gl

il

gl

T

PREPRINT UCRL- 83019

L |
Lawrence Livermore Laboratory

WAVE PROPAGATION IN VISCOELASTIC MEDIA

R. C. Y. Chin

July 18, 1979

This paper was prepared for submission to the Proceedings of the Internmational

School of Physics Enrico Fermi, Varenna, Lake Como, Italy, July 23 to August 4,
1979.

-

This ia a preprint of a paper intended for publication in a journal or proceedings. Since changas may be made
bafore publication, this preprint is made available with the unders*anding that it will not be cited or reproduced
without the permission of the author.

PR MASTR

< ) \\ i\\\\\ \
S —
N '

N

| &
N
.1ﬁ s AN ‘ﬁn . .
. . 2 ' \:“\:\- L . ' -~
i * T INERE

_H

|
(
0
|




e e e

Wave Propagation in Viscoelastic Media

R. €. Y. Chin

Lawrence Livermore Laboratory, University of California
Livermore, California 94550 USA

SUMMARY

The mathematical formulations of the wave propagation problem in
a linear viscoelastic solid are reviewed from the point of view of
constitutive equations a'd the theory of linear physical systems.
Various general results from the theory of propagating singular surfaces
and from the mathematical theory of hyperbolic equations are applied
to the analysis of the wave propagation process. Tne impulse responses
cf three viscoelastic media are analyzed using asymptotic methods. The
ihree material models are the’standard”linear solid, the standard linear
solid with a continuous spectrum of relaxation times and the power law
solid. The standard linear solid with a continuous spectrum of relaxa-
tion times and the power law solid have a nearly constant quality factor
Q over the seismic freguency band. The impulse responses of these two
viscoelastic solids are compared. The results show significant and
discernible features in the wave profile. This leads %o the conclusion
that differentiation of the models can be made by comparing wave shapes
and that a complete knowledge of Q over the entire firequency range is
required to determine the wave propagation problem when initiated by

an impulsive process.
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INTRODUCTION

With the current revival of interest in the effects of anelastic
attenuation on seismic wave propagation, a number of linear frequency
dependent attenuating or viscoelastic media have been proposed to
account for the observed dispersive-attenuation phenomena. All of these
models have the property of nearly constant seismic quality factor (specific
dissipative function) Q over the seismic frequency range. Outside the
seismic frequency band, the models differ. For example, Liu, Anderson,
and Kanamori (1976) show that a standard linear solid with a continuous
spectrum of relaxation times has a nearly constant Q in the seismic fre-
quency band. Strick (1970) uses a power law solid with a slowly varying
Q over most of the frequency range.

Associated with attenuation, there is physical dispersion, namely,
the speed of propagation of waves depends on frequency. In this light,
Kanamori and Anderson (1977) have shown that the values of Q outside
the seismic frequency band affect mainly the magnitude of the phase
velocity but do not affect significantly the relative dispersion within
the seismic frequency band. Therefore, they conclude that lack of
knowledge about Q outside the seismic band does not alter the dispersion
relation used for surface wave and free oscillation problems. These are
low frequency phenomena, however. It is natural to ask whether the
results of Kanamori und Anderson are applicable to wave propagation
problems having a large high frequency content.

In the case of the impulse response, most of the linear, frequency
dependent material models in seismology yield wave forms with grossly

similar structure (e.g., Futterman, 1962; Lamb, 1962; Savage, 1965;
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Azimi et al., 1968; Strick, 1970). Thus, we want tc know whether there
are distinguishing features in the wave profiles tc differentiate the
various frequency dependent models.

In the seismology literature, there are two equivalent mathematical
formulations of the wave propagation problem in a dispersive-attenuating
medium. In the usyal formulation, the constitutive equation is prescribed
in the form of a differential operator law or of an integral law. The
constitutive equation and the field equatioris form a complete system,
and together with initial and boundary conditions, they yield a well-
posed mathematical problem. We may alternately, use the theory of
linear physical systems to formulate a wave propagation problem. In
this approach, it is assumed that the propagating wave packet satisfies
causality and, therafore, the material functions are related by the
Kramers-Kronig integral relations. Integrating these two points of
view, we gain additional insight about the wave propagation process.

It is the intent of this paper to review in some detail the two
formulations of the wave prepagation problem in a linear, frequency
dependent dispersive-attenuating medium, and to examine the influences
of the material response outside of the nearly constant Q regfon on the
evolution of an impulse.

.The models studied are that of the'"standard'linear solid, the
standard 1inear solid with a continuous spectrum of relaxation times,
and the power law solid. The "standard' linear solid is analyzed because
it has a differential operator law essential to the use of perturbation
methods in extracting pertinent results on the wave propagation process.

Organization of this paper is as follows: In Part I, we discuss




the linear theory of viscoelasticity, in particular, the characterization
of a viscoelastic medium and present some models of current geophysical
interest.

In Part 11, the wave propagation problem is discussed. We begin
with the usual formulation and coliect relevent results from the theory
of propagating singular surfaces and the mathematical theory of hyper-
bolic equations. Next, we discuss the formulation of the wave propa-
gation problem in terms of the theory of linear physical systems and
introduce the power law solid.

In Part III, we analyze the impulse response in a ‘standard"linear
solid, a standard 1inear solid with a continuous spectrum of relaxation
times, and a power law solid. Asymptotic methods are applied to the
integral representation of the splutions. The asymptotic solutions
of the standard linear solid with a spectrum of relaxation tines and
of the power law solid are compared to show the influences of the

material response outside the nearly constant Q region.

I. Linear Viscoelasticity

The constitutive equation for a linear viscoelastic medium can be
described either by linear hereditary (integral) laws or by differential
operator laws.

Leitman and Fisher (1973) give a complete and detailed review
on the theory of linear viscoelasticity. Hence, only the scalar case
will be discussed. In the following discussions, the notations follow

Leitman and Fisher.



1.1 Integral laws -
We begin with the hereditary law, in particular, the Boltzmann =
law. Let ¢ and e be the stress and strain fields associated with some

deformation process. Then the Boltzmann law is given by

o(t)

LG[e(t)] = G(t)*e(t) for t>0

[

8lode(t) + fF G(t-t)elr)dr ()

where G(t} is the relaxation function and * denotes convalution.

Moreover, the relaxation function G(t) is represented by
6(t) = G(o) + L blx)ar . t30 (2) -

where G{o) is called the instantaneous (initial) elasticity. It is

related to the elastic response of the medium. If G(o) = 0, then the
medium has no elastic response.

If

G{«) = 1im G(t)

t > >

exists, G(x) is called the equilibrium elasticity or the equilibrium

modulus.
Alternatively, there is a linear hereditary law such that the strain

process e(t) is determined by the stress process through
e(t) = I(t)xo(t) . (3)

Here, J(t) is called the creep compliance. J(t) has a characterization
of:




J(t) = J(o) +_[; J(s)ds . (4)

where J{o) is the initial elastic compliance. If J(t) is the creep

compliance corresponding to the relaxation function G(t), then,

G(t)*[3(t)=u(t)] = o(t)

and

J(t)+fa(t)*e(t)] = e(t)

This gives immediately that
G(0)d(a) = 1
and

G(0)J(s) + G(s)I(o) + (G*J)($) = 0 for 0 < 5 < .
Clearly, G(o) and J{o) are required to be nonvanishing.

For most purposes, the constitutive equations defining the visco-
elastic properties are cumbersome mathematical expressions invelving
convolutions. By introducing integral transforms, the equations become
algebraic in their respective transformed values of stress and strain.

Applying Laplace transform to (1) and (3), we obtain immediately
that

[G(o) + GI[J(0) + 31 =1 (5)

where § is the Laplace transform of ¢. This relation is of some |
importance in correlating the creep and relaxation behavior in a
viscoelastic solid.

The use of Fourier transform leads directly to the "complex

modulus" description of the mechanical properties of a viscoelastic



solid. Taking the Fourier transform of (1), we obtain
& = G(o)e + Ge

where :1; is the Fourier transform of ¢. Denoting the "complex modulus"

by M{w), we have

where 8= j:: 6 exp(iwt) dt
Since G(t) =0 for t <0, then

G=f: 6 cos wt dt + i f 6 sin wt dt

and ﬁr = G(o) + f; & cos wt dt (6a)
M. =f, Gsinatdt . (6b)

ﬂ'r and Fl'i are respectively the real and imaginary parts of the "complex

modulus" M.

If we assume that &(t) is an integrable function, it follows from

Riemann-Lebesque lemma that

1im [G(o) + Eic(m)] = G(o)
|m| +

and O lim &s(m) =0
[m] +>

where the half range Fourier cosine and sine transform of & defined for

real w are



[ep)

—
>4

~
1]

fo"" G(t) cos wt dt

and

Gs(m) ,{)m G(t) sin wt dt
Hence. in the high frequency limit, the stress response is mainly
elastic. Moreover, the phase lag or the "Toss angle" ¢{w) for each

frequency w:

ER
tan ¢{w) = ~—1
M
r
5
G(o) + Gc

vanishes as w + = provided there is an elastic response, i.e..

G(o) # 0. For a viscoelastic material with G(o) = O, then

Tim tan ¢{w) = Tim (&S/Ec)

It is clear from equations (6a,b) that ﬁ} and Fﬁ are not independent
quantities as both are generated from G(t). In fact, they are conjugate

integrals, i.e.,

W (o) - 6lo) = 2 47 mﬁ"(m‘)mz o' (7a)
w) - G{o) = = ; w a
r T <o m.(mz Y
M (w')
— - 2w o r .
M) =5 & 77 ¢ (7)

or Hilbert transform pairs (Titchmarsh (1937)). These relations are

o e e o e i




also called the Kramers-Kroning integral relations.

Similar resuits are obtained when the creep law Eg. (3) is Fourier
analyzed. The real and imaginary parts of the "complex creep com-
pliance" are also Hilbert transforms of each other. The precise form
of these relations may be found in Gross (1968).

Although the linear viscoelastic theory is pureily mechanical as
developed thus far, thermodynamics must restrict the relaxation function.
Such restrictions have been studied by Gurtin and Herrera (1965). They
postulate that to deform a viscoelastic solid from its virgin state,

work must be done; i.e.,

A

£ oede > 0 O<t<w

for all smooth strain histories satisfying (o) = 0. Material laws
having this property are called dissipative. Furthermore, the consti-
tutive relation is strongly dissipative of and only of its dissipative
and the only strain history that yields zero work is the zero-strain
history.

Gurtin and Herrera (1965) prove that for a dissipative scalar
integral law of linear viscoelasticity:

) G(t) is continuous for 0 <t <
|G{t)] < G(o) for 0 <t<=
G is of positive type

G is a characteristic function

if G(») exists, then 0 < G(=) < G(o).

The statement of primary interest is that a dissipative integral

law has its instantaneous elasticity G(o) larger than its equilibrium
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modulua G(W) »
Th1s concludes our general descr1pt1on of 1ntegra1 constltutlve

laws. we<turnynow to d1fferent1a1 operator Taws.

[.2 Differential Operator Laws

A differential operator law constitutive relation is specified by
R )
k o k
k=o0 D = k=0 qu &

where Py and Q k=10,1, 2,..N are scalar constants and Dk¢ denotes

kth derivative of ¢. The differential operator law has an abvious

mechanical interpretation in terms of springs and dashpots. It can be
shown that every differential operator law is a Boltzmann law but not
conversely We illustrate the results discussed in this section with

examples of current geophysical interest.

1.3 )@taﬁdard”Linear Solid (SLS)

- Liu, Anderson, and Kanamori (1976) have considered the use of a
"staﬁdara“ 1inéar Viscoe?astic solid as a model for a medium with a
single relaxation time. This solid is described by a differential
operator law:
map

o

6+ o=M [+ el © (8)
£

where MI is called the instantaneous modulus and Ty and T, are respec-
tlvely, stress and strain relaxatxon txmes Two mechanical anatogs of
‘ F

the “standard“ 11near solid d1fferent1a] operator law are possible,

see F1gs (1a b)



n

c} >0 and C2 > 0 are spring constants and v > D is the viscosity
associated with the dashpot.
Associated with Fig. (1a), the following differential operator law

is gbtained

C, +C C
g+ ]v 20=C][é+—v§e] .

Foir this mechanical hookup, we have

v v
T = s T_ = =— and M. =
o C] + C2 € (:2 I 1

Associated with Fig. (1b), we have

) G ]
T B L e (o E_l

The corresponding definitions of T Te and MI are

v oG+ &) d M =C +¢C
T =& , T = —d=2X_ an = .
o C2 € C]Cz I 1 2
The integral law associated with Eq. (8) is
M T\ ,t
- I g f t-t
ot =Me-—{1-— e(r) exp[- =—-1 dr. (9)
I Tg < TE) (0} g
Thus,
. M T t
G(t) = MI - L (‘I - T—U-).g exp(- T/'to.) drt
g €
and

n
]

€

G(t) _-rl (1 - ;9-) exp(- 'r/'ro]




12

Clearly, G(o)} = MI and G(=) = MI TU/TE. For Eq. (9) to be a dissipative
integral law, it is necessary that G(») < G(o), implying that Tg < Teo

In view of the mechanical analog, we see that for Fig. (1a)

T—o-= Cz <1

Te C] * C2
and for Fig. (1b)

T C

._0.= ] (]

Te C] * C2

The “"compiex modulus” is simply given by

iw + ]/TU

L TR T S (10)
g

Equation (10) may be viewed as a bilinear mapping from w plane to the M

plane. From Kober (1957) it is known that the real w axis is mapped onto

a circle centered at Mr = MI/2 (1 + TO/TE) with radius MI/Z (1 - TO/TE).

The positive real axis corresponds to the semi circle lying in the upper

half plane (Fig. 2). Mr and Mi have the following explicit representation:

V4 1
=T
Mp = 2 1 MI

w + T2
o

and

=]
)
—
+ Qﬂi"
+
m P‘
| SE—— )

and, therefore, the phase lag or the "“loss-angle" is

| e, e e



tan ¢ =

The magnitude of the "complex modulus" is then
£
W+ 17 8
€

] =Ml m———
w T 'l/'rc
0'Connell and Budiansky (1978) have proposed a standard definition
of the intrinsic quality factor Q as the ratio of the real and imaginary
parts of the “complex modulus". This definition is a property of the
material only and is independent of any deformation process. It is
adopted for use in later discussions. From the definition of Q, it is

seen that

1.4 Standard Linear Solid with a Continuous Spectrum of Relaxatiaon

Times (SLSCS)

For the case of a linear viscoelastic solid with a continuous

spectrum of relaxation times, Eq. (9) can be generalized to yield
o(t) = Mle(t) - MI -g e(t)d'r.g i- a- 'rcl'rE) exp[-(t-T)/TG]
x D(TU) d'rU (11)

where D(ru) is the distribution function. Following Liu, Anderson, and

Kanamori (1976), it is assumed that



Y G{t) = My + M@Lin(

14

D/Tc Twin < o < Tmax
D(TO) =
0 s otherwise
and
T -1 /1. =x , 0f<;<<]
g € Co

Subst1tut1ng these two express1ons into Eq (11) and performing the
PRER e st ‘

necessary 1ntegrat1ons we obtain

e t exp[ (t A/ 1= expl-(t-)/e )
aoft) = MIE(t) + mef o MAX e(t)dt .
(12)
By' definition;i ¢ ¢ s ;’*f'"' ) ) '( s ’
exp(~ t/1 ..) - exp(- t/T__.)
_ t min max
G(t) = M + M@ fo - . dr
where € = kD. Therefore,
G(o) =
and . o
. exp(- t/T ) - exp(- t/r )
SRR J~~\.G(t):=.MIgg _ max_ .,

t
N N T I :

Performing the integration and uSihQ‘tHé'dEfihitibn of the exbonéntié]

inﬁégﬁa]*Ef(2?f=1£“ﬁpTJuexp(Ft)d; (?bramohif%?andaStegun,“1964); we have

) = (/) + Bty

mm max max)]

OIS igi<cTedvly seen tthat: i i RSNSOI S

G(=) = M;[1 + € In(r ).

m1n max
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For (12} to be a dissipative constitutive law, it is necessary that
0<¥< 1/on(t

max m'll'l)

The Fourier transform of G(t} is given by
~ iw+ 1/1

G(w) = M, €anl——-TOX

I Tw + ]/Tmin

and, therefore,

2
P ME o (“’Tmm) * (Tmm Tmax)
C 2
(wr mm) +1
A ol =T s ) ]
Gc - MI%, tan~} > max___min
9 TninTmax ¥ ]J
The phase lag ¢ is
w(t -1 ..)
tan ¢ = @tan-‘ _zﬁ—m"‘__
O TrinTmax * !
2
+ (s /t..)
s hiegm [ min “max
( mm) 1

The constitutive equation (12) for SLSCS is a four parameter family
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integral law: MI’ T o, T , and ¥. For

min® ‘max
Vtgay << w << Y, and %’Zn('rm_inltmax) << 1
then
Q7! = tan ¢ =~ €tan”! w ~ T#/2
V0 i nTnax

Under these circumstances, we may replace ¥ by Q'] and consider the set

-1
MI’ Toin® Tmax® and Qm = 1¥/2

A typical plot of Q'] and the magnitude of the complex modulus is given
in Fig. 3.

This concludes the discussion cn the characterization of a linear
viscoelastic solid. The mathematical formulation of a wave propagation

problem is examined next.

II. The Wave Propagation Problem

In this part, we consider the wave propagation problem. The usual

mathematical formulation is discussed first.

II.1 The usual formulation

We consider the impact or signaling problem in a linear visco-
elastic medium. We seek a mathematical solution for the velocity
distribution u(x,t), the stress profile o(x,t), and the strain field

e(x,t) in the region x > 0 and t > o satisfying the usual field equations:
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equition of motion,

<
-

and a linear constitutive relation
o(x,t) = Fle{x,t)]
The initial conditions are homogeneous, i.e.,
u(x,0) = o(x,0) = e(x,0) =0 for X > ¢
The boundary conditions are
u(o,t) = f(t)
and

1im  u(x,t) =0 fort>0

X+

Here f(t) is the signaling data.

The impact problem with the constitutive equation given by (1),

namely,
t
a{x,t) = G{o)e(x,t) + .% G(x,t-t)e(x,t)dr
may be solved using integral transforms. Let

Fis) = £ oSt feae

(13)

(14)

(18)
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be the Laplace transform of f(t), then we have the following repre-

sentation of the solution to the impact problem

st - xsvé/[G(o) + é(s)]

u(x,t) = % fB T (s) exp ds

where B is the Bromwich path.

We note that Eq. (16) is a representation of the solution if: (1)
it satisfies the governing equations and the associated initial and
boundary conditions; (2) U{x,t) o(x,t), €(x,t), and their partial
derivatives with respect to x as well as f(t) are functions of bounded
variation and of exponential order, i.e., U(x,t) = (eat) fora >0
when t > 0; and (3) the Laplace inversion integral is uniformly con-
vergent for -=» < t < «=. The last two conditioﬁs are associated with
the Laplace transform (Widder 1946). We will assume that f(t) satisfies
the necessary requirements. However, from modern transform theory
(Gel'fand and Shilov 1966), f(t) can be a generalized function. Before
proceeding, we collect some useful results from the theory of propagating
singular surfaces in a linear viscoelastic solid and from the theory of
mathematical theory of hyperbolic equations. These results are essential

to understanding the wave propagation problem.

11.2 Results from the Theory of Propagating Singular Surfaces and the
Theory of Hyperbolic Equations ’ ij
Ar important and relevant result (Herrera and Gurtin, 1965) from é
the theory of propagating singular surfaces is that the viscoelastic :

wave-speeds are dicated by the initial response of the material, i.e.,
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the instantaneous modulus, G{o). In the case of a "standard" linear
solid or the family of distributaed "standard" linear solids, this asserts
that discontinuous motion propagates with wave speed corresponding to
the instantaneous modulus.

In the mathematical theory of hyperbolic equation witi. lower order
terms (Cole, 1968&; Whitham, 1959, 1974), the curves along with distri-
bances or singularities propagate are called characteristics. For the

standard 1inear solid, they are

-
1

t - x/c and s =t + x/c

with ¢ = /G{o)/p
On the other hard, signals can propagate with speed ¢, with c_<c. The
curves
¥=t-x/c, and $=t+x/c,
with c_<¢

are called subcharacteristics since they lie inside the domain of
dependence — a region in x-t plane bounded by the characteristics and
the data curve (see Fig. 4).

Since singularities propagate along characteristics, waves propagating
along the subcharacteristics directions must be smooth. This phenomenon
will be made clear when we discuss the impulse response.

Another pertinent result from the theory of propagating singular

surfaces is that the magnitude of the propagating jump discontinuity

changes at a rate given by
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q(t) = exp[—% é(o)]q(o) : (17)
2pc
This relation is independent of the order of the propagating wave; the
order is defined as that of the lowest order derivative of the particle
motion with a finite jump across the propagating wave (Fisher (1965)).
Note that the relaxation function G(t) is a monotonically decreasing
function and, therefore, G(o) < o. Thus, the magnitude of the jump
discontinuity is exponentially decaying. From {5), an integral equation
relating the creep function J(t) to the relaxation function G(t), we

have .
G(0)d(0) = - &(0)J{o)
As J(o) = 1/G(o), it follows that
8(0) = - 6%(0)d(0)

and Eq. (17) may be written in terms of the initial slope of the creep

function:
att) = oxp [ - 8 3(o)] ae) . ()

In summary, for a viscoelastic medium whose creep law or relaxation
function has a non-zerp initial slope, then,there exists a precursor
wave propagating with a speed vG(0)/p and decaying exponentially with
time. Moreover, if the equilibrium modulus G(~) exists then waves

propagating with a speed C = VG(=)/p must have smooth profiles.




!
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The above general results corncerning the wave propagation process

will become evident as the impulse response solutions are discussed.

I1.3 Theory of Linear Physical Systems and Wave Propagationb
Consider a plane wave propagating in an infinite homogeneous
dispersive-atienuating medium (Futterman, 1962; Lamb, 1962; Strick,

1970):

u (x,t) = Aw) exp | -a(w)x + ilwt - x6(w)I{/2n ,

for X >0

where a{w) is the attenuation coefficient and €(w) is the phase lag
function.
Associated with the plane wave, there is a spatial seismic quality

factor Q,(w) (Strick, 1970):
0y (0) = 2a(w)/0(u) o<u<w (19)

expressing the decay of the successive wave peaks by a factor of exp (-Tr/Qx).
For the propagation of a wave-packet, we superpose over all
frequencies to obtain
oo

u(x,t)=2—1“- ! A(w)exp

—aw)x + ifwt - x0(w)l{dd (20)

Suppose the signaling data at x = o is f(t), a bounded and continuous

t
function with L |f|2dt <w for t > o, then

u{o,t) = f(t) , t>o
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Evaluating (20) and x = o, we have
f(t) = ?l?f f A{w) expliwt]dw

Therefore, A{w) is the Fourier transform of f(t). For a physizally

reasonable solution, u(x,t) must be a square-integrable functico, i.e.,

[ wonPa = L [ 1812 expl-zrato)las < = (21)

=00

for X>0

It follows from Eq. (21) that
alw) >0 for @<y <am

Moreover, the requirement that u(x,t) be a causal function, i.e.,
u(x,t) = o t<o

provides a relatian between o(w) and 8{w), namely, that

alw) = wic + 8w) (22)
'é(w) ="(_:% / 9129"—')-“—2 dw' » (233)
e R T
and
m2 ” %! ')
olw) = alo) - - / 20.! , dw {23b)
e e w

where ¢ is a constant. The integral relations (23a) and (23b) are
identified as the Hilbert transform pair or the Kramers-Kronig relations.
Moreover, it is noted that %(m) i3 an odd function while o(w) is an even

function.
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Derivation of Eq. (20) by Papoulis (1962) makes use of Cauchy's
integral theorem and of theorem V of Paley and Wiener (1934) on the
Fourier transform of an entire function of the exponential type. During
the application of the Cauchy's integral formula, it is necessary to

impose

. [a(p/i); i%(p/i)]+ o as pow

ptuw
an asymptotic condition on the high frequency behavior of the material
function. Using theorem XII of Paley and Wiener (1934), we may restate

the above asymptotic condition on afw) as

j _G(Q)wa<m
o l1+uw

If a(w) ~ |o|®, then s < 1 (Guillemin (1963)).
In the terminology of net-work theory, Eq. (22) is a sum of an
all-pass function w/c and a winimum-phase-shift function, o + i¥.

Substituting (22) into (20), i.e.,

u(x,t) = o [ ) A(m)exp‘- x[a(w) + 18(w)]

+

iw(t - x/c)

duw (24)
we note that
u(x,t) = o for t - x/¢ < 0.

This clearly shows that x/c = t is the wave front and ¢ < = is its speed
of propagation. As ¢ + =, we have u(x,t) = o for t < o. Since the

theory of propagating singular surfaces for a linear viscoelastic
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medium asserts that the wave speeds are dictated by the instantaneous

modulus
¢ = vGlo)/o

We have thus demonstrated that the all-pass function is associated with
the elastic response of the medium. The minimum-phase-shift function is
assigned to the anelastic behavior.

To relate the attenuation coefficient and the phase lag function
to the "complex modulus", we substitute s = iw into (16) and compare

with (20) to yield

~w In [p/M(w)T%

alw)

and

w Re [o/M(w)T? . (25)

8{w)

Instead of using the attenuation coefficient and the phase lag
function in Eq. (20), we may write it in terms of the complex refractive
index n(w) (Lamb, 1962), i.e.,

u(x,t) = %ﬁ /. Alw) exp

=00

jwlt - xn(w)/co] dw

where
nlw) = nr(m) - i ni(m)

The real and imaginary parts of the complex refractive index are related

to the attenuation coefficient and the phase lag function as follows

n;(w)/e, = alw)/w
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and
n(w)/c, = 1/c + B/

Since "i(“) and "r(“) are Hilbert transform pairs, therefore,
Cp=¢= VG{o)/p

The identification of the elastic response in a dispersive-
attenuating medium and consequently the value of <, has been a source
of confusion and misunderstanding. For example, Futterman {1962)
chooses his "non-dispersive" behavior at zero frequency and, therefcre,
his impulse response arrives earlier than the “non-dispersive" signal.
Gladwin and Stacy (1974) and Stacy, et al. (1975) have interpreted
Futterman's "non-dispersive" behavior és elastic thus conclude that
Futterman®s linear theory at attenuation is acausal.

Savage (1976) in commenting on the internretation of Gladwin and
Stacy and Stacy and et al. suggests that < must correspond to the
immediate or high frequency response of the medium by considerating a
"standard" linear solid. With such a choice, with Cq corresponding to
the high frequency non-dispersive behavior, Savage shows that Futterman's
apparent paradox is resolved.

Indeed, from considerations of the theory of propagating singular
surfaces and of the mathematical theory of‘hyperbolic equations, the
only choice possible is that suggested by Savage. The choice of any
reference speed other than /G(0)/p would result in the arrival at that
travel time of a pulse hith a smooth profile, thereby creating an

apparent paradox. Moreove;, if the equilibrium response G(=) exists,
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then the smooth wave is propagating along a subcharacteristic.

I1.4 Power Law Solid {PLS)
Stick (1970) introduces a dispersive-attenuating medium defined

by the following equation
alw) + ig(w) = (iw)sK (26)

with s < 1 so that the material law satisfies the asymptotic material
behavior as imposed by the causality condition.

Corresponding to the constitutive Eq. (26), there is a creep law

given by
1-5 2
_ ]_ _‘_KA t K 2(1-5)

pd(t) = 2 e r2-sy * r(3-2s) t (7]

and
-5 2
d) , 2K _t K 1-2s
patt ¢ =) T Hezs) b (28]

where I'(z) is the gamma function. The derivation of the creep law is
straight forward using (5}, {22), (25), and inverting a Laplace transform.
Accordingly,

%% +o as t >0 ,

and the precursor wave wWill have a zero amplitude at the wave front x = ct.
This result follows from the theory of propagating singular surfaces.

As t » =, Eq. (28) gives

@, K1
Pat ” T(2-2s)
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If s = %, then the power law solid behaves as a fluid with a viscosity

of K2

Another feature of the power solid is that the spatial seisnic

quality factor Qx is almost constant for s + 1

0} w) = 2a{w)/6(w)
= 2[tan(sn/2) + ' "5/CK cos(sn/2)17) . (29)
Indeed for %—= o giving a medium without any elastic response, then

Q;](w) = 2 cot (sm/2)

a truly constant Q  material for 0 <s < 1. This model has been applied
to polymeric materials by Kolsky (1956). Kjartansson (1978) suggests
its use for modeling geological materials. The relation between the
intrinsic quality factor Q(u) and the spatial quality factor Qx is given

by

Q = [8/c - a/8]/2

or
-1

Q 2/[8/a - /B8] . (30)

From (29), we have

0/a

2, = tan(sm/2) + m"S/Kc cos(sm/2)

and

¢! = 20, - (20,

Ocpem s <1
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The 1imiting behaviors of Q'] for w+ 0 and w > = are

1-s 2
-1 . 2 _ W 1 + cot ( sn/2
Q" (w) tan(sn/2) - C°t("s/277[] Ke sin{sn/2) COtZ(Sﬂ/Z%

+ o(mzu's))]

as w-=+>0

and

0 w) = 2K co?E:n/ZZ [1 N 0( lts)]
w w

as w + @

111. Impulse Response

In the previous parts we discussed the intrinsic properties of a
“standard" linear solid, a "standard" linear solid with a continuous
spectrum of relaxation times, and a power law solid. Now, we discuss
the wave propagation properties.

The “"standard" linear solid with a continuous spectrum of relaxation
times (SLSCS) and the power law solid (PLS) are constructed so that Q'1
is nearly constant over the seismic frequency range. Outside the seismic
band, these two materials behave differently. Their Q'] behaviors are
summarized in Table I.

We present the far field or long time asymptotic solutions of the
impulse response in the three above mentioned linear viscoelastic solids
Detail construction of the asymptotic solution for the "standard" linear

solid and the standard linear solid with a continuous spectrum of




29

relaxation time may be found in Chin and Thigpen (1978) and Minster
(1978 a,b). However, Chin and Thigpen's analysis is reported here.
The asymptotic solution of the power law solid, on the other hand, is
new. This analysis clarifies and extends Strick's (1970} construction.
Asymptotic expansion of the impulse response for the "standard"
linear solid is discussed first, followed by the solution of the standard
Tinear solid with a continuous spectrum of relaxation times. The
essential structure of the wave propagation problem in these two solids
is similar with slight differences to account for the subtle changes
in the properties of the medium. Finally, we present the asymptotic
solution for the power law solid. The response of the standard linear
solid with a continuous spectrum of relaxation times will be compared
to that of the power law solid to show the influences of the material

response outside the seismic band.

III.1  "Standard”Linear Solid

For the "standard" linear solid, the integral representation of

the solution of the impulse response is by (16),

1 x . [FH Yy
U(X,t) = 51 /; exps{st - < S -s—:—m—- ds
€
where
MI
c= i and B is the Bromwich path.

Defining the following dimensionless variables

T = t/To’ as Tclre. and B = x/ct
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we have

-_L[ - g St 1
rcu(x,t) = 5 A exp?r[} Rs s+a ]‘ ds . (31)

The branch cut associated with -the radical is taken along - 1 < x.< - a.

AT

zv Asymptotic expansion of the integral is performed with respect to the

parameter T >> 1. This implies that

t>1
a

that ‘is, we are studying the behavior of the sclution at times large
compared to-the stress-relaxation time. We may equivalently perform
the asymptotic expansion at large distance from the source. In this

case .the integrand can be rewritten as
X /s + 1
ET—UgKS‘SS“Fa{

where E = ct/x. Here the interpretation for the far field sclution is
M "
x/er04>> ]-orvx,>?,rc - - In either case, B or B represents a ray

emanating from the origin in the x - t plane. ,
. n
Becasue of the decay of the integrand for 8 > 1 (B < 1), the
Bromwich paiﬁfmay'be closed in the right-half plane by a semi-circle

with radius R + = to yield
u(x,t) = o for  x>ct

This means that there is no signal prior to x = c¢t,..in accordance with
the predications of the theory of propagating singular surfaces. Thus,

we need anly to examine
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In Chin and Thigpen (1978), the long time asymptotic development is chosen
since 0 < B < 1.

In developing the asymptotic expansion for (31), Chin and Thigpen
{1978) found that the steepest-descent method breaks down in the
neighborhood of 8 = 0 and 8 = 1 and uniformly valid asymptotic expansion
techniques (CGliver, 1974; Bleistein, 1967; Bleistein and Handelsman,
1975) or modified steepest-descent methods fhitham, 1974) are required.
Examples of difficulties encountered in the steepest-descent method
are confluencing saddle points and essential-singularity/saddle-point
interactions. 1In each of these instances, the appearance of a second
parameter {in addition to the primary variable with which the asymptotics
are performed) induces the nonuniformity. An asymptotic expansion with
respect to A is said to be uniformly valid with respect to the parameters
{a} if it is valid for all pertinent values of {a} (Erdelyi, 1956).

In the neighborhood of 8 = 1, the nonuniformity of the asymptotic
expansion is due to two saddle points confluencing at infinity to
produce a saddle point of infinite order. This gives rise to a

wave that propagates with a speed ¢ = J‘Mllp and decays exponentially

with a rate given by [1/-r0 - 1/Te]/(2c). The leading term of this expansion

is just that given by the theory of propagating singular surfaces. In

particular, the following asymptotic expansion is obtained:
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TOU(X,t) n exp[— 1 é a BT] §(1-B)

+ B(1-a)(1+3a) |* 1 - 1+ 2a+ SqE_ (1- )]
~B(1-8) 2(1+3a)  t\I-B

+ } (32)

where In(z) is the nth order modified Bessel function of the fivrst kind.

) I]Heu-s)uéa)(usg)]f

This expansion is valid for (B-1)t << 1 and for any t.

In the neighborhood of B8 = 0, it is found that the steepest-descent
analysis is invalidated by the coincidence of the saddle point with the
1//s*¥a  signularity. The manifestation of this interaction is a
boundary layer serving to connect the main diffusive wave to the Loundary

condition. The asymptotic solution in the neighborhood of 8 = o is

given by

Tgu(x,t) (1-a)e‘“[1¥“§—a]2/3 F(¥)

(-3 ﬁ—ﬁz_jgg Fo) + e ‘ (33)

where

y = (gra)?/3 [(1-a)]"/?3

Foly) = ?]»7-? /w (2 - ”e‘uz I0[(‘W)3/4 ‘/‘7] du

0

and

g 2
1 2 -u 3/4
Fily) = — ' u{2u®-3)e I [(4y) Jﬁ] du .
1 Y372JF A 0

- e g e
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For o < B < 1, steepest-descent method applies. There are two real

solutions to the saddle point equation

s
1_(s+1 1-
B (s + a) [] T2 : (s+1)?s+a)]

The primary saddie point S has the following properties

and

n
-a<s < w .

1
“§=[]‘g]1"3"“] £0(1) as g1
Y= g-vA) +ol(B-vDE]  as BV
v=-a+ 6?3 (a2)%3 (1-)3 + 0(8"3) as B0

Figure 5 is a plot of 3 vs B for some values of a. The secondary saddle

point S is given by

and

~—mm<§ < =] .

. 5
s=-[ﬁ—'%%-](1—;&)—‘l] +0(1) as B~1

~

s=-01+6%40-a) +08Y] as 8+0 .

The secondary saddle point s as a function of 8 and some values of a is

shown in Fig. 6. The elevation of the primary saddle point s is higher

than that of the secondary saddle point g and attains equal value as

$ro and, s + -o, Thus, the primary saddle point ¢ contributes predom-

inantly to the integral except in the neighborhood of infinity where
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the saddle points coalesce to form a saddle point of infinite order. A
typical steepest descent path for o < B < 1 passing though the primary
saddle point is depicted in Fig. 7.

A one-term asymptotic representation of the solution using steepest

descent method is

1,

culot) = [—3 T exp[<F(¥ea)) (34)
o 2ntF'(3(R))

where

F(z) = 2 {1 - e(§ * ;)1]

n = (1-a) (Z + ])15 (143a)z + 4a
F B
(z) 4 \z+a (Z+1)2(z+a)2

and

The functions F[S(8)] and F"[g(s)] are plotted as a function of 8 in

Figs. 8 and 9 respectively.

From these figures and (34), it is readily seen that
T u(x - o/a t,t) v [F" (/)17
and
u{x,t) < u(x - c/a t,t)

To see the physical significance of the above observation, we expand

u{x,t) about B = va to obtain

TUU(X,t) "'[Zm%)_f]% exp[— T£B;f§ 2] )1 + O(B-/E)‘ .
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In terms of the physical variables, the leading term gives

2 %
" (o e)? |

-t )t| S*P{- 2
e o Zrcc (]-TU/TE)FJ

(35)

This clearly shows that the main wave is a propagating diffusive wave as

4 (35) is a solution of the diffusion equation with diffusivity
et (1-1 /1)
o o e

This is also an intrinsic property of a Kelvin-Voigt solid. Therefore,
the low frequency response of the “standard”1inear solid behaves as a

Kelvin-Voigt solid with a relaxation time of
TU(]-TG/TE)

This diffusive hehavior may alternatively be obtained using perturbation
methods discussed by Cole (1968) and Whitham (1959, 1974). Following
Cole and Whitham, we extract the approximating eguation in the neighbor-

hood of x = ¢/a t. This is done by transforming to the wave coordinates

(t,x) » (t, E=x-c/at)

The effect of this transformation is to make the derivatives with respect
to t small, so that the approximate form of the Eqs. (8), (13), and (14)
is

2-.;2?—2 = o i - rie,) %
In the derivation, it is noted that the diffusive term is directly

related to the high frequency response of the material medium and
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manifests itself solwly and cumulatively. The wave propagation process
in a "standard" linear viscoelastic solid may be summarized as follows:
(1) a precursor wave propagates with a speed corresponding to
the instantaneous modulus G(o) and attenuates with distance
(Eq. 32);
(2) a main diffusive wave propagates with a speed corresponding
to the equilibrium modulus G(») and spreads as 1//%f (Eq. 34);
(3) a boundary layer is formed connecting the main wave to the
boundary data (Eq. 33). A graphic representation of these

results is shown in Fig. 10.

I11.2 Standard Linear Solid with a Continuous Distribution of
Relaxation Times

For this case, the integral representation of the solution is given

by
1 s+a, 7%
- 1 - STa
TminU(X,t) = o /;exp[u 1 B/[1 +‘6’2n(5+1)] ”ds (36)
where T = t/tmin
R = x/ct
as= Tmin/Tmax

Associated with the integrand are the branch points

a-e /€ _ o
§=-3;, s=-1,ands = - e = @
1-e

The branch cuts are taken along the negative real axis - 1< x < -3.
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The saddle peint structure for (36) is similar to that of the’Standard”

linear s0lid: There are two real solutions to the saddle point equation.

The primary saddle point -3 < ; < o contributes predominantly to the
asymptotic expansion of the integral. The secondary saddle point
-w< g < -1 contributes significantly only in the neighborhaod of
infinity where the two saddle points coalesce to produce a saddle
point of infinite order.

The primary saddle point ¢ is a function of B, a and ¥ The lccal

behaviors of § as a function of Baboutg=1,8=/T¥F€inaandB =0
are respectively

2
€(1-a") |y _ 3 ¢€l-a)
4 2 1+a

LY
g =

* e e oo

S = %)_a_ﬁ [B - (1 +¢n a)!i]

0[[8 - (1 +#n a);éjz]

+

and

e

"

we

+
P 1

y\o Ny %y T1/3
BP0 a)] 213 4 0(ah3)

Because of the similarities of the saddle-point structure, it is
expected that the asymptotic solution of the standard linear solid with
a continuous distribution of relaxation times has the same charac-
teristics as that of the’standard”linear solid with modifications

accounting for the subtle changes in material response: The precursor

wave has a decay rate of

-k “/Tmin - ]/Tmax)
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The main wave has a form

y 2
s (292" oo sy - 0 v o] o

b
as B+~ (1 +%¥2n a)

Once again, the main wave is a propagating diffusive wave that propagates
with a speed corresponding to the equlibrium modulus G{w) = MI(I +®n a)

and diffuses in time or space with a diffusivity

i?MI(T Y/ 20

max = ‘min

It should be emphasized that the cumulative dispersive-attenuating
phenomenon is pervasive and it requires time to develop. Analogous to
the “standard" linear solid, the low frequency response of the material
is, once again, Kelvin-Voigt 1ike with a relaxation time oftg(Tmax-rmin).
111.3 Power Law Solid

The integral representation of the solution for the impulse

response of a power law solid as given by

alw) + i (w) = iw/c + Kiw)® s <1
is
u(x,t) = Z_T]rT /E; exp { pt - %p - xkp® | dp (38)

with the branch cut taken along the entire negative real axis. Note

that for t - x/c < o, the integrand is a decaying analytic function in




)
(-]

the right half plane. Closing the Bromwich path in the right half
plane by a semi-circle with radius R + = and using Jordan's lemma, we

obtain
u(x,t) =0

for x/c > t confirming that u(x,t) is indeed a causal function. In fact,
for ¢ < =, we have causality reiative to the reduced time t - x/c. As
c+w, u(x,t) = o for t < o.

Before proceeding to the asymptotic expansion of (38), we introduce

the following change of variables,

_ xK 1/(1-s)
P=t—xic &
and
) xk Yo/(1-s)
z=xK (Efrjaz)
to obtain

u(x,t) = (t - x/c) m ]L.

exp{Z(z - cz)} dg (39)
where B' is the image of B in s-plane. By rewriting z the similarity
variable in the form of

)ll(l-s)

(t - x/¢) (f—f£§73

(39) becomes

1/s

u(x,t) = 11731;757- zF(z;s) = Gﬁf) F(z;s) (40)

(oo
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where
. s
F(z;s) = ——2:'”. ]. eZ(?;-C ) dz

Note that (40) states that the pulse shape (in time) is the same at all
stations or the pulse shape (in space) is the same at all reduced times.
This obervation has been noted by Pipkin (1973) and Kjartanssen (1978).

For s = %, a Table of Integral Transforms (Erdelyi (1954)) gives

1
vz

F(z;%) =

exp (- z/4)

In other values of s{o < s < 1), there are no known inverse transforms,
and asymptotic methods will be utilized to carry out the integration.
Using theorem (7.1) of Olver (1974), we obtain for z >> 1 the

following asymptotic expansion of the integral F(z;s)

o) < exp{' } (2-s)(2s-1) 1
F(Z:S) = [2n(1- s)z]}é , 24 (1-s) }J + 0 (]/ ) (41)
where Z= 1/(1 S)

Note that Z = constant are curves in x - t plane satisfying the relation

t = x/c+ [st/z(] 5)11/5 (42)
¥=o0 corresponds to x = 0 and t > o. F=o corresponds to the wave-front
t = x/c. For convenience, with ¢ < = et

t= r/(ch)]/(1'5)

x = £/(ske®)1/(1-5)

then we have
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=7+ [a/“f“'s)]]/s (43)

and inversely

. e \1/0-s)
Z= ’_T-E) (T‘ E

Figure 11 is a plot of (43) with Strick's value of s = .9227 and %=

1, 10, 100. Note that as £ + =, the second term dominates signifying
the response of a polymeric medium (1/c -+ 0).

The scaled impulse response

Yix,t) = ulx,t)/(ske)/(1-5)
is given by
" exp{- : 5 > %} b4 i 2-s)(2s-1) 1 n2
i) = —L—3 [Zﬁ(]_s)] 14 (Ealesd 3+ 00/ )

The leading term of the expansion called a one-term asymptotic approxi-

mation is just Strick's £q. (20). The one-term asymptotic approximation

1-s%
b =e"p[' s Z][ r 1% (45)
1 T-§ 2n{1-s)
with £ fixed has a maximum at
N 2-=-8
Zn = 2(1-s ) (46)

At this value of ?. the 0(1/?) term has a value of .07045 for s = .9227,
that is, Eq. (45) underestimates the value of u at ? = ?m by 7%. This
is confirmed by FFT calculations of Kjartensson {1978), which show that

the one-term asymptotic approximation underestimates the low frequency
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amplitudes in the later part of the pulse. Equation (44) having a
two-term expansion can provide a sufficiently accurate approximation to
the solution of the impulse response between the wave front and the
pulse maximum. Thereafter, the asymptotic approximation degrades and
becomes invalid as Z - o.

In the region where the asymptotic expansion is valid, it is seen
that the pulse peak propagates with a variable velocity and attenuates
with x"]/s. The wave front propagates with zero amplitude. This result
is predicted by the theory of propagating singular surfaces. Moregver

as the pulse propagates into the material medium, the response is more

polymer-like.

ITI.4 Comparison of Impulse Responses for SLSCS and PLS

By comparing the asymptotic expansions of the impulse response of
a standard linear solid with a continuous spectrum of relaxation times
{SLSCS) and of a power law solid {PLS), we see significant and dis-
cernible differences in the wave profile. The differences are
symptomatic of their respective material behaviors.

For x > ct, there is no signal. Atthe wave front x = ct, SLSCS
has a precursor with an exponentially decaying amplitude. The rate of
attenuation is related to the initial slope of the relaxation function.
The PLS, on the other hand, has an infinite creep rate initially giving
rise to a vanishing amplitude,

The main wave for SLSCS propagates with a constant speed

\l M (1 +¥n a)/p and spreads diffusively with a diffusivity of

.+ & e e a1
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MI(Tmax - rmin)/Zp. For this case, the main signal behaves as in a
Kelvin-Voigt solid with a relaxation time ofif(rmax - den)' Correspend-
ingly, the main wave in a PLS propagates with a variable speed. The

pulse maximum traces out a curve in x - t plane approximated by

b= xc s [Zil:il](]'S)/s ( Kx)1/s

2-s $
and attenuates as

x-]/s

Moreover as X +~ =, t xVs and the attenuation rate is proportional to
t1. This describes a polymeric material.

Although both of these models are constructed so that the seismic
quality factor Q is very nearly frequency independent over the seismic
frequency range, their impulse responses are indeed characteristic of
their respective material behaviros. This implies that in studying
impulse response of linear dispersive-attenuating medium the material

response fuactions must be known for all freguencies.

CONCLUSIONS

Comparing the impulse response of two linear viscoelastic models
having a nearly constant Q over the seismic frequency range but differ
otherwise, we conclude that

1. there are significant and discernible features in the wave

profiles o permit differentiation of the material models,

2. a complete knowledge of Q over the entire frequency range

is necessary to determine the wave propagation problem

Vo e T

LR
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when initiated by a rapidly varying process such as an

explosion or an earth quake.

Conclusion (2) is contrary to the situation in surface wave and free
oscillation problems in which the dispersive properties within the
seismic frequency band are insignificantly influenced by the knowledge

of Q outside the seismic frequency range.
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: SLSCS PLS
i w0 N constant
W+ '\»m-] '\»m'(]'s) s <1

1

Table I. Q' behavior for SLSCS and PLS.
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FIGURE CAPTIONS

Fig. 1 Mechanical analogs of the “standard" linear solid.
Fig. 2 Mapping in the "complex madulus" plane.

Fig. 3 0"1/(n%#2) and lM|/MI as functions of w/T ; T - .
Fig. 4 Characteristic and subcharacteristic curves.

Fig. 5 Primary saddle point % as a function of x/ct.

Fig. 6 Secondary saddle point § as a function of x/ct.
Fig. 7 Steepest descent curve.

Fig. 8 Values of F[£(8),al.

Fig. 9 Values of F* [$(g),a].

Fig. 10 Sketch of the asymptotic solution for the impulse-function
case.

Fig. 11 Trajectories of 7 = constant.

| e e e i D ey 7 man




