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Wave Propagation in Viscoelastic Media 

R. C. Y. Chin 
Lawrence Livermoi'e Laboratory, University of California 

Livermore, California 94550 USA 

SUMMARY 
The mathematical formulations of the wave propagation problem in 

a linear viscoelastic solid are reviewed from the point of view of 
constitutive equations a d the theory of linear physical systems. 
Various general results from the theory of propagating singular surfaces 
and from the mathematical theory of hyperbolic equations are applied 
to the analysis of the wave propagation process. The impulse responses 
cf three viscoelastic media are analyzed using asymptotic methods. The 
three material models are the'^tandard"linear solid, the standard linear 
solid with a continuous spectrum of relaxation times and the power law 
solid. The standard linear solid with a continuous spectrum of relaxa­
tion times and the power law solid have a nearly constant quality factor 
Q over the seismic frequency band. The impulse responses of these two 
viscoelastic solids are compared. The results shov; significant and 
discernible features in the wave profile. This leads to the conclusion 
that differentiation of the models can be made by comparing w<ive shapes 
and that a complete knowledge of Q over the entire frequency range is 
required to determine the wave propagation problem when initiated by 
an impulsive process. 
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INTRODUCTION 
With the current revival of interest in the effects of anelastic 

attenuation on seismic wave propagation, a number of linear frequency 
dependent attenuating or viscoelastic media have been proposed to 
account for the observed dispersive-attenuation phenomena. All of these 
models have the property of nearly constant seismic quality factor (specific 
dissipative function) Q over the seismic frequency range. Outside the 
seismic frequency band, the models differ. For example, Liu, Anderson, 
and Kanamori (1976) show that a standard linear solid with a continuous 
spectrum of relaxation times has a nearly constant Q in the seismic fre­
quency band. Strick (1970) uses a power law solid with a slowly varying 
Q over most of the frequency range. 

Associated with attenuation, there is physical dispersion, namely, 
the speed of propagation of waves depends on frequency. In this light, 
Kanamori and Anderson (1977) have shown that the values of Q outside 
the seismic frequency band affect mainly the magnitude of the phase 
velocity but do not affect significantly the relative dispersion within 
the seismic frequency band. Therefore, they conclude that lack of 
knowledge about Q outside the seismic band does not alter the dispersion 
relation used for surface wave and free oscillation problems. These are 
low frequency phenomena, however. It is natural to ask whether the 
results of Kanamori and Anderson are applicable to wave propagation 
problems having a large high frequency content. 

In the case of the impulse response, most of the linear, frequency 
dependent material models in seismology yield wave forms with grossly 
similar structure (e.g., Futterman, 1962; Lamb, 1962; Savage, 1965; 
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Azimi et al., 1968; Strick, 1970). Thus, we want to know whether there 
are distinguishing features in the wave profiles to differentiate the 
various frequency dependent models. 

In the seismology literature, there are two equivalent mathematical 
formulations of the wave propagation problem in a dispersive-attenuating 
medium. In the usual formulation, the constitutive equation is prescribed 
in the form of a differential operator law or of an Integral law. The 
constitutive equation and the field equations form a complete system, 
and together with initial and boundary conditions, they yield a well-
posed mathematical problem. We may alternately, use the theory of 
linear physical systems to formulate a wave propagation problem. In 
this approach, it is assumed that the propagating wave packet satisfies 
causality and, therefore, the material functions are related by the 
Kramers-Kronig integral relations. Integrating these two points of 
view, we gain additional insight about the wave propagation process. 

It is the intent of this paper to review in some detail the two 
formulations of the wave propagation problem in a linear, frequency 
dependent dispersive-attenuating medium, and to examine the influences 
of the material response outside of the nearly constant Q region on the 
evolution of an impulse. 

The models studied are that of the"standard"linear solid, the 
standard linear solid with a continuous spectrum of relaxation times, 
and the power law solid. The'standard'linear solid is analyzed because 
it has a differential operator law essential to the use of perturbation 
methods in extracting pertinent results on the wave propagation process. 

Organization of this paper is as follows: In Part I, we discuss 
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the linear theory of viscoelasticity, in particular, the characterization 
of a viscoelastic medium and present some models of current geophysical 
interest. 

In Part II, the wave propagation problem is discussed. We begin 
with the usual formulation and collect relevent results from the theory 
of propagating singular surfaces and the mathematical theory of hyper­
bolic equations. Next, we discuss the formulation of the wave propa­
gation problem in terms of the theory of linear physical systems and 
introduce the power law solid. 

In Part III, we analyze the impulse response in a'standard"linear 
solid, a standard linear solid with a continuous spectrum of relaxation 
times, and a power law solid. Asymptotic methods are applied to the 
integral representation of the solutions. The asymptotic solutions 
of the standard linear solid with a spectrum of relaxation times and 
of the power law solid are compared to show the influences of the 
material response outside the nearly constant Q region. 

I. Linear Viscoelasticity 
The constitutive equation for a linear viscoelastic medium can be 

described either by linear hereditary (integral) laws or by differential 
operator laws. 

Leitman and Fisher (1973) give a complete and detailed review 
on the theory of linear viscoelasticity. Hence, only the scalar case 
will be discussed. In the following discussions, the notations follow 
Leitman and Fisher. 
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1.1 Integral Laws 
We begin with the hereditary law, in particular, the Boltzmann 

law. Let a and e be the stress and strain fields associated with some 
deformation process. Then the Boltzmann law is given by 

o(t) = L G[e(t)] = G(t)*e(t) for t > 0 

-G(o)e(t) +/Js(t-T)e(T)d T , (1) 

where G(t) is the relaxation function and * denotes convolution. 
Moreover, the relaxation function G(t) is represented by 

G(t) = G(o) + / J G(x)dx , t > 0 (2) 

where G(o) is called the instantaneous (initial) elasticity. It is 
related to the elastic response of the medium. If G(o) = 0, then the 
medium has no elastic response. 

If 

G(») = lim G(t) 
t •*• » 

exists, G(«) is called the equilibrium elasticity or the equilibrium 
modulus. 

Alternatively, there is a linear hereditary law such that the strain 
process e(t) is determined by the stress process through 

e(t) • J(t)*o(t) . (3) 

Here, J(t) is called the creep compliance. J(t) has a characterization 
of: 
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J(t) = J(o) +/J J(s)ds . (4) 

where J(o) is the initial elastic compliance. If J(t) is the creep 
compliance corresponding to the relaxation function G(t), then, 

G(t)*[J(t)--j(t)] = o(t) 
and 

J(t)*CG(t)*e(t)] = e(t) . 

This gives immediately that 

G(o)J(o) = 1 
and 

G(o)J(s) + G(s)J(o) + (G*J)(s) = 0 for o < s < co. 
Clearly, G(o) and J(o) are required to be nonvanishing. 

For most purposes, the constitutive equations defining the visco-
elastic properties are cumbersome mathematical expressions involving 
convolutions. By introducing integral transforms, the equations become 
algebraic in their respective transformed values of stress and strain. 

Applying Laplace transform to (1) and (3), we obtain immediately 
that 

[G(o) + 6][J(o) + 3] = 1 (5) 

where If is the Laplace transform of <j>. This relation is of some 

importance in correlating the creep and relaxation behavior in a 

viscoelastic solid. 

The use of Fourier transform leads directly to the "complex 

modulus" description of the mechanical properties of a viscoelastic 
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solid. Taking the Fourier transform of (1) , we obtain 

8 = G(o)e + Se 

where <f> i s the Fourier transform of <J>. Denoting the "complex modulus" 

by M(u), we have 

M(u) = G(o) + G 

where G = f_m 6 exp(itot) dt 

Since G(t) = 0 for t < 0 , then 

G=/°° G cos oit dt + i t G sin tot dt 

and FT = G(o) + t G cos tot dt (6a) 

M. = / ^ G sin tot dt . (6b) 

R and Mf. are respectively the real and imaginary parts of the "complex 
modulus" M. 

If we assume that G(t) is an integrable function, it follows from 
Riemann-Lebesque lemma that 

lim [G(o) + Gc(u))] = G(o) 
|co| •+• °° 

A 
and lim Gs(u>) = 0 

where the half range Fourier cosine and sine transform of 5 defined for 
real u are 



and 

G (<o) = f* G(t) cos cut dt 
C 0 

6 s(u) = f^ G(t) sin tot dt 

Hence, in the high frequency limit, the stress response is mainly 
elastic. Moreover, the phase lag or the "loss angle" <)>(u>) for each 
frequency to: 

K. 
tan <j>(u)} = — M r 

_ 6 s 
G(o) + G c 

vanishes as to ->- °° provided there is an elastic response, i.e., 
G(o) J 0. For a viscoelastic material with G(o) = 0, then 

lim tan <j>(to) = lim fS s/6 J . 

It is clear from equations (6a,b) that K and H. are not independent 
quantities as both ars generated from G(t). In fact, they are conjugate 
integrals, i.e., 

M (to) - G(o) = - / —i-g «- dto' (7a) 
to (w - to ) 

, ft (to') 
to - to 

or Hilbert transform pairs (Titchmarsh (1937)). These relations are 
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also called the Kramers-Kroning integral relations. 
Similar results are obtained when the creep law Eq. (3) is Fourier 

analyzed. The real and imaginary parts of the "complex creep com­
pliance" are also Hilbert transforms of each other. The precise form 
of these relations may be found in Gross (1968). 

Although the linear viscoelastic theory is purely mechanical as 
developed thus far, thermodynamics must restrict the relaxation function. 
Such restrictions have been studied by Gurtin and Herrera (1965). They 
postulate that to deform a viscoelastic solid from its virgin state, 
work must be done; i.e., 

£ aed-c > 0 0 < t < °° 

for all smooth strain histories satisfying e(o) = 0. Material laws 

having this property are called dissipative. Furthermore, the consti­

tutive relation is strongly dissipative of and only of i ts dissipative 

and the only strain history that yields zero work is the zero-strain 

history. 

Gurtin and Herrera (1965) prove that for a dissipative scalar 

integral law of linear viscoelasticity: 

• G(t) is continuous for 0 < t < « 

• |G(t)| < G(o) for 0 < t < » 

• G 1s of positive type 

• G is a characteristic function 

• if G(°°) exists, then 0 < G(») < G(o). 

The statement of primary interest is that a dissipative integral 

law has i t s instantaneous elasticity G(o) larger than i t s equilibrium 
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modulus 6(»). 

This concludes our general description of in tegra l const i tu t ive 

laws. We turn now to d i f f e ren t i a l operator laws. 

1.2 D i f fe ren t ia l Operator Laws 

A d i f f e ren t i a l operator law const i tut ive re la t ion is specif ied by 
N N 

' k ? o P / 0 = k ? o « / * 
where p. and q . k = 0, 1 , 2 , . .N are scalar constants and D <j> denotes 

kth der ivat ive of <$>. The d i f f e ren t i a l operator law has an obvious 

mechanical interpretat ion in terms of springs and dashpots. I t can be 

shown that every d i f fe ren t ia l operator law is a Boltzmann law but not 

conversely. We i l l us t ra te the results discussed in th is section wi th 

examples of current geophysical in terest . 

1.3 "Standard"Linear Solid (SLS) 

L i u , Anderson, and Kanamori (1976) have considered the use of a 

"standard" l inear viscoelastic sol id as a model fo r a medium with a 

single re laxat ion time. This so l id is described by a d i f fe ren t ia l 

operator law: 

d + J - a = Mj [e + J - e ] (8) 

a "e 

where M T is called the instantaneous modulus and T and T are respec-

tiveiy, stress and strain relaxation times. Two mechanical analogs of 

the "standard" linear solid differential operator law are possible, 

see Figs. (la,b). 
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C-, > 0 and C„ > 0 are spring constants and v > 0 is the viscosity 

associated with the dashpot. 

Associated with Fig. ( l a ) , the following dif ferential operator law 

is obtained 

C l + C 2 r C 2 1 

For this mechanical hookup, we have 

T„ = 7%—-. r- , x = -a— and MT = C, 
1 2 2 

Associated with Fig. ( lb ) , we have 

d + ^ a = ( C 1 + C 2 ) js * v ( c ^ 2 C 2 ) e] • 

The corresponding definitions of x , x and M, are 

v (̂C, + C9) 
\ - Ĉ  • \ = c ^ " a n d M I = C l + C 2-

The integral law associated with Eq. (8) is 

a(t 

Thus, 

• G(t) 

and 

6(t) 

= ¥ . _ i ( , . i ^ £ W M p | . ^ ] d t . (9) 

''"V (' "^)f ""• T / , « ) d T 

. . l A . i W . ^ 



12 

CI early, G(o) = M» and G( r o) = M, i h • For Eq. (9) to be a dissipative 

integral law, it is necessary that G(°°) < G(o), implying that x < T . 

In vievi of the mechanical analog, we see that for Fig. (la) 

< 1 
T 
a 

C 2 
\ C l + C 2 

and for Fig. ( lb) 

T 
0 _ C l 

T c 1 + c 2 

< 1. 

The "complex modulus" is simply given by 

id) + 1/T 
^-\+mi-WTT/fni • d°) 

Equation (10) may be viewed as a bi l inear mapping from u plane to the M 

plane. From Kober (1957) i t is known that the real u axis is mapped onto 

a c i r c l e centered at ft = Mj/2 (1 + T /T ) with radius Mj/2 (1 - T / T £ ) . 

The posi t ive real axis corresponds to the semi c i rc le ly ing in the upper 

hal f plane (Fig. 2 ) . ft and ft. have the fol lowing exp l i c i t representation: 

and 

\ 
<o2

 + 

1 
a e 
1 
2 

Ta 

M I 

wf . % ^ 
M I M i u>2

 + (TY 
M I 

\ V 

and, therefore, the phase lag or the "lass-angle" is 
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tan <j> = — 
M w + 1/T T r a e 

The magnitude of the "complex modulus" is then 

|M| = M 
0) + 1/Te 

1/T O J 

O'Connell and Budiansky (1978) have proposed a standard de f i n i t i on 

of the i n t r i n s i c qual i ty factor Q as the ra t io of the real and imaginary 

parts of the "complex modulus". This de f in i t i on i s a property of the 

material only and is independent of any deformation process. I t i s 

adopted f o r use in la ter discussions. From the de f i n i t i on of Q, i t i s 

seen that 

Q"1 = H i / M r = tan 4> . 

1.4 Standard Linear Solid with a Continuous Spectrum of Relaxation 
Times (SLSCS) 

For the case of a linear viscoelastic solid with a continuous 
spectrum of relaxation times, Eq. (9) can be generalized to yield 

,t 
e(T)dxJI ; 

•a 
a(t) - Mje(t) - Mj / e(t)dT £ ±- (1 - r 0/T e) exp[-(t-r)/Ta] 

* "(Ta) dT Q (11) 

where D ( T Q ) is the distribution function. Following Liu, Anderson, and 
Kanamori. (1976), it is assumed that 
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D(T„ 
D/T, •T • < X < T 

m m a max 
otherwise 

and 

1 -T /T = K , 0 < K < 1 a e 

Substituting these two expressions into Eq. (11) and performing the 
necessary integrations, we obtain 

in;,a(t)=» M f (t),+ M ^ l 

By' d e f i n i t i o n ^ , r 

G(t) = Mj + M p̂ S0 

where *€ = KD. Therefore, 

G(o) = Mj 

t exp[-( t-f) /T m n . n ] - exp[- ( t -x) /x m : l v ) 
"mm max' 

t -x 

t e x p (" T / W " e x p ( ' T / W 

e(t)dx . 

(12) 

dx 

and 

^-.^J-^-V^ ;-.:•>., : ' G ( t ) - - M ^ 

Performing the integrat ion and using the de f in i t i on of the exponential 

in tegraVEvCzi ) : - "^ t~\ .exp(i-t)dt (Wamowitz-.and,Stegun,,,1964), we have 

'.fU 6(t) - M l + ^lMrmin/,mK) - l,{t„m.n) + E v ( t / x , a x ) ] . 

G H ^ j t l ^ M T ^ / T j ] 
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For (12) to be a dissipative constitutive laws i t is necessary that 

0 < v < "^WW 
The Fourier transform of 6( t ) i s given by 

/io) + l / x m \ 

\ min/ 

and, therefore, 

G = 4 - Jin c c. 
( w T

m , 0 + ('Tm,-»/Tm,„) 
mm' l min max 

v mm' 

G = M^ tan" 1 
u ' T max* Tmin' 
OJ T • T + 1 

mm max 

The phase lag § is 

tan <(i = ¥ t a n -1 v max mm' 
(0 T • T + 1 

mm max 

1 + f An 
2 2" 

* min' ' min max' 
x min 

The constitutive equation (12) for SLSCS 1s a four parameter family 
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integral law: Mj, W T ^ , and <€. For 

1 / Tmax « w <K 1 / Tmin a n d **"<WW < < : ] 

then 
, , (I)(T - T . ) n - ' _ +,„ A ^>+,^"l max m m ' „&7/9 Q = tan <|) =* 5̂ t an 5 =* ffw/c 

1 + U T . T 

m m max 

Under these circumstances, we may replaced by Q" and consider the set 
V W W a n d C = ^ / 2 • 

A typical plot of Q~ and the magnitude of the complex modulus is given 
in Fig. 3. 

This concludes the discussion en the characterization of a linear 
viscoelastic solid. The mathematical formulation of a wave propagation 
problem is examined next. 

II. The Wave Propagation Problem 
In this part, we consider the wave propagation problem. The usual 

mathematical formulation is discussed first. 

II.1 The usual formulation 
We consider the impact or signaling problem in a linear visco­

elastic medium. We seek a mathematical solution for the velocity 
distribution u(x,t), the stress profile o(x,t), and the strain field 
e(x,t) in the region x > 0 and t > 0 satisfying the usual field equations: 
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equation of motion, 

3u _ 30 M -j \ 
p 3 t " 3 7 • ( 1 3 ) 

the kinematic equation, 

3e _ 3u_ 
3t " 3K (14) 

and a linear constitutive relation 

o(x.t) = F[e(x,t)] . (15) 

The initial conditions are homogeneous, i.e., 

u(x,o) = a(x,o) = e(x,o) = 0 for x > o 

The boundary conditions are 

u(o,t) = f(t) 

and 

lim u(x,t) = 0 for t > 0 
x •+ «• 

Here f ( t ) is the signaling data. 

The impact problem with the constitutive equation given by (t)» 

namely, 

t 
o(x,t) = G(o)e(x,t) + SQ 6(x,t-T)e(x,T)dT 

may be solved using Integral transforms. Let 

F(s) = { e _ s t f(tjdt 
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be the Laplace transform of f(t), then we have the following repre­
sentation of the solution to the impact problem 

u(x.t) = 2^- / B T[s) exp st - xs^/[G(o) + G(s)] ds 

where B is the Bromwich path. 
We note that Eq. (16) is a representation of the solution if: (1) 

it satisfies the governing equations and the associated initial and 
boundary conditions; (2) U(x,t) a(x,t), E(x,t), and their partial 
derivatives with respect to x as well as f(t) are functions of bounded 

ctt variation and of exponential order, i.e., U(x,t) = (e ) for a > 0 
when t > 0; and (3) the Laplace inversion integral is uniformly con­
vergent for -<» < t < oo. The last two conditions are associated with 
the Laplace transform (Widder 1946). We will assume that f(t) satisfies 
the necessary requirements. However, from modern transform theory 
(Gel'fand and Shilov 1966), f(t) can be a generalized function. Before 
proceeding, we collect some useful results from the theory of propagating 
singular surfaces in a linear viscoelastic solid ar,d from the theory of 
mathematical theory of hyperbolic equations. These results are essential 
to understanding the wave propagation problem. 

II.2 Results from the Theory of Propagating Singular Surfaces and the 
Theory of Hyperbolic Equations 
An important and relevant result (Herrera and Gurtin, 1965) from 

the theory of propagating singular surfaces is that the viscoelastic 
wave-speeds are dicated by the initial response of the material, i.e., 
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the instantaneous modulus, G(o). In the case of a "standard" linear 
solid or the family of distributed "standard" linear solids, this asserts 
that discontinuous motion propagates with wave speed corresponding to 
the instantaneous modulus. 

In the mathematical theory of hyperbolic equation with lower order 
terms (Cole, 196B; Whitham, 1959, 1974), the curves along with distri-
bances or singularities propagate are called characteristics. For the 
standard linear solid, they are 

r = t - x/c and s = t + x/c 

with c = /G(o)/p 
On the other hand, signals can propagate with speed c^ with c r o<c. The 
curves 

r = t - x/c and s = t + x/c 
GO CO 

with c < c 
00 

are called subcharacteristics since they lie inside the domain of 
dependence — a region in x-t plane bounded by the characteristics and 
the data curve (see Fig. 4). 

Since singularities propagate along characteristics, waves propagating 
along the subcharacteristics directions must be smooth. This phenomenon 
will be made clear when we discuss the impulse response. 

Another pertinent result from the theory of propagating singular 
surfaces 1s that the magnitude of the propagating jump discontinuity 
changes at a rate given by 
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q(t) = e x p l " - ^ G(o)jq(o) . (17) 

This relation is independent of the order of the propagating wave; the 
order is defined as that of the lowest order derivative of the particle 
motion with a finite jump across the propagating wave (Fisher (.1955),). 
Note that the relaxation function G(t) is a monotonically decreasing 
function and, therefore, G(o) < o. Thus, the magnitude of the jump 
discontinuity is exponentially decaying. From (5), an integral equation 
relating the creep function J(t) to the relaxation function G(t), we 
have 

G(o)J(o) = - G(o)j(o) 

As J(o) = l/G(o), it follows that 

G(o) = - G2(o)J(o) 

and Eq. (17) may be written in terms of the initial slope of the creep 
function: 

q(t) = exp [- ̂ f2) j(0)j q ( o ) . ( 1 8 ) 

In summary, for a viscoelastic medium whose creep law or relaxation 
function has a non-zero initial slope, then,there exists a precursor 
wave propagating with a speed »̂ G(o)/p and decaying exponentially with 
time. Moreover, if the equilibrium modulus G(°°) exists then waves 
propagating with a speed C^ = ^G(°°)/p must have smooth profiles. 
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The above general results concerning the wave propagation process 
will become evident as the impulse response solutions are discussed. 

II.3 Theory of Linear Physical Systems and Wave Propagation 
Consider a plane wave propagating in an infinite homogeneous 

dispersive-attenuating medium (Futterman, 1962; Lamb, 1962; Strick, 
1970): 

-a(u))x + i[ait - xe(oi)] J/2TT , uu(x,t) = A(a>) exp 

for x > o 

where a(co) is the attenuation coefficient and 9(a)) is the phase lag 
function. 

Associated with the plane wave, there is a spatial seismic quality 
factor Q x(w) (Strick, 1970): 

Q~ ((o) = 2a(u))/0(u) o < w < ~ (19) 

expressing the decay of the successive wave peaks by a factor of exp (-ir/Qx). 
For the propagation of a wave-packet, we superpose over all 

frequencies to obtain 

u(x,t) = ;̂ f J A(w)expj-a(u))x + i[ait - x6(a>)3 dui (20) 

Suppose the signaling data at x = o is f ( t ) , a bounded and continuous 
ft 2 

function with J |f| dt < °° for t > o, then 

u(o,t) = f ( t ) , t > o 
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Evaluating (20) and x = o, we have 

f(t) = jjL- / A(w) exp[iwt]dui . 
—00 

Therefore, A(oi) is the Fourier transform of f ( t ) . For a physically 

reasonable solution, u(x,t) must be a square-integrable functico, i . e . , 

/ |u(x,t) | 2 dt = J r / |A(w)|2 exp[-2xa(a))]dJ)< - (21) 
lea -co 

for x > o . 
It follows from Eq. (21) that 

a(u>) > o for -°° < u < °° 

Moreover, the requirement that u(x,t) be a causal function, i.e., 

u(x,t) = o t < o 

provides a relation between ot(oi) and 9(u), namely, that 

6(u) = u/c + $(w) , (22) 

ftu) = J / «klL_ 2 d u< , (23a) 
and 

ot(u) = a(o) - ̂  / yp-^ da, (23b) 
-co U) - (J)' 

where c is a constant. The integral relations (23a) and (23b) are 
identified as the Hilbert transform pair or the Kramers-Kronig relations. 
Moreover, it is noted that ${us) is an odd function while a(w) is an even 
function. 
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Derivation of Eq. (20) by Papoulis (1962) makes use of Cauchy's 

integral theorem and of theorem V of Paley and Wiener (1934) on the 

Fourier transform of an entire function of the exponential type. During 

the application of the Cauchy's integral formula, i t is necessary to 

impose 

Jatp/D^l^p/l) 
p + u) 

as 

an asymptotic condition on the high frequency behavior of the material 
function. Using theorem XII of Paley and Wiener (1934), we may restate 
the above asymptotic condition on a(u>) as 

r .si. 
Jo 1 + 

•SL 2 
ID 

dio < 

If a((u) ̂  |u)| s, then s < 1 (Guillemin (1963)). 
In the terminology of net-work theory, Eq. (22) is a sum of an 

all-pass function w/c and a minimum-phase-shift function, a + i9. 
Substituting (22) into (20), i.e., 

u(x,t) = -^ J A(u>)exp - x[a(u») + ift(w)] 

+ iw(t - x/c) duj (24) 

we note that 

u(x,t) = o for t - x/c < o. 

This clearly shows that x/c = t is the wave front and c < » is its speed 
of propagation. As c + », we have u(x,t) = o for t < o. Since the 
theory of propagating singular surfaces for a linear viscoelastic 
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medium asserts that the wave speeds are dictated by the instantaneous 

modulus 

c = v^olTp" . 

We have thus demonstrated that the all-pass function is associated with 
the elastic response of the medium. The minimum-phase-shift function is 
assigned to the anelastic behavior. 

To relate the attenuation coefficient and the phase lag function 
to the "complex modulus", we substitute s = iu into (16) and compare 
with (20) to yield 

a(u) = -ai Im [p/Mtto)]3* 
and 

e(u) = w Re [p/Mtu)]3* . (25) 

Instead of using the attenuation coefficient and the phase lag 
function in Eq. (20), we may write it in terms of the complex refractive 
index n(w) (Lamb, 1962), i.e., 

u(x,t) = 2^ J A(to) exp iu[t - xn(w)/c Q] du> 

where 

n(ui) = n r(u) - i n.j(w) . 

The real and imaginary parts of the complex refractive index are related 
to the attenuation coefficient and the phase lag function as follows 

n i(w)/c Q = a(u))/u) 
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and 

nr(o))/c0 = 1/c + $/(o 

Since n J w ) and n (m) are Hilbert transform pairs, therefore, 

c Q = c = MOTTP 

The identification of the elastic response in a dispersive-
attenuating medium and consequently the value of c has been a source 
of confusion and misunderstanding. For example, Futterman (1962) 
chooses his "non-dispersive" behavior at zero frequency and, therefore, 
his impulse response arrives earlier than the "non-dispersive" signal. 
Gladwin and Stacy (1974) and Stacy, et al. (1975) have interpreted 
Futterman's "non-dispersive" behavior as elastic thus conclude that 
Futterman's linear theory at attenuation is acausal. 

Savage (1976) in commenting on the interpretation of Gladwin and 
Stacy and Stacy and et al. suggests that c must correspond to the 
immediate or high frequency response of the medium by considerating a 
"standard" linear solid. With such a choice, with c corresponding to 
the high frequency non-dispersive behe.vior, Savage shows that Futterman's 
apparent paradox is resolved. 

Indeed, from considerations of the theory of propagating singular 
surfaces and of the mathematical theory of hyperbolic equations, the 
only choice possible is that suggested by Savage. The choice of any 
reference speed other than ^G(o)/p would result in the arrival at that 
travel time of a pulse with a smooth profile, thereby creating an 
apparent paradox. Moreover, if the equilibrium response G(°°) exists, 
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then the smooth wave is propagating along a subcharacteristic. 

II.4 Power Law Solid (PLS) 
Stick (1970) introduces a dispersive-attenuating medium defined 

by the following equation 

ot(u) + l8(u) = (iu)SK (26) 

wi th s < 1 so that the material law sa t is f ies the asymptotic material 

behavior as imposed by the causality condit ion. 

Corresponding to the const i tut ive Eq. (26), there is a creep law 

given by 

M V ' ^ + T T ^ + WZST*™ < 2 7 > 
and 

. dJ , 2K t " s _, K2 J - 2 s , , Q x 
p dt + "c - TTTiT + T(^2T) * ( 2 8 ) 

where r(z) is the gamma funct ion. The derivation of the creep law i s 

s t ra ight forward using ( 5 ) , (22), (25), and invert ing a Laplace transform. 

Accordingly, 

dJ * 
d t " " as t + o , 

and the precursor wave will have a zero amplitude at the wave front x = ct. 
This result follows from the theory of propagating singular surfaces. 

As t •*• °°, Eq. (28) gives 

„ dJ K 2 J-2s 
p dt "* T(2-2s) * 
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If s = 3s, then the power law solid behaves as a fluid with a viscosity 

P/K2 

Another feature of the power solid is that the spatial seismic 
quality factor Q x is almost constant for s -*• 1 

Q " 1 ^ ) = 2<x(u>)/8(a0 

= 2[tan(sir/2) + J'S/CK cosCsir/2)]"1 . (29) 

Indeed for — = o giving a medium without any elastic response, then 

Q'V) = 2 cot (su/2) 

a truly constant Q material for o < s < 1. This model has been applied 

to polymeric materials by Kolsky (1956). Kjartansson (1978) suggests 

its use for modeling geological materials. The relation between the 

intrinsic quality factor Q(oi) and the spatial quality factor Q is given 

by 

Q = [6/a - a/6]/2 

or 

Q"1 = 2/[6/a - a/6] . (30) 

From (29), we have 

6/ct = 2QX = tan(sir/2) + ui^/Kc cos(sir/2) 

and 

Q'1 • 2/[2Qx - V(2QX)] 

0 < U J < a i S < 1 
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The l i m i t i n g behaviors of Q~ for u -*• o and u -»• « are 

n-l, v _ 2 
Q [u>> ' tan(sir/2) - cot(TTs/2T 

J " S 1 + C0t2(STT/2) 
K c s i n ^ ^ / 2 ) ] _ c o t 2 ( W 2 ) 

+ 01 

as u •+ o 

and 

Q - l ( M ) = 2Kccos( r/2)^ 1 + 0^j 

as w ->• m 

III. Impulse Response 
In the previous parts we discussed the intrinsic properties of a 

"standard" linear solid, a "standard" linear solid with a continuous 
spectrum of relaxation times, and a power law solid. Now, we discuss 
the wave propagation properties. 

The "standard" linear solid with a continuous spectrum of relaxation 
times (SLSCS) and the power law solid (PLS) are constructed so that Q~ 
is nearly constant over the seismic frequency range. Outside the seismic 
band, these two materials behave differently. Their Q" behaviors are 
summarized in Table I. 

We present the far field or long time asymptotic solutions of the 
impulse response in the three above mentioned linear viscoelastic solids 
Detail construction of the asymptotic solution for the "standard" linear 
solid and the standard linear solid with a continuous spectrum of 
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relaxation time may be found in Chin and Thigpen (1978) and Minster 
(1978 a,b). However, Chin and Thigpen's analysis is reported here. 
The asymptotic solution of the power law solid, on the other hand, is 
new. This analysis clarifies and extends Stride's (1970) construction. 

Asymptotic expansion of the impulse response for the "standard" 
linear solid is discussed first, followed by the solution of the standard 
linear solid with a continuous spectrum of relaxation times. The 
essential structure of the wave propagation problem in these two solids 
is similar with slight differences to account for the subtle changes 
in the properties of the medium. Finally, we present the asymptotic 
solution for the power law solid. The response of the standard linear 
solid with a continuous spectrum of relaxation times will be compared 
to that of the power law solid to show the influences of the material 
response outside the seismic band. 

Ill.1 "Standard"Linear Solid 
For the "standard" linear solid, the integral representation of 

the solution of the impulse response is by (16), 

1 / 1 x /s + VT 
u < x ' * > = m 7B

 e x p s t " I s\lTTi7re

 d s 

where 

c "\j~ » and B is the Bromwich path. 

Defining the following dimensionless variables 

T = t/r a, a = x /T , and p = x/ct 
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we have 

^'^ = 2iT I e xP s - 's + 1 
s + a ds (31) 

The branch cut associated with the radical is taken along - 1 < x < - a. 
^Asymptotic expansion of the integral is performed with respect to the 
parameter T » T. This implies that 

t » T 

that i s , we are studying the behavior of the solut ion at times large 

compared to the stress-relaxation time. We may equivalently perform 

the asymptotic expansion at large distance from the source. In th is 

case the integrand can be rewri t ten as 

x *-•££ 1 
s + a 

where $ = ct/x. Here the interpretation for the far field solution is 
X/6T •» 1 or x » T Q J ^ - • In. either case, B or B represents a ray 
emanating from the origin in the x - t plane. 

Becasue of the decay of the integrand for B > 1 (B < 1), the 
Bromwich pathway be closed in the right-half plane by a semi-circle 
with radius R •*• <*> to yield 

u(x,t) for x > ct 

This means that there is no signal prior to x = ct, iri accordance wjth 
the predications of the theory of propagating singular surfaces. Thus, 
we need only to examine 
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0 < B < 1 
or 

1 < B < » . 

In Chin and Thigpen (1978), the long time asymptotic development is chosen 
since o < B < 1. 

In developing the asymptotic expansion for (31), Chin and Thigpen 
(1978) found that the steepest-descent method breaks down in the 
neighborhood of B = o and B = 1 and uniformly valid asymptotic expansion 
techniques (Oliver, 1974; Bleistein, 1967; Bleistein and Handelsman, 
1975) or modified steepest-descent methods (tyhitham, 1974) are required. 
Examples of difficulties encountered in the steepest-descent method 
are confluencing saddle points and essential-singularity/saddle-point 
interactions. In each of these instances, the appearance of a second 
parameter (in addition to the primary variable with which the asymptotics 
are performed) induces the nonuniformity. An asymptotic expansion with 
respect to X is said to be uniformly valid with respect to the parameters 
{a} if it is valid for all pertinent values of {a} (Erdelyi, 1956). 

In the neighborhood of 6 = 1, the nonuniformity of the asymptotic 
expansion is due to two saddle points confluencing at infinity to 
produce a saddle point of Infinite order. This gives rise to a 
wave that propagates with a speed c and decays exponentially 
with a rate given by D / T - 1 / T £ ] / ( 2 C ) . The leading term of this expansion 
is just that given by the theory of propagating singular surfaces. In 
particular, the following asymptotic expansion is obtained: 
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i au(x,t) * exp[- ~ 1 BT] Jfi(l-B) 

f B d - a J d + a a ) ] 1 8 r 
+ [ 8(1- B) J [ 

rg(l-B)(1-a)(H3a)1 3 g 

1 + 2a + 5a 
2(l+3a) T ( 1 - B ) J 

where L U ) is the nth order modified Bessel function of the first kind. 

This expansion is valid for (B-l)x « 1 and for any x. 

In the neighborhood of B = o, i t is found that the steepest-descent 

analysis is invalidated by the coincidence of the saddle point with the 

l/A+a signularity. The manifestation of this interaction is a 

boundary layer serving to connect the main diffusive wave to the boundary 

condition. The asymptotic solution in the neighborhood of B = o is 

given by 

i2/3 
Tau(x,t) * ( i - a j e - ^ ^ ] 

(1 3\ (BTa)" 
\a " Z) ,, . 1 (1-ah 

4/3 

73 

F 0(Y) 

^ ( Y ) + (33) 

where 

(Bia) 2 / 3 [ ( l - a ) t ] 1 / 3 

n 

"FoM-TJff f ( 2 " 2 - D e - U I 0 [ ( 4 Y ) 3 / 4 v^] du 

and 
F l W = -3-727- f "(2u 2-3)e- u 2 I 0 [ ( 4 Y ) 3 / 4 /S] du 
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For Q < B < 1» steepest-descent method applies. There are two real 

solutions to the saddle point equation 

1 - (L±±t Ti LJLA S 1 
B \s + a) L 2 (s+l)(s+a)J 

The primary saddle point s has the following properties 

- a < s < °° , 

.̂ phj^S 0(1) a s B •*• 1 

s ^T^-rlB-Si) + 0[(B-^a) 2 ] as B * ^a" 
X ~ a. 

and 

$ = - a + p 2 / 3 ( a / 2 ) 2 / 3 ( l - a ) 1 / 3 + 0 (B 4 / 3 ) as p - 0 . 

Figure 5 is a plot of 's vs B for some values of a. The secondary saddle 

point s is given by 

< s < -1 

• - [ u = m ^ * w i a s B •*• 1 

and 

s = - [1 + BZ/4(l-a) + 0(B 4)] as B •>• 0 . 

The secondary saddle point s as a function of B and some values of a is 
A 

shown in Fig. 6. The elevation of the primary saddle point s is higher 
than that of the secondary saddle point s and attains equal value as 
s •*•» and. s •+ -». Thus, the primary saddle point s; contributes predom­
inantly to the integral except in the neighborhood of infinity where 
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the saddle points coalesce to form a saddle point of infinite order. A 
typical steepest descent path for o < 3 < 1 passing though the primary 
saddle point is depicted in Fig. 7. 

A one-term asymptotic representation of the solution using steepest 
descent method is 

V ( x ' t ) = [ k 1 explrf^))] (34) 
0 L2TTTF"(£(B))J L J 

where 

F<*> •«[i - i n t . 
and 

F"(z) = 3 U ? I ( f - i - l ) * < 1 + 3 a ) z + 4 | . 
4 \ z + a ' ( z+ l ) Z ( z+a ) 2 

The functions F ^ B ) ] and F"[s(B)] are plotted as a function of 3 in 

Figs. 8 and 9 respectively. 

From these figures and (34), i t is readi ly seen that 

TOU(X - c/S t . t ) * [TF'{Sa)Yh 

and 

u(x,t) < u(x - cJa t , t ) . 

To see the physical significance of the above observation, we expand 
u(x,t) about M i ' s to obtain 

vfc'*) -fcrnWf exp[" %^r\ I1 + 0 M ) • 
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In terms of the physical variables, the leading term gives 
2 

_ T o 

This clearly shows that the main wave is a propagating diffusive wave as 
(35) is a solution of the diffusion equation with diffusivity 

This is also an intrinsic property of a Kelvin-Voigt solid. Therefore, 
the low frequency response of the"standard"linear solid behaves as a 
Kelvin-Voigt solid with a relaxation time of 

This diffusive behavior may alternatively be obtained using perturbation 
methods discussed by Cole (1968) and Whitham (1959, 1974). Following 
Cole and Whitham, we extract the approximating equation in the neighbor­
hood of x = cvf t. This is done by transforming to the wave coordinates 

(t,x) + (t, e = x - z/E t) 

The effect of this transformation is to make the derivatives with respect 
to t small, so that the approximate form of the Eqs. (8), (13), and (14) 
is 

o 3 2u _ * /, T / T \ 33u 
2 3|3t ~ CXaV - T o / T J ^ 3 • 

In the derivation, it is noted that the diffusive term 1s directly 
related to the high frequency response of the material medium and 

x-c^a t)' 
2 x ^ ( 1 - ^ / ^ ) 1 

(35) 
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manifests itself solwly and cumulatively. The wave propagation process 
in a "standard" linear viscoelastic solid may be summarized as follows: 

(1) a precursor wave propagates with a speed corresponding to 
the instantaneous modulus 6(0) and attenuates with distance 
(Eq. 32); 

(2) a main diffusive wave propagates with a speed corresponding 
to the equilibrium modulus G(°°) and spreads as l//t (Eq. 34); 

(3) a boundary layer is formed connecting the main wave to the 
boundary data (Eq. 33). A graphic representation of these 
results is shown in Fig. 10. 

III.2 Standard Linear Solid with a Continuous Distribution of 
Relaxation Times 

For this case, the integral representation of the solution is given 
by 

1*5 W ^ ' t ) • ST /B
 exP ST| 1 " 4 +M!?f)f J ds (36) 

where r = t / t ^ 

B = x/ct 

a " Tmin' Tmax 

Associated with the integrand are the branch points 

s = -a, s = -1, and s a - e 
1 - e A/V 

The branch cuts are taken along the negative real axis 1 < x < -a. 
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The saddle point structure for (36) is similar to that of the Standard" 
linear ivolid: There are two real solutions to the saddle point equation. 
The primary saddle point -a < s < <=° contributes predominantly to the 
asymptotic expansion of the integral. The secondary saddle point 
- oo < s < -1 contributes significantly only in the neighborhood of 
infinity where the two saddle points coalesce to produce a saddle 
point of infinite order. 

The primary saddle point s is a function of 3, a and <#• The local 
behaviors of s as a function of B about 3 = 1 , 3 = /T+lFlrTa and 3 = o 
are respectively 

.2 \-mpi 

+ o[[3 - (1 + «tn a) 3 6] J 

and 

s = -a + tot itsirfi] , /v» t o t fw ) 
L V 2 / «"(l-a) J 

Because of the similarities of the saddle-point structure, it is 
expected that the asymptotic solution of the standard linear solid with 
a continuous distribution of relaxation times has the same charac­
teristics as that of the'£tandard"li near solid with modifications 
accounting for the subtle changes in material response: The precursor 
wave has a decay rate of 

" ̂ ^min " ̂ J ' 

file:///-mpi


38 

The main wave has a form 

- ̂ ^ fr4*) * ] " ^ I" ̂ ^ ^ ' ° +^ ^ (37) 

as 0 •+ (1 + tf£n a) 1 

Once again, the main wave is a propagating diffusive wave that propagates 
with a speed corresponding to the equlibrium modulus G(°°) = M,(l +^Zn a) 
and diffuses in time or space with a diffusivity 

r<?M T( T - T . )/2p I v max m m " M 

I t should he emphasized that the cumulative dispersive-attenuating 

phenomenon is pervasive and i t requires time to develop. Analogous to 

the "standard" l inear s o l i d , the low frequency response of the material 

i s , once again, Kelvin-Voigt l i k e with a relaxation time o f# (T - T . ). 
max min 

III.3 Power Law Solid 
The integral representation of the solution for the impulse 

response of a power law solid as given by 

o(oi) + i (to) = ito/c + K(iu) £ s < 1 

is 

u(x,t) 1 
2iri k exp pt - | p - xKp s dp (38) 

with the branch cut taken along the entire negative real axis. Note 
that for t - x/c < o, the integrand is a decaying analytic function in 
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the right half plane. Closing the Bromwich path in the right half 

plane by a semi-circle with radius R + °° and using Jordan's lemma, we 

obtain 

u(x,t) = 0 

for x/c > t confirming that u{x,t) is indeed a causal function. In fact, 
for c < ra, we have causality relative to the reduced time t - x/c. As 
c -*• », u(x,t) = o for t < o. 

Before proceeding to the asymptotic expansion of (38), we introduce 
the following change of variables, 

xK V(l-s) 
p = rnc7c c 

and 

XK y/n-") z = xK 

to obtain 

\t - x/c/ 

"<*•*> = ( F ^ ) 1 / ( 1 " S ) TST /B, e x p ( 2 { ? " ? 2 ) Id? ( 3 9 ) 

where B' is the image of B in s-plane. By rewriting z the similarity 
variable in the form of 

\ l / ( l -s) 
<* - x / c > ( F ^ X A : ) 1 

(39) becomes 

" < * • * > = TF^OT z F ( Z i S ) = ( s i r ) " " F < z ; s ) <4 0> 
1 _. . , , J / s 
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where 

Note that (40) states that the pulse shape (in time) is the same at all 
stations or the pulse shape (in space) is the same at all reduced times. 
This obervation has been noted by Pipkin (1973) and Kjartanssen (1978). 

For s = h, a Table of Integral Transforms (Erdelyi (1954)) gives 

F(zfc) = — — exp (- z/4) . 
2/Jiz 

In other values of s(o < s < 1), there are no known inverse transforms, 
and asymptotic methods will be utilized to carry out the integration. 

Using theorem (7.1) of Olver (1974), we obtain for z » 1 the 
following asymptotic expansion of the integral F(z;s) 

4¥1 F(z;s) 
[Zir(l-s)*]* 

where \ = s 1 / ( 1 " s > z 

^MH.;^^ 0^) («) 
Note that z = constant are curves in x - t plane satisfying the relation 

t = x/c + [sKx/z^" s^j (42) 

z = o corresponds to x = o and t > o. z = °° corresponds to the wave-front 
t = x/c. For convenience, with c < °° let 

t = x/fsKc) 1^ 1- 5) , 

x = C / ( s K c s ) 1 / ( 1 - s ) 

then we have 
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x - C • [ ^ ( 1 - S > ] V S (43) 

and inversely 

1/0-s) 
z = (T-C) W 

Figure 11 is a plot of (43) with Strick's value of s = .9227 and z = 

1, 10, 100. Note that as £ •+ °°, the second term dominates signifying 

the response of a polymeric medium (1/c •*• 0). 

The scaled impulse response 

u(x,t) = u ( x , t ) / ( s K c ) 1 / ( 1 - s ) 

is given by 

U(C,T) = i l Z I Z i l r _ * . l i + (2-s)C2s-1) 1 . 0 M / ^ 
T ^ l |_2*0-s)J 1 + 24(l-s) % + 0 ( 1 / z ' 

The leading term of the expansion called a one-term asymptotic approxi­

mation is just Strick's Eq. (20). The one-term asymptotic approximation 

exp[- l f i l ] r j Ih 
u i r^i—LMT^yJ C 4 5 ) 

with 5 fixed has a maximum at 

Vfey • (46) 

At this value of z, the 0(l/z) term has a value of .07045 for s = .9227, 
that is, Eq. (45) underestimates the value of u at z = z by 7%. This 
is confirmed by FFT calculations of Kjartensson (1978), which show that 
the one-term asymptotic approximation underestimates the low frequency 
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amplitudes in the later part of the pulse. Equation (44) having a 
two-term expansion can provide a sufficiently accurate approximation to 
the solution of the impulse response between the wave front and the 
pulse maximum. Thereafter, the asymptotic approximation degrades and 
becomes invalid as z -> o. 

In the region where the asymptotic expansion is valid, it is seen 
that the pulse peak propagates with a variable velocity and attenuates 
with x" . The wave front propagates with zero amplitude. This result 
is predicted by the theory of propagating singular surfaces. Moreover 
as the pulse propagates into the material medium, the response is more 
polymer-like. 

111.4 Comparison of Impulse Responses for SLSCS and PLS 
By comparing the asymptotic expansions of the impulse response of 

a standard linear solid with a continuous spectrum of relaxation times 
(SLSCS) and of a power law solid (PLS), we see significant and dis­
cernible differences in the wave profile. The differences are 
symptomatic of their respective material behaviors. 

For x > ct, there is no signal. At the wave front x = ct, SLSCS 
has a precursor with an exponentially decaying amplitude. The rate of 
attenuation is related to the initial slope of the relaxation function. 
The PLS, on the other hand, has an infinite creep rate initially giving 
rise to a vanishing amplitude. 

The main wave for SLSCS propagates with a constant speed 
\j M T(1 + "i(?an a)/p and spreads diffusively with a diffusivity of 
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M T ( T - x .„)/2p. For this case, the main signal behaves as in a I 1 max nun 
Kelvin-Voigt solid with a relaxation time of * ( T _ _ X - T

m i s n ) - Correspond­
ingly, the main wave in a PLS propagates with a variable speed. The 
pulse maximum traces out a curve in x - t plane approximated by 

t = x/c + 

and attenuates as 

[mil]™" , s w"< 

Moreover as x •+ °°, t ̂  x and the attenuation rate is proportional to 
t . This describes a polymeric material. 

Although both of these models are constructed so that the seismic 
quality factor Q is very nearly frequency independent over the seismic 
frequency range, their impulse responses are indeeei characteristic of 
their respective material behaviros. This implies that in studying 
impulse response of linear dispersive-attenuating medium the material 
response functions must be known for all frequencies. 

CONCLUSIONS 
Comparing the impulse response of two linear viscoelastic models 

having a nearly constant Q over the seismic frequency range but differ 
otherwise, we conclude that 

1. there are significant and discernible features in the wave 
profiles to permit differentiation of the material models, 

2. a complete knowledge of Q over the entire frequency range 
1s necessary to determine the wave propagation problem 
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when initiated by a rapidly varying process such as an 
explosion or an earth quake. 

Conclusion (2) is contrary to the situation in surface wave and free 
oscillation problems in which the dispersive properties within the 
seismic frequency band are insignificantly influenced by the knowledge 
of Q outside the seismic frequency range. 
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1 

SLSCS PLS 

w -»• o ^ U) constant 

(o -»• ° ° 
-1 ^ w - ( 1 - s ) s< 1 

Table I. Q" 1 behavior for SLSCS and PLS. 
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FIGURE CAPTIONS 

Fig. 1 Mechanical analogs of the "standard" linear solid. 
Fig. 2 

3 
Mapping in the "complex modulus" plane. 
1 

Fig. 
2 
3 Q /(TT^/2) and M /M T as functions of W/T . T = „ . i mi n max 

Fig. 4 Characteristic and subcharacteristic curves. 
Fig. 5 Primary saddle point s as a function of x/ct. 
Fig. 6 Secondary saddle point s as a function of x/ct. 
Fig. 7 Steepest descent curve. 
Fig. 8 Values of F[s(B),a]. 
Fig. 9 Values of F" [s(B),a]. 
Fig. 10 Sketch of the asymptotic solution for the impulse-function 

Fig. 11 Trajectories of z = constant. 


