at Argonne National 

Laboratory. The Doppler-shifter (rotor) is currently being tested 

at the ZING-P* source. It is 2.4m in diameter and turns at 30 Hz. 

Fig. 2. This figure defines the symbols used in the text to describe the 

Doppler-shifter as viewed in the laboratory (A) and as viewed in 

velocity space (B). The velocity vector vD of the moving crystal K 
A 

makes an angle B with the beam center line (z) when the center of 

the crystal passes the beam center. The nominal Bragg angle 6_ 
• 

is related to 3 by 0g = ir/2-3. 

Fig. 3. This diagram shows the velocity space volumes effective in the 

Doppler-shifting process, and how the neutron distributions as 

viewed in tho laboratory (L) and in the moving (R) frames are 

related. Thti dimensions W = 2.35 W and W • 2.35 W are given z z X X 

by eqs. (10) and (9) respectively. The third dimension 

Wy = 2.35 W of volumes B1 and C is given by eq. (11). 

Fig. 4. This figure shows the overlap (shaded region) of the Doppler 

shifted neutrons with a sphere of radius v in the v'T - v'T max xL zL 
plane. The top part (A) of the figure is for the point x • 0, 

y = 0 on the crystal face. The bottom part (B) of the figure is 
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for a point x = 2 cm, y = 0. The machine parameters used to 

construct these figures are given in Table II. 

Fig. 5. This figure shows the Ultra-Cold Neutron source intensity S u. c. 
at various times t as a function of position x across the crystal 

face. The parameters of Table II were used as input data. 

Fig. 6. The total Ultra-Cold Neutron production rate, which is the 

integration of the curves of Fig. 5 over the crystal area, is 

plotted here as a function of the rotor angle 8 = wt (solid curve). 

The y-dimension of the crystal was taken to be 5 cm, while the x-

dimension was 2 cm. Also shown are the results for the Monto Carlo 

simulation (dashed curve). The cross hatched region is the number 

of neutrons arriving in the bottle. Parameter values were set 

using Table II. The crystal reflectivity yQ was taken to be 100%. 

Fig. 7. This figure shows a comparison between the Monte Carlo simulation 

of multiple reflections within the crystal and the analytic cal-

culation taken from Ref. 37. The slight differences observed are 

due to the finite crystal size taken in the Monte Carlo simulation 

whereas the calculation assumed a semi-infinite crystal. 

Fig. 8. The velocity distribution of neutrons in the bottle is plotted. 

The average velocity is 4.4 m/s for Vj^^ = 7 m/s. The parameters 

in Table II were used as input to the Monte Carlo program, dN/dv 

is the number of neutrons per unit velocity increment. 
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Fig. 9. The expected asymptotic storage density of neutrons in the bottle 

after many pulses is plotted versus the bottle storage time, T_. 
D 

The parameters input for the Monte Carlo program were set using 

Table II. The crystal reflectivity was taken to be 100%. 

Fig.Al. This histogram is the "rocking curve" for a piece of Thermica 

described in the appendix. The measurements were made at the 

Nation-1 Bureau of Standards reactor in a 2.24 A. neutron beam. 

The sample dimensions were 1" X 1" and 0.01 inch in thickness. 

Fig.A2. The two histograms presented here are the "rocking curves" for 

an assembly of thin Thermica crystals separated by wedges of 

aluminum as described in the appendix. There were 15 such sub-

units having one 0.01 inch piece of mica sandwiched between 0.005" 

pieces of aluminum. The resulting curves indicate a larger mosaic 

width in x than in y as desired. 
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