

SEP 08 1987

FLAME ACCELERATION AND TRANSITION TO DETONATION IN CHANNELS

This document is
PUBLICLY RELEASEABLE
Barry Steele
 Authorizing Official
 Date: 11-27-06

Martin P. Sherman, Sheldon R. Tieszen, and
 William B. Benedick
 Sandia National Laboratories

SAND--87-1444C
 DE87 014193

ABSTRACT

Experimental results are reported for combustion of pre-mixed H₂-air mixtures in a 136 m³ channel and a 1:12.6 linear scale model. Test variables include H₂-air equivalence ratio, obstacles and degree of transverse venting. The results show that flame acceleration is increased by sensitive mixtures, presence of obstacles, large scales, and insufficient venting. The results also support the hypothesis that deflagration to detonation transition (DDT) can occur if the ratio of detonation cell width to channel width is less than a critical value, provided that the flame speed prior to transition has approached the isobaric sound speed.

INTRODUCTION

Experimental results are reported for combustion of pre-mixed H₂-air mixtures in channels. The testing was motivated by the possibility of flame acceleration and transition to detonation in the event of a severe accident in a nuclear power plant. Several hundred kilograms of hydrogen can be generated during the course of a severe accident in a nuclear reactor and mix with the containment building atmosphere.

Related concerns in the petrochemical industries have led to extensive studies of flame acceleration and DDT. Studies have been conducted at small scale^{1,2,3} and several at industrial scale.^{4,5} These studies have examined the effect of equivalence ratio, obstacles, and venting on flame acceleration. The results show that flame acceleration is highly dependent on all three variables. The current study examines the effect of these variables on flame acceleration and DDT in channels configured with multiple vents.

APPARATUS

The experiments were conducted in two facilities, a 136 m³ channel that is 2.44 m high by 1.83 m wide by 30.5 m long as shown in Fig. 1, and a

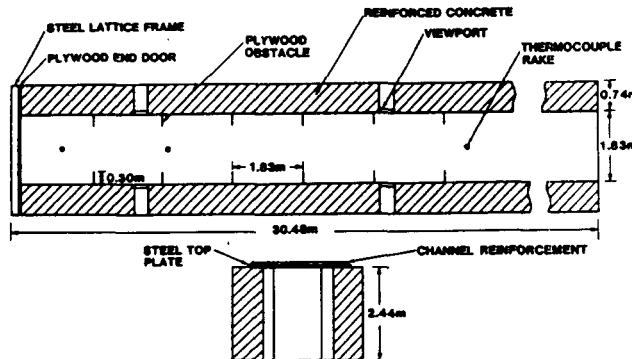


Figure 1. Schematic of the 136 m³ channel with obstacles.

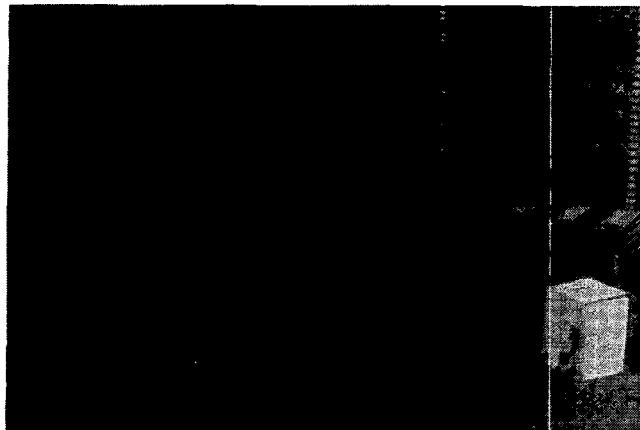


Figure 2. Photograph of 136 m³ facility showing multiple vents created by movable top plates. The degree of venting is adjusted by repositioning the plates.

1:12.6 linear scale model. Tests were conducted with hydrogen concentrations between 12 and 30%, with and without obstacles, and three levels (0, 13 and 50%) of transverse venting in the top of the facilities. The obstacles created a blockage ratio of 33% and were spaced axially three obstacle widths apart. Top venting of the channel

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

was created by positioning movable plates along the top of the channels, as shown in Fig. 2. The ignition end was always closed and the opposite end always vented. Flame time-of-arrival and pressure were measured. In the 136 m³ facility, time-of-arrival was measured with thermocouple rakes and in the scale model by high speed cinematography.

RESULTS

The flame acceleration results are summarized in Figures 3-6. Flame acceleration is affected by hydrogen concentration, obstacles, scale and venting in decreasing order of importance. Increasing the hydrogen concentration greatly increases the flame speeds and overpressures for all cases, but is most dramatic with obstacles. Both the flame speed and overpressure increase approximately 2 orders of magnitude between 12 and 20% hydrogen with obstacles as seen in Figures 3 and 4.

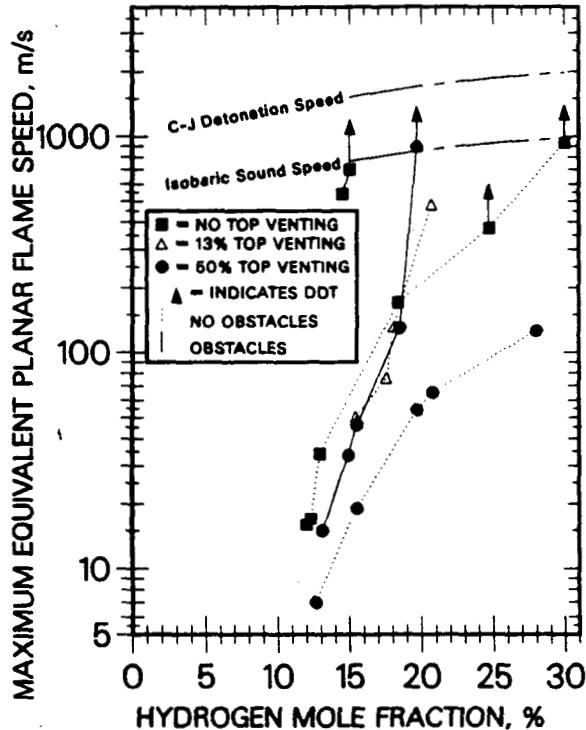


Figure 3. Effect of stoichiometry, obstacles and venting on the peak flame speed in the 136 m³ channel. (Flame speed = volumetric rate of combustion per unit time per channel area.)

Obstacles substantially decrease the distance required to reach a given flame speed as evidenced by the time-of-arrival data in Figures 5 and 6 and the peak speed data in Figure 3 which occur at the exit of the 136 m³ channel. The effect of increasing scale is to increase flame acceleration except in the 50% vented cases without obstacles where the flame speeds and overpressures are comparable between the 136 m³ and small-scale channel.

The effect of venting depends on the presence of obstacles. A previous study in the 136 m³ facility without obstacles⁶ showed that for hydrogen concentration above 18%, 13% transverse venting produced flame speeds in excess of those

for no transverse venting. In the current study, a similar result was found at small scale as shown in Figure 5. However with obstacles present, venting delayed the time-of-arrival for both the 13% and 50% transverse venting cases. Both the vents⁵ and the obstacles generate turbulence. With no obstacles, a small degree of venting produces more flame acceleration due to the vent induced turbulence than the deceleration due to pressure relief. However, with the addition of obstacles in the channel, the relative amount of turbulence due to the venting is small and any venting results in pressure relief and lower flame acceleration.

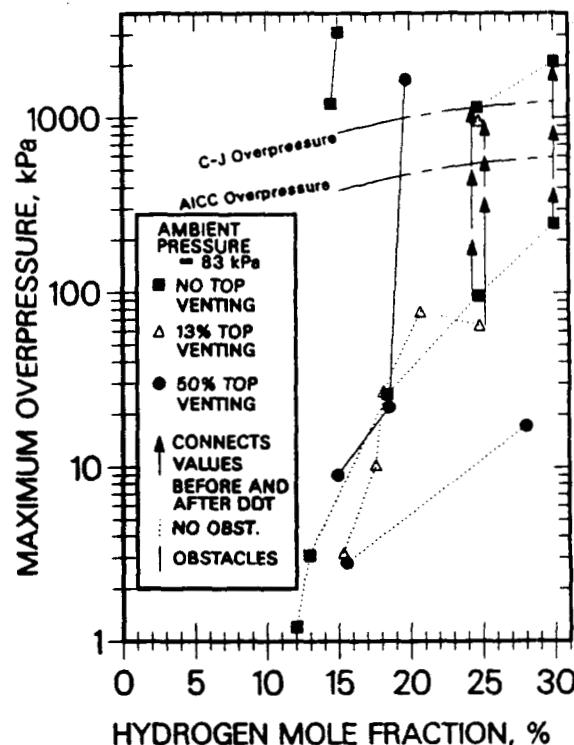


Figure 4. Effect of stoichiometry, obstacles and venting on the peak pressure in the 136 m³ channel.

It has been noted⁷ in small-scale experiments in tubes with orifice-type obstacles, that DDT resulting from flame acceleration occurs when the flame speed approaches the isobaric sound speed in the unburned gas, provided that the detonation cell width is on the same order as the channel width. DDT results, summarized in Table 1, from both the 136 m³ facility and the small scale facility support this observation. In all cases, the flame speed prior to DDT was near the isobaric sound speed. The axial location of DDT is dependent on the degree of venting. For the 136 m³ facility, DDT occurred at the facility exit for no venting. Therefore, any venting would prevent DDT unless a more sensitive mixture was used, as in the 50% vented case. DDT might have occurred in the 136 m³ facility, for those cases where DDT did not occur, had the facility been longer because a steady state velocity had not been achieved. In the small scale facility, the velocities for the cases which did not undergo DDT were constant for ~1/3 of the channel length.

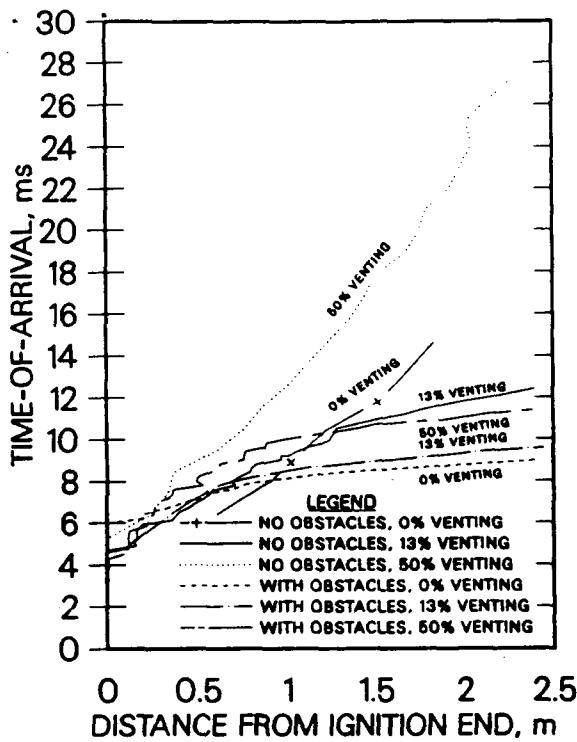


Figure 5. Effect of obstacles and venting on flame acceleration in the 1:12.6 linear scale model for 30% hydrogen. Time of arrival is for the top of the channel.

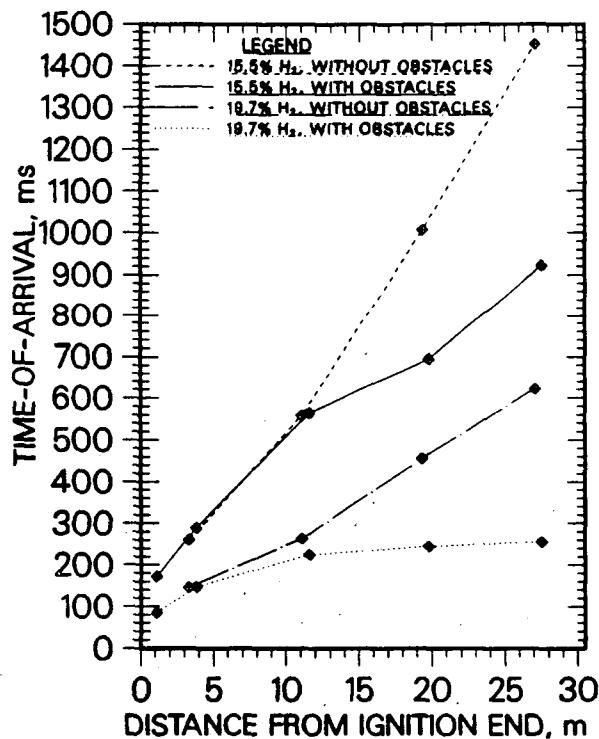


Figure 6. Effect of obstacles and H_2 concentration on flame acceleration in the 136 m^3 channel, with 50% top venting. Time of arrival is for the top of the channel.

TABLE 1
DDT DATA WITH OBSTACLES
 X/L = Approximate axial position of DDT
 λ = Detonation cell width (calculated, $P=0.83 \text{ atm}$)
 d = See-through width between obstacles

DDT	X/L	$\%H_2$	$\lambda(\text{m})$	$d(\text{m})$	λ/d	Fac. Transverse (m^3)	Venting %	
No			14.5	.419	1.2	0.35	136	0
Yes	-1		15	.352	1.2	0.29	136	0
No			15.5	.252	1.2	0.21	136	50
Yes	-1		19.7	.050	1.2	0.04	136	50
No			20	0.052	0.097	0.54	0.068	0
Yes	-0.5		30	0.020	0.097	0.21	0.068	0
No			20	0.052	0.097	0.54	0.068	13
Yes	-0.8		30	0.020	0.097	0.21	0.068	13
No			20	0.052	0.097	0.54	0.068	50
Yes	-0.9		30	0.020	0.097	0.21	0.068	50

CONCLUSIONS

Flame acceleration is dependent on the chemical "sensitivity" of the mixture, e.g. equivalence ratio, and on environmental factors, such as obstacles, scale, and venting. The current study shows that flame acceleration occurs in environments such as those with obstacles, at large scale, and with no transverse venting. The acceleration is greatly enhanced if the mixture is "sensitive", i.e. $>18\% H_2$. Previous studies have shown that if the flame speed approaches the isobaric sound speed, then DDT can occur if the scale of the facility is sufficiently large. The current study supports this conclusion and extends the data base to different geometries and larger scales than previous studies.

ACKNOWLEDGEMENTS

This work was supported by the U.S. Nuclear Regulatory Commission and performed at Sandia National Laboratories for the U.S. Department of Energy under Contract No. DB-AC04-760P00789. The authors would like to thank S. Slezak for additional small scale data and technical assistance from D. Weigand, B. Heideman, C. Daniel, D. Beeker, G. James, S. Winters, D. Helgeson, L. Perea, and M. Nissen.

REFERENCES

1. Moen, I.O., Donato, M., Knystautas, and Lee, J.H., Combustion and Flame 39, p.21 (1980).
2. Lee, J.H.S., Knystautas, R., and Freiman, A., Combustion and Flame 56, p. 227 (1984).
3. Chan, C., Moen, I.O., and Lee, J.H.S., Combustion and Flame 49, p. 27 (1983).
4. Berman, M., Nuclear Science and Engineering, V. 93, P. 321 (1986).
5. Harrison, A.J. and Eyre, J.A., Combustion Science & Technology, V. 52, 91-106 (1987).
6. Sherman, M.P., Tieszen, S.R., Benedick, W.B., Fisk, J.W. and Carcassi, M., AIAA Progress in Aeronautics & Astronautics, V. 106, p. 66 (1986).
7. Peraldi, O., Knystautas, R., and Lee, J.H.S., "Criteria for Transition to Detonation in Tubes," presented at the 21st Int. Combustion Symposium, Munich, West Germany, Aug. 3-8, 1986.