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ABSTRACT
*

This paper examines optimal and market-determined extraction 

patterns for a depletable resource available (at a cost) from many 

reserves of various grades. It is shown that under a general set of 

conditions optimal allocations can be supported by a purely competitive 

market. The concept of a time varying market imperfection function is 

introduced. Properties of this function are shown to be sufficient 

to determine whether specific market form will over-extract or under­

extract the resource (in comparison to a competitive allocation). 

Finally, the intertemporal biases associated with depletion allowances, 

monopolies, externalities, vulnerability costs, and price regulations 

are analyzed by making use of the market imperfection functions asso­
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ciated with each market structure.



James L. Sweeney*

Currently there is much concern over the adequacy of the natural 

resource base in the world. The purpose of this paper is to theoreti- 

cally model the extraction patterhs for a finite depletable resource 

and to systematically examine the directions of intertemporal bias to 

depletion patterns stemming from various market forces.

One possible bias to be examined lies in the competitive mechanism 

itself. Can socially optimal extraction patterns be supported by a 

competitive market in which future monetary flows from the extraction 

of depletable resources are discounted at the same interest rate as are 

monetary flows from capital investment? The answer (under appripriate 

convexity conditions) will be yes.

But since markets for natural resources may be far from perfect, 

the question remains what will be the interteitporal biases stemming from 

various market structures. What biases are occasioned by percentage 

depletion allowances? By non-internalized externalities? By monopolistic 

practices? By price regulation such as the well-head regulation of 

natural gas prices? By vulnerability costs associated with high levels 

of imports? Using an axiomatic model of markets under the various 

conditions, it will be shown that a single general criterion will be 

sufficient to examine each bias. This criterion will be used to establish
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that the first two (generally) lead to current over-extraction at the

expense of future extraction options, that the third may lead to either

over- or under-extraction, depending upon the rate of growth of demand,

that the fourth is not determinate without further empirical work, and
¥

that the fifth leads to 6ver use but may lead to over- or under-extraction.

There has been significant literature on the economics of depletable 

resources, with the first formal models proposed by Harold Hotelling [9],

This work has been carried on by 0. Herfindahl [8], A. Scott [11],

R. L. Gordon [7], R. G. Cummings [3], and others. In general these 

works model the choices of an individual firm facing given prices or 

facing given demand functions. While some authors [3, 8] have used quite 

sophisticated models of individual firms, the examination of market inter­

actions had tended to be superficial. Recently a new body of literature 

examining optimal economic growth with resource constraints has developed. 

Works by K. Anderson [1], T. C. Koopmans [10], R. M. Solow [12], P. Garg [5] , 

J. Stiglitz’. [13], P. Dasgupta and G. Heal [4], have embedded the 

question of optimal resource depletion into the more general question 

of optimal economic growth. However, these works have given little 

attention to the relationships between these optimal patterns and market- 

determined patterns.

This paper is focused upon the relationships between optimal 

depletion patterns and market-determined patterns. Section I examines

2
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the optimal depletion patterns for firms facing market-determined 

resource price trajectories and collects many firms into a competitive 

market model. In Section II we examine the intertemporal biases 

occasioned by market institutions such as depletion allowances, mono- 

polies, externalities, price regulation, and international vulnera­

bility. ^he concept of a market imperfection function is defined and 

shown to provide a general set of criteria for examining intertemporal 

biases. Finally, Section III offers a summary and conclusions.

I. Market-Determined Extraction Patterns; Pure Competition

It will be assumed that some quantity of the resource is available 

as a limited reserve which can be extracted (at a cost) over time.
i

Since the stock is limited, the quantity extracted at one time will 

influence the amount available from this reserve at later times. Once 

extracted, the resource commands a market price. The reserve will be 

controlled by a single firm. We will assume here that the market is 

competitive: each firm is a price-taker and maximizes the present value

of the stream of profits accruing to it.

Let us assume that the i^ reserve is known with certainty at 

time 0 to be S^ (where S^ is finite). S^ measures the total quantity 

of the desirable resource which could utlimately be recovered from the 

i^1 reserve, net of any undesirable wastes.
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Let s (t) represent the rate of extraction of the resource as a 

function of time. Then the constraints on extraction can be written 

as follows:^"
00

(1) f s\(t) dt < ,
r Jo y

(2) > S1(t) > 0 .

^ i / i \The extraction cost per time period, C (s ,t), depends upon the
2rate of extraction and possibly upon time. The extraction cost function 

provides a measure of the quality of the reserve. A high cost function 

would characterize a low-grade reserve or a reserve accessible only at 

great difficulty. For example, an extremely deep-lying petroleum deposit
t

would be characterized by a higher cost function than would a deposit 

closer to the surface. A coal reserve with narrow veins and a heavy 

overburden would be characterized by a higher cost function than would a 

reserve having broad veins and a light overburden.
i iIt will be assumed that the marginal cost of extraction, bC /bs , 

is an increasing function of extraction rate (that is strictly con­

vex in s1). Once extracted, the reserve can b 

per unit which may depend upon time but not upon t|ie chosen extraction 

rate. The total value of depleting the resource is equal to the net

earnings rate, discounted to time zero at an interest rate, r(t), and
tilintegrated over all time. If a single firm controls the i reserve and 

chooses the extraction rates so as to maximize profit, then it implicitly 

solves the following constrained maximization problem:

e, sold at a price P(t)
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i

CO

Maximize f [p(t)s (t) - t) ] D(t)dt

(F) ) under * (t) > 0 ,
S .£

where D(t) is the discount factor.'

(3) D(t) = e
r(r)dT

The solution to problem (F) will consist of an optimal path of
i*

extraction over time, s (t), a cost over time, and a value of the 

reserve.

Problem- (F) can be solved by use of the Kuhn-Tucker Theorem. Let 

be a (non-negative) Lagrange multiplier; then the Lagrangian for 

problem (F) can be written as follows:

00
f1 = f [p(t)s1(t) - cr^s^t), t)] D(t)dt

Jo

* s1(t) dt] .

(4)
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i*
By the Kuhn-Tucker Theorem, if s (t) is the optimal depletion

i* ipath, s (t) must maximize £ over all non-negative extraction paths. 

The Lagrange multiplier is chosen so that:

(5) X ^ 0 ; and U s1*(t)dt - X = o .

Thus, either constraint (l) must be binding or X must equal zero.
i i*Maximizing £ gives the following necessary condition for s (t)

(6) [P(t) - MC1(s1 (t), t)] D(t) - XX
0 for s (t) > 0

< 0 for s (t) = 0 ,

where MC is the marginal extraction cost, 

rewritten slightly:

This equation can be

P(t) MC
• •• •w
1(s1 (t), t) + l1/D(t) for s1 (t) >0

where X ^ is independent of time. If constraint (l) is binding, then 

> 0; price and marginal extraction cost will not be equal; marginal 

cost must be lower than price when the resource is optimally extracted. 

The term X^/D(t) represents the opportunity cost of using the limited 

resource at time t rather than at an alternative time; X^ is the 

present value of the opportunity cost discounted to time zero. Equation 

(6) implies that for an extraction path to be optimal, at each time the
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marginal cost of extracting an additional unit plus the additional 

opportunity cost of the extraction must equal the price of the ex­

tracted resource. Thus, Eq. (6) expresses a marginal cost male extended 

to the cose of a finite stock of depletable resource.

It should be noted that the higher the cost functions, or the 

greater the initial stock of the resource, the smaller will be A^. 

Therefore, the greater is (for given cost functions), the greater

will be the extraction rate at every time, and the smaller will be the
4difference between price and marginal cost at each time. For a given 

total reserve, different cost functions lead to different temporal 

patterns of extraction, though not necessarily different total quanti­

ties extracted. It should be npted that, for a given reserve, extrac­

tion rates may initially be zero, may increase to a peak, and may 

finally return to zero when the entire stock is depleted.

If C^(s^, t) is convex in s^ (marginal extraction cost is a non­

decreasing function of extraction rate), Eqs. (1), (2), (5), and (6)
i*are sufficient conditions for s (t) to solve problem (F). This is 

stated in Proposition 1 and is proved in Arrow and Kurz [2].

Proposition 1. Let C^(s'*', t) be convex in s^ and suppose that a
X *depletion path s (t) satisfying Eqs. (1), (2), (5), and (6) exists.

Then this path solves Problem (F). Furthermore, if C^(s^, t) is strictly 
i i*convex in s , then s (t) is the unique optimal path.
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Note that nothing stated so far guarantees the existence of an 

optimal path. In particular, for time independent extraction cost 

functions, no optimal path can be expected to exist if prices increase

However, if prices do not increase too quickly, then the existence of 

an optima}, path can be assured as long as the cost function is continuous 

in the extraction rate and is non-decreasing in time. If the cost func­

tion is discontinuous or decreasing in time, then the existence conditions 

are more complicated and need not be discussed here.

Models of in'dividual firms can be placed in a market context in 

which the prices are determined through an interaction of supply and 

demand. Assume that there exist many finite reserves, each controlled 

by a single firm (although each firm may control many reserves). These

reserves may be of differing qualities and differing magnitudes. Then 
12 n

Sq ' Sq ' ' Sq represent the initial reserves. The holder of

each reserve faces an extraction cost function (^’(s'*', t), and chooses an
i*optimal depletion path s (t), by solving problem (F).

The optimal depletion paths of individual firms lead to a market 

depletion path Q(t), which represents the supply of the resource at 

time t: \

too quickly in the limit as time approaches infinity [if P/P > r(t)]. 5

i
(7)



There exists a (possibly time-varying) demand curve for the 

resource, which determines the resource price trajectory when Q(t) is 

given. Thus, if P(Q, t) represents the demand price function, the 

price trajectory can be determined by:

(8) ' P(t) = P (Q(t) , t) .

Equations (7) and (8) plus problem (F), when simultaneously solved,

represent the workings of the purely competitive market if r(t) is

given and the demand price function is given.

If a competitive allocation exists, it must satisfy equations (7)

and (8) and each firm's choice must solve problem (F). Conversely,

any allocation which satisfies these conditions will be said to be a
/

competitive equilibrium.

It is useful to examine the properties of the competitive equilib­

rium in three cases of increasing complexity. First, a case of zero 

extraction costs is examined. Second is a case of constant marginal 

costs from a given reserve but with reserves of different costs.

Finally is a case of increasing marginal costs from a given reserve with 

reserves having different costs. In each case the interest rate will be 

assumed constant over time.

Case 1, that of zero extraction costs, has been discussed previously 

in the literature. The marginal conditions from Eq. (6) are as follows:

P(t) = X/D(t) = Xert.

9
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In this case each firm is indifferent to the time and the rate of 

extraction. Extraction rates are chosen so that the price rises at 

the interest rate.

In Case 2 there are many reserves each having constant marginal 

extraction costs, but with different reserves characterized by different 

costs, riius, reserve i has a constant marginal cost equal to , and 

an initial quantity . They are numbered so that < ^2 < ' ant^

so on. In this case the marginal condition for each reserve becomes:

( - C. + A.ert for s. >0 11 1

< C. + X.e1^ for s. = 0.
— 1 1 1

Firms with high costs will have low shadow prices and vice versa. The
rtprice trajectory will be an envelope of curves of the form + A^e , 

as is illustrated in Figure 1. In this figure, the lowest cost reserve 

will be extracted up until time t^ , the next lowest cost reserve will 

be extracted from time t^ to t^ , and so on. Reserves are extracted 

strictly in order of increasing costs; the next most costly begins to 

be extracted the instant a given reserve is totally depleted. The 

depletion times and rates are based upon the demand curves. The price 

now increases at a rate strictly less than the interest rate.

A third case has increasingly marginal costs of extracting from a 

given reserve. Various reserves have different costs but in this special

P(t)
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*
P(t)

C, + X^e

C1 < c2 < C3

X1 > X2 > X3

Figure 1

Price paths under constant marginal extraction costs. The heavy line 
represents the competitive equilibrium price trajectory.
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case each cost function varies from every other one by a single scale 

parameter. Marginal cost functions are assumed to be:

where

MC.(s.) = a. MC(s.) , 11 i i

/• a, < a < a, 12 3 and so on.

Here the marginal conditions become:

A.ert for s. > 0i i
P(t) - a. MC (s.)i i ( i \ rt . _e for s. = 0.i

In this solution, many reserves are extracted simultaneously.

Furthermore, the extraction rate from a given reserve depends on S? as

well as upon a. . For two reserves, i and j , with a. = a. if S? > S? , 
i 1313

then ^ < * ,^le m°re of a given reserve that exists (all else equal),

the lower will be the shadow price, the higher will be the extraction 

rate, and the higher will be the marginal extraction cost at the optimal 

extraction rate. Note that in general it will not be true that marginal 

extraction costs at the optimal rates will be equal for all reserves.

For two reserves of identical magnitudes but\of different costs, 

the lower cost reserve will be generally extracted^first, but overlaps 

can be expected to occur. This is illustrated in Figure 2. Here the 

cheaper reserve is extracted more rapidly than is the more costly one.

but for a period of time both are simultaneously being extracted.
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s (t)

t

Figure 2.

Depletion patterns for two reserves.

S10 < a 2
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The resource price new may increase faster than or slower than 

the interest rate, depending upon changes in the demand functions over 

time. Of course, above ground storage possibilities limit the maximum 

growth rate of the resource price.

The competitive solution is particularly interesting in that it 

corresponds to the socially optimal allocation obtainable from the 

corresponding optimal growth problem. Assume that the economy attempts 

to maximize a utilitarian objective function, W , which equals the 

integral of utility, U(Cn , t), over time, where Cn is the rate of 

consumption of output. Output is produced using the resource, capital, 

and labor, through a neoclassical production function, f(K , Q , t), where 

K is the capital input. Output, can be consumed, used to extract resources, 

or applied to capital formation. The entire problem can be stated as:

00r

0
u(Cn , t)dt ,

under

(S)

i
CO

V s1 (t) 2: 0 for all i.
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Then the following Proposition can be proved (proof available from the 

author):

Proposition 2. Assume that a socially optimal allocation derived as a

solution to Problem (S) exists, and suppose that is a convex function 
i # ‘of s for each i. Then if savings/consumption trajectories are chosen 

optimally, the socially optimal allocation can be supported as a com­

petitive allocation.

Proposition 2 implies several important results. First, if savings 

patterns are optimal, a competitive allocation can be used to obtain a 

socially optimal allocation. Second, if a decentralized mechanism does 

not satisfy the competitive conditions, it cannot lead to societal opti­

mality. In particular, this proposition implies that societal optimality can 

be obtained only if monetary flows from resource extraction are discounted 

in precisely the same manner, using the same interest rates, as are mone­

tary flows from capital equipment. Furthermore, this proposition provides 

a bench-mark against which to evaluate specific non-purely-competitive 

<, markets, for it implies that market phenomena which cause extraction 

patterns to diverge from the purely competitive patterns lead to non- 

socially optimal patterns. Questions of the biases caused by various 

institutional mechanisms can be addressed by comparing allocations they 

generated to those generated by the competitive allocation. This problem 

will be addressed in subsequent sections.
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II. Market-Determined Extraction Patterns; Non-Pure Competition 

In order to examine the influence on extraction patterns of various 

economic forces we will assume that the specific influences to be examined 

do not change the interest rate over time, nor do they change demand 

functions or cost functions other 'than in ways to be specified. All forces 

will be examined by comparing their depletion patterns to those obtained 

under the competitive regime

It will be demonstrated that intertemporal biases associated with 

various institutions can be examined through the use of a market imper­

fection function, g(Q' , t), which characterizes the institution. For 

several institutions it will be demonstrated that this scalar function 

can easily be defined and that properties of the function can be determined. 

Second, it will be shown that several simple properties of the market 

imperfection function are sufficient to determine the directions of inter­

temporal bias. That is, these properties, relating to the sign of the 

market imperfection function, and to its growth rate (in comparison to 

the interest rate), are sufficient conditions for determining directions 

of bias. Thus the market imperfection function allows a generalization 

of specific results obtained elsewhere by Stiglitz [14] and by Weinstein 

and Zeckhauser [16]. ^

Consider several market institutions. The first is the percentage 

depletion allowance for the extraction of mineral resources. This tax 

law provides that a fraction, $ , of the revenue from extracting raw
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materials be exempt from corporate income tax. If there were no

depletion allowance and if the firm faced a tax rate of T , then the

In this case, the optimal depletion paths would not be influenced by

choice of T , for 0 < T < 1. With a depletion allowance, after-tax profit 

would equal

Defining a = the percentage depletion allowance has the effect of

increasing the apparent price facing the firm from P(Q(t),t) to 

(l+(v)P(Q(t) ,t). For example, for a firm facing a 50$ corporate tax rate,

the depletion allowance for petroleum of 22$ increases the apparent price 

of its output by 22$. *

Under a depletion allowance regime, the revenue for a firm solving
• •

Problem (F) is changed from P(Q(t) ,t)s1(t) to (l+ry)P(Q(t) ,t) s (t).

All other conditions remain unchanged. Therefore^the necessary conditions 

for optimality expressed in Eq. (6) then become:

after-tax profit at time t would equal [1-T] [P (t) , t) s^-(t) - Ci (s* (t) , t) ].

[1-T] P(Q(t),t)s1(t) - Ci(si(t),t) .

■?*for s (t) > 0
(9) [(l+fv)P(Q(t),t) - MC1(s1*(t),t)]D(t) - X1

•*

s (t) = 0 .for



18
In this equation X1, s1 (t) * Q(t), aiid hence P(t), will all change 

in response to the depletion allowance.

Extraction paths occurring under a depletion allowance regime can 

be compared to those occurring under a competitive regime by substitu­

ting Equation (9) for Equation (6), while retaining all other equations
*

describing the competitive Regime. Eqs. (6) and (9) can be written more

simply by suppressing the explicit time dependency of the solutions. The

original variables will be denoted, as Q, s^, and X*, while the vari-
x * i *ables under depletion allowances will be denoted as Q , s , and X 

Furthermore, Eq. (9) can be expressed in a manner which will help to 

underline the explicit influence of the depletion allowance and to under­

line the relationships among the various biases to be examined;

(10) P(Q) - MC1 (s1) - X^Dfa)
< 0

for s > 0 ,
^ i «for s = 0 ,

(H> g(Q’,t)'+ P(Q’) - MC^s1 ) - X1 /D(t)
1 < 0

for s > 0 ,

for s = 0 ,

where

(12) gCQ’jt) = aPCO > 0- _
Here g(0',t) expresses the direct influence of the depletion allowance 

on the individual firms. This function provides a measure of market 

imperfection and will be denoted as the market imperfection function

under a depletion allowance regime.
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A second influence is the market structure of the extractive 

industry. In particular, we can compare a competitive regime to one 

in which the entire extractive industry is monopolized. In this case,

one firm makes all extractive decisions. Therefore, Problem (F)
*-becomes: .-

(M)

f S [P(Q(t),t)s1(t) - Ci(s1(t),t)]DCt)dt
Jo T'

< i
under s (t) ^ 0 for all i, 

0°
y s1^) < Sj for all i,

Q.(t) =y s1^).

Problem (M) leads to necessary conditions analogous to those of the 

competitive regime:

( t ( = 0 for sl > 0 »
(13) : MR(Q') - MC1(si ) - X1 /D(t) <

f < 0 for s1 = 0 ,

< 1 1 ^ where • Q , s , and X are now interpreted to be the monopolistic

equivalents of Q, s\ and and MR(q') is^the marginal revenue

of resource extraction. Equation (13) can be expressed in the form of

Eq. (ll) where now,

(14) g(Q',t) = MR(Q’) - P(Q’) < 0.

The scalar function g(Q' , t) in Eq. (14) is the market imperfection 

function for a monopolistic industry.
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A third influence is that of externalities associated with the ex­

traction or the use of the depletable resource. For example, atmospheric 

residuals may be an externality associated with the use of petroleum 

products. Assume now that there is some monetary social cost of exter- 

nalities associated with/the use o‘f a resource and this cost is denoted 

by E(Q). ''Assume that in the competitive regime pollution taxes are 

chosen to be equal to the marginal cost of the externality. Then we can 

compare the situation of non-internalized externalities to the situation 

which would occur if externalities were internalized. The non-internalized 

situation leads to marginal conditions which can be written in the form 

of Eq. (ll), except now we have a market imperfection function g(Q' , t) 

such that: _ '

(15) g(Q’,t) SEte')
hQ' > 0 .

In the case of no internalization the price facing the seller of the 

resource is -greater than the social marginal productivity of the resource 

by a quantity equal to the marginal pollution cost, and this difference 

over time defines the market imperfection function with externalities.

A fourth influence is price regulation in the resource industry.

We will assume that prices are limited to not exceed P(t), an exogenously 

given function of time and that this is a binding constraint. That is, 

the demand for the resource at any time is assumed to be greater than the
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quantity supplied, and actual sales are limited by the supply decisions of 

firms. In this case, the necessary conditions for optimality for a firm 

are given as:

/ i *
r- , * \ = 0 for sl > ° >

(16) P(t) - MC1^1 ) - X1 /D(t) |
* ( < 0 for s1 = 0 .

This equation can be written in the form of Eq. (ll) with a market imper­

fection function equal to the difference between controlled prices and 

market clearing prices:

(17) g(Q’,t) = P(t) - P(q' ) <0.
4

These four economic influences have a similar mathematical structure— 

in each case a market imperfection function can be defined. For depletion 

allowances and externalities the market imperfection is positive, while 

this function is negative for price control and for monopolistic structure. 

This difference will be crucial for determining the patterns of inter­

temporal bias.

The sign of the market imperfection function \ill not be sufficient 

to determine patterns of intertemporal bias. In particular, the time patterns 

of this function must also be examined. It will be necessary to distinguish 

between the cases in which the market-determined (absolute) value of g rises 

(on the average) more qhickly than the interest rate from those cases in which 

this does not occur. More precisely, we can state three alternative

conditions;
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Condition 1 (Normal Change): For all t > 0,

D(t)g(Qt(t),t) 
g(Q’(0),0) < 1.

Condition 2 (Exponential Change): vFor all t > 0,

D(t)g(Q’ (t),t) 
g(Q'(0),0) 1 .

Condition 3 (Rapid Change): For all t > 0,

D(t)g(Q’(t),t)
g(Q’(o),o) >;L*

Finally, it will be important to distinguish between those cases in 

which constraint (l) is binding for all reserves and those cases for 

which it may not be binding for some. In the former case, that of 

ultimate depletion of all resources, stronger results can be obtained 

than in the latter case, that of partial depletion of some resources, 

ultimate depletion of others. In order to facilitate discussion the 

following case can be defined:

Definition: Ultimate depletion will be said to occur under the competi-
.00 ^

tive regime if / s (t)dt = S for all i, and under the alternative 
■'0 r00 • ’ •

regime if J s1 (t)dt = for all i.
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It will be shown that under conditions of ultimate depletion in 

both regimes, if the sign of the market imperfection function is known 

and if condition 1, 2, or 3 is satisfied, then whether the competitive 

regime or the alternative regime leads to a more rapid initial depletion 

of resources can be determined unequivocally. If ultimate depletion does 

occur, then the direction of bias can be determined under condition 1 or 

2, but not necessarily under condition 3.

For the depletion allowance case the normal change condition would 

imply that prices do not rise (on the average) more quickly than the 

interest rate. For externalities, if the marginal non-internalized 

externality cost never rises as quickly as the interest rate, condition 1 

holds, while if it always rises'more quickly, then condition 3 holds.

For monopolies and for price control, these conditions are similarly 

related to the rates of change of the difference between price and mar­

ginal revenue and the difference between market equilibrium price and 

controlled price.

One final assumption will be made:

Assumption (Convexity, Continuity): The marginal extraction cost (McS

is a continuous, non-decreasing function of extration rate (s^) for each 

firm.

We can now state the following theorem. The proof appears in an

appendix.



Theorem 1.' Suppose that the convexity, continuity assumption holds 

and that either Q1 (0) >0 or Q(o) > 0. Let unprimed variables refer 

to outcomes under the competitive regime, while primed variables refer to 

outcomes under the alternative regime.

a) Suppose that condition 1 holds;

if g(Q’(0)) (V then Q1 (o) Q(0)

<
and P(Q'(0)) P(Q(0)).

>

b) Suppose that condition 2 holds;

i) if ultimate depletion occurs under each regime 

Q*(0)=Q(0) and P(Q’(o)) = P(Q(o)).

ii) if ultimate depletion fails to occur under one regime.

c) Suppose that condition 3 holds and ultimate depletion occurs

under both regimes:

if g(Q’(0)) 0, then Q* (o)

and P(Q'(0)) P(Q(0)).
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d) Suppose that g(Q’(o)) = 0:

if g(Q'(t)) 0 for all t > 0, then Q'(0))
<
zz
>

Q(o)

and P(Q'(0)) ft)
(<l

P(Q(o))

Theorem 1 is summarized in Table 1, which shows the signs of 

Q'(0) - Q(0) for different assumptions about g(0), about the growth 

rate of g, and about whether all resources are ultimately depleted.

Theorem 1 is applicable for arbitrary choice of time origin. In 

particular, t = 0 can always refer to the current time. Thus, the 

theorem has more generality than may be apparent at first. It provides 

sufficient conditions to determine whether the current market extraction 

rate from the given current resource stocks will be greater (or smaller) 

under the alternative regime than under the competitive regime. Of 

course, the resource stocks remaining at any time influence the extrac­

tion rates at that time and these stocks are determined by past extrac­

tion decisions. Hence, the theorem does not allow us to predict the 

relationship between Q* (t) and Q(t) for all future t for an exoge­

nously determined resource stock at t = 0, but an endogenously deter­

mined stock at future times. However, it follows immediately that, in 

the case of ultimate depletion, Q* (o) > Q(o) implies that the reverse 

inequality must hold at some future time.
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Table 1

Signs of Q'(0) - Q(0) [and of P(Q(0)) - P(Q'(0))] 
for different values of the market imperfection 
function, g(0), and of the growth rate of g- Col­
umns labeled ult. dep. appiy to the situation in 
which all reserves are ultimately depleted; columns 
labeled no ult. dep. apply to situations in which 

least one reserve is not ultimately depleted.

g(o) > 0 g(0) > 0 g(0) < 0 g(o) < o
No No

Ult. # Ult. Ult. Ult.
Dep. Dep. Dep. Dep.

£ < r
S

+ + - -

rg 0 + 0 -

£ > r 
g ’

? +
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For example, assume that condition 1 (normal change) holds for 

depletion allowances. Then it can be shown that Theorem 1 implies that 

for any given resource stocks, the market depletion rate will be higher 

■under a depletion allowance regime than under a competitive regime. For 

any time after the initial point the resource stocks which actually 

exist will always be lower under a depletion allowance regime than under 

a competitive regime, since actual stocks equal original stocks minus 

total quantities extracted. The lower are actual stocks at a given time, 

the lower will be the extraction rates. At early times, the first phe­

nomenon will dominate; depletion allowances will lead to greater quantities 

of the resource supplied. At later times, the second phenomenon will 

dominate; a decrease in actual reserves will lead to lower quantities of 

the resource extracted under the depletion allowance regime. Thus, deple­

tion allowances will lead to over-use of resources in initial years at 

the cost of eventual lower rates of extraction in later years. This 

pattern is illustrated in Figure 3.

*- In using Theorem 1 it is necessary to know the sign of g and its
\

(relative) magnitude over time given the extraction pattern which actually
\

occurs under the alternative regime. The theorem is also valid when
- - - - - - - - - - - - - . • i,

stated in terms of the extraction pattern which actually occurs under the 

competitive regime. Yet for many policy purposes we would like to evalu-
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/•
i*

Q1 — with depletion allowance

Q — without depletion 
allowance

Figure 3
Depletion Paths with and without 
a Percentage Depletion Allowance



ate market biases without explicitly solving for the actual trajectory 

which would occur either with or without the given influence. For 

this latter purpose, the following Lemma is stated without proof.

Lemma 1. Suppose that no cost functions are increasing over time,
/■ V

that there are positive extraction costs, and that the following con­

ditions hold for all Q,t:

(18) ^ [g(Q,t) + P(Q,t)] <0 ,

(19) ^ [g(Q,t) + P(Q,t)3 < [g(Q,t) + P(Q,t)] r(t).

Then

(20) [g(Q'(t),t) + P(q’(t),t)] D(t) < [g(Q'(0),0) + P(Q'(0),0)]

for all t > 0.

Given Theorem 1 and Lemma 1, the following corollaries are readily 

established.

Corollary 1. Depletion Allowance. Suppose that the depletion allowance 

regime can be characterized as an alternative regime with g(Q',t) deter­

mined by Eq. (12).

(a) If extraction is costless, and all resources are ultimately 

depleted, then the depletion allowance does not bias resource allocation: 

Q'(0) = Q(0) and P(Q'(0)) = P(Q(0)).

29
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(b) If extraction is costly, if extraction cost functions do not 

increase over time, and if

< r P (Q) for all Q , t ,

Then whenever Q(0) > 0, the depletion allowance regime leads to more 

rapid initial extraction from given reserves than does the competitive
i

regime: Q'(0) > Q(0) and P(Q'(0)) < P(Q(0)).

Proof:

Part (a). By Eq. (12), g(Q’) = a P(Q'). In market equilibrium, 

prices rise at the rate of interest and therefore the market imperfection 

also does. Condition 2 (exponential change) is satisfied. By Theorem 1 

the result follows:

Part (b) . Since £ r P(Q) , and since P(Q') + g(Q') =

(1 + a) P(Q'), the premises of Lemma 1 are satisfied; inequality (20) 

must follow. Therefore, condition 1 (normal change) is satisfied. By 

Theorem 1, since g(Q'(0)) > 0, it follows immediately that Q'(0) > Q(0).

Thus, over a broad range of demand functions, depletion allowances 

will bias markets in favor of current extraction at the expense of future 

availability of the resource and will reduce current prices. The limiting 

case is that of zero extraction costs; in this situation no bias occurs.

For a monopoly, the precise results will depend on the shape of the

demand function and the growth rate of that function.
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However, independent of the precise demand function, if all resources 

are depleted in finite time, a monopoly will not reach ultimate depletion 

as quickly as would a competitive system. Let T* be the ultimate depletion 

date under the competitive system. Then T* can be defined as follows:

(21) T* = inf jr | J si(t)dt = sj for all i

It will be shown that under a monopolistic regime resources will not be 

ultimately depleted by time t*.

Corollary 2. Monopoly- Suppose that the monopolistic regime is described 

by Problem (M) and suppose that Q'(0) >0.

(a) Assume that under a competitive regime all resources are 

ultimately depleted at time T*. If the demand price function is contin­

uous in t and Q at Q = 0, then under a monopolistic regime, resources 

will not be ultimately depeleted by time T*.
3 '

(b) Assume that MR(Q,t) < 0 ,

g
and MR(Q,t) _< r MR(Q,t) .

Then whenever the magnitude of the demand elasticity is non-decreasing over 

time, the monopoly will lead to an extraction rate from a given stock of 

resources which is no faster than would occur with ’a competitive regime. 

Furthermore, if there are positive, non time increasing cost functions, 

then the monopoly regime will lead to a slower extraction rate from a 

given stock of resources than will the competitive regime: Q1(0) < Q(0)

and P(Q'-(0)) > P(Q(0)) .
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Proof:

Part (a): By definition, at the instant of time before t*, s* > 0

for some i, say for i = j. Therefore, by the continuity assumptions

for i = j, the left-hand side of ]£q. (io) must equal zero at time t*.

Thus, for i = j at t = t*, Eqs. (io) and (n) can be written:
*

P(Q) -'MCJ(sJ) - X^/DCr*) = 0 ,

• .» . *
MR(q') - MCJ(sJ ) - /d(t*) <0.

The continuity of P(Q,t) and MCi(si) implies that Q(t*) = 0. 

Furthermore, if part (a) were not valid, then o'(r*) would also equal 0.t

Since P(Q,t) is continuous in Q at Q. = 0, MR(0,t) = P(0,t). Assum­

ing then that part (a) is not valid, these two equations become at 

t = r*:

32

P(0) - MC^(o) - XJD(t*) = 0 ,

* • *

P(0) - MCJ(0) - XJ D(t*) < 0 .

• »
These equations imply that > X'3. However, a proof similar to that of

i * iTheorem 1 implies that X < X1 for all i. Hence a contradiction;

the corollary is established.
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Part (b): Under the premises of part (b), Lemma 1 establishes that

MR(Q’,t) D(t) < MR(Q'(0),0) for all t > 0.

or that

MR _ P(l - 1/e) + Pe/e2 < r , 
miv “ (^1 - l/e)P —

where £ is the absolute value of the elasticity of demand. Now the ratio 

g/g can be shown to be less than r. By the definition of g (Eq. (14)):

• • . • . 2 • •£ - - P/e + Pe/e _ p e_
g “ - P/e ~ P " e

Using the condition that MR grows less than a rate r, we obtain:

*< r + eg - -]

with strict inequalities holding for positive extraction costs. Now since

e is greater than unity/ ^ < r whenever e 0/ with a strict inequality

whenever extraction costs are positive. By Theorem 1, part (6) of the

corollary is established, since g(Q'/0) <0 and ^ < r.y
B

Several special cases of monopoly biases can be easily examined by 

means of Corollary 2. Two cases have been partially explored by Weinstein 

and Zeckhauser who use a zero-extraction cost assumption. This zero-cost 

assumption will be discarded here although the zero-cost case can be 

readily examined. First consider a constant elasticity demand curve:
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-1/e(22) P(t) = B(t) Q / ,

Where e is the elasticity of demand (assumed to be greater than unity).

Under this case, we can write g(Q',t) as follows:
-P(Q'(t),t)

g(Q',t) = MR(Q') - P(Q^) = ---- -------- < 0.

ft (t) gNow as long as —— < r, it follows that ——< r, since e = 0-p(t) — g

By Theorem 1 (or Corrollary 2), it follows that a monopolist facing 

a constant elasticity demand curve will supply resources at a lower 

rate from given reserves than will a competitive industry facing the 

same demand curves. In the special case of zero extraction costs, 

the price will rise precisely at the interest rate and monopoly will 

not lead intertemporal bias.

A second special case is of linear demand curves:

Q(t)
(23) P(t) = C(t)------ , for P,Q > 0.

H (t)

In this case:
Q' (t)

(24) g(Q' ,t)=--------= P - C(t) < 0.
H (t)

Condition 1 holds as long as
\

li!L < + \
Q’(t) H(t)

Hence during those times which condition ( 25) holds, a monopolist 

facing a linear demand curve will over-conserve depletable resources. 

Conversely, during those times which the inequality in (25 ) is 

reverse'd, the monopolist will over-supply resources. In summary, unless
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the market determined quantity is rising very rapidly during some 

period of time, a monopoly (facing a linear demand curve) will 

under-supply the depletable resource.

Theorem 1 can also be used to examine the biases associated with not 

internalizing externalities associated with resource use. These results

will depend critically upon the growth rate of the marginal external 

cost function (the pollution price):

Corollary 3: Assume that a regime of non-internalized externalities can

be described as an alternative regime for which Eq. (15) is valid.

Assume further that Q.' (o) >0 or Q(o) >0.
t

(a) If the marginal non-internalized pollution cost never grows at

a rate greater than or equal to r(t), then non-internalized externali­

ties lead to a depletion rate higher than that occurring if the pollution 

costs are internalized: Q* (0) > Q(0), P(Q’(0)) <P(Q(o)).
(b) Suppose that all resources are ultimately depleted. If the

marginal non-internalized pollution cost grows at a rate equal to r(t) 

at all times before eventual depletion of the resource, then the deple­

tion paths occurring under a regime of non-internalized externalities are 

identical to the paths occurring under a competitive regime: Q* (t) = Q(t),

P(Q’(0)) = P(Q(0)).
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(c) Suppose that all resources are ultimately depleted. If the

marginal non-internalized pollution cost grows at a rate greater than

r(t) at all time before ultimate depletion of the resource, then non-

internalized externalities lead to a depletion rate lower than that occur-
/• *

ring if the pollution costs are internalized: Q'(o) < Q(0), P(q'(0)) > P(Q(o)).

Proof:

The proof is immediate from Theorem 1 and Eq. (15).
■

While the comparative dynamics of the system depend upon the rate 

of growth of the pollution price, case (a) can be presumed to hold unless 

contrary evidence is established. Hence, generally non-internalized
t

externalities lead to over-use of resources and too-low resource prices.

Finally, price control in the natural resource industry can lead to 

too rapid depletion or too slow depletion depending upon the relationship 

between the pegulated price and the market clearing price.

Corollary 4: Assume that the price control regime can be described as an

alternative regime for which Eq. (16) is valid and assume that Q(o) > 0 

or Q'(0)>0. Let EP = P(Q'(t),t) - P(t) > 0. \

1
(a) If EP < r EP for all time, then price regulation will lead

to a slower rate of depletion than will occur under a competitive re­

gime: q' (0) < Q(0).

(b) Suppose that all resources are -ultimately depleted under the
«

price control regime. If EP = r EP for all time, then price regulation
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will not change the intertemporal pattern of depletion: Q*(0) = Q(0).

(c) Suppose that all resources are ultimately depleted under the 

price control regime. If EP > r EP for all time, then price regula­

tion will lead to a faster rate of depletion than will occur under a
*

competitive regime: Q'(O) > Q(0)*

Proof: j,

This corollary follows immediately from Theorem 1 and Eq. (16).

This corollary shows that the effects of price control (such as 

the well-head regulation of natural gas) depend upon the changes of 

the "excess price" over time. Since the behavior of this variable is 

not obvious without empirical wo^rk, we cannot ascertain a priori the 

impacts of well-head regulation.

A final example is that of vulnerability costs associated with 

imports of vital products such as crude oil. Assume that the economy 

can extract the resource from many domestic locations but also can 

import any quantity from foreign locations at an exogenously deter­

mined price, P^t), which may vary over time. Assume further that a 

vulnerability cost, V(I,t), where I is the level of imports, is 

imposed on the domestic economy. The vulnerability cost is presumed 

to be an increasing function of the rate of imports. The question is 

how depletion patterns from domestic reserves and consumption patterns 

are biased from the optional patterns if the appropriate tariffs are

not instituted.
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This problem is a special case of the more general theory presented 

in this paper. For now the price path is exogenously determined and 

it is not necessary to examine the feedback from quantity decisions to 

market prices. The vulnerability cost is now simply an externality 

which varies over time; as such, ebonomic efficiency requires that a 

tax, T(t>\ be imposed on the activity producing the externality, that 

is, on imports of crude oil. That tax must be equal to the marginal 

vulnerability costs of additional imports;

3
( 26 ) T(t) = ----  V(I,t) = > 0.

31
The efficient price path for crude oil will equal P^Ct) + T(t), which

is always higher than P (t).. Unless the appropriate tax is imposed,

the consumption of the resource will be too high at each moment of time.

The biases on domestic supply can be examined easily. The market 

imperfection function for this problem equals the negative of the 

marginal vulnerability cost and is thus always negative. That is, 

failure to impose the tax leads to lower prices than are optimal. The 

intertemporal bias to domestic supply patterns depends upon the rate of 

growth of the marginal vulnerability cost. If the marginal vulnerability 

cost uses more slowly than r, then efficiency requires an accelerated 

rate of extraction in early years, with less savings for later years. 

However, if the marginal vulnerability cost rises faster than r, then 

the converse holds. In this case, moving toward efficiency requires a
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decreased supply in early years with greater reserves saved for later 

years. Such a case could occur if vulnerability costs were a sharply 

increasing function of import levels and if imports were rapidly 

increasing over time. *•
ft.

In summary, if marginal vulnerability costs increase more slowly 

than r (or decrease), then failure to impose taxes equal to the 

marginal vulnerability costs leads to too much consumption at all 

times, too little supply in early years, too much savings for later 

years, and too much imports in early years. Conversely, if marginal 

vulnerability costs increase more rapidly than r, failure to impose 

taxes leads to too much consumption at all times, too much supply in
tearly years, too much imports in later years. The impact on imports 

in early years depends on the relative magnitude of the consumption 

effect and the supply affect; imports in early years may either be 

too high or too low.

III. Summary and Conclusions

This paper has compared optimal and market-determined extraction 

paths for a depletable resource which can be extracted from a set of 

reserves of varying extraction costs and magnitudes. The total quantity 

of the resource extracted from each reserve over time is limited by the 

magnitude of the original reserve. Under the appropriate convexity 

conditions, the optimal allocation can be supported by a purely compet­

itive market.



40
While competitive markets may lead to optimal allocations, many

market phenomena bias the temporal pattern of extraction from optimality.

Percentage depletion allowances lead to an over-extraction of resources

at the present time at the expense of future feasible extraction rates.*■
? »As a corollary, past extraction patterns under a depletion allowance 

regime have led to over-extraction in the past at the expense of re­

serves currently remaining. Non-internalized externalities associated 

with the extraction or use of depletable resources probably bias markets 

toward current over-extraction at the expense of future extraction 

alternatives. Price controls may lead to temporal biases, but the di­

rection of bias cannot be predicted without additional data. Depending 

upon the rate of change of the "fexcess price" — the difference between 

market clearing price and controlled price — price controls may lead to 

current over-use, current under-use, or may have no influence on extrac­

tion patterns. Monopolies may lead to a more complicated pattern of bias. 

Generally, monopolies will lengthen the time until resources are ultimately 

depleted. Depending upon the shape of the demand function, however, monop­

olies may lead to current under-use to the benefit of future availabilities, 

or may lead to a current over-use, and under-use at some future time, with 

a subsequent increased availability in the latest years. Finally, unless 

the appropriate tariffs are imposed, vulnerability costs of importing vital 

products from insecure sources may bias extraction patterns from domestic 

reserves and will lead to over consumption of the product. The direction 

of intertemporal bias depends upon the rate of growth of the marginal

vulnerability costs.
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It has been shown that each result cited above can be derived from 

one general theory which uses the concept of a market imperfection 

function. Each institution discussed has associated with it a market 

imperfection function whose properties can be analyzed. We can deter- 

mine the directions of intertemporal bias by examining simple properties 

of the associated market imperfection function, without explicitly solving 

for the equilibria under the various market forms. Thus this paper pro­

vides a very general criterion which can be used to examine intertemporal 

biases stemming from a wide range of institutions.

A few caveats are in order. This paper ignores the exploratory pro­

cesses for resources, concentrating only upon the intertemporal alloca­

tion of known reserves. All analysis is performed under conditions of 

certainty — all actors are aware of the resource quantities under their 

control and the costs of extracting those resources, all actors can pre­

dict the price trajectories for the entire future, all actors are aware 

of future governmental actions. Clearly, however, the certainty assump­

tion is rather untenable when we consider the time span relevant to the 

depletion of most natural resources. Nor can we even rely upon informa­

tion processed by futures markets, since such markets are non-existent 

or cover a too-limited time horizon. When uncertainty is incorporated 

into the analysis, systematic differences between societal risk aversity

and the risk aversity of resource owners may provide yet another bias of

markets from optimality. 0



The predominant pattern of biases in resource markets seems to be

one of current over-use at the expense of future availability. Monopoly 

(and possibly price controls) may counteract these forces, to the extent 

that monopolistic practices do in f^ct occur in resource industries. If 

the biases predicted by this theory do in fact exist, simple reliance on 

markets ass they currently are constituted to optimally allocate depletable 

resources over time seems unwise. However, the analysis of this paper 

does suggest specific biases and thereby provides tools for analysis of 

policy issues. Thus, while it is difficult to justify dependence on 

existing market forces, reforms such as a repeal of the depletion allow­

ance, a complete internalization of externalities, or tariffs on 

vulnerable imports, could improVe the allocation of depletable resources

occurring under the market system.
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APPENDIX
Proof of Theorem 1

Proof: We can subtract (10) from (11) to obtain the following inequality
*•

valid for all i: •' * /
i*

(g(Q') +^(Q') - P(Q)]D(t) - AX1 - y1 (As1)
> 0 for s > 0,

< 0 for s > 0,
• • tog ••

where y1(As1) = [MC1(S1 ) - MC1(s1)]D(t) and AX1 = X1 - X1. It

should be noted that

sgn 6 i /A i. / i i 1(As ) = sgn ^ s - s > , if strict convexity

holds. 61 (As1) = 0 if marginal cost is independent of s1.

This equation can be rewritten. Define h(t) as

(A.l) h(t) = [g(Q') + P(Q') - P(Q)]D(t).

Then the earlier equation becomes:

(A. 2) h (t) - AX1 - y1 (As1)
> 0 for s > 0,

< 0 for s >0,

It can now be shown that for all i, AX is limited:

AX1 <
h(t), for some t, if /* s1 (t)dt

*/ 0(A.3)
0 otherwise
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(A.4)
AX1 >

h (t) 
0

for some t, 
otherwise.

CO

if /* s^(t)dt
•/0

S0

If Min h(t) and Max h(t) exist, then for inequality (i) binding, 
t t

Eq. (20) and (21) imply that Min h(t)<^ AX1 Max h(t).
t *. t

Assume that AX > h'(t) for all t. Then, by Equation (A.2) ,
i» i i' i is £ s jfor all t and s <3 whenever s >0. Therefore,

inequality (1) will not be binding for the alternative regime. Thus,

if inequality (1) is binding, it follows that AX’*' h(t) for some t.

The first part of inequality (20) is established. If constraint (1)
* i'is not binding under the alternative regime, then X = o and

X ^0. Hence AX ^ 0, and the second part of inequality (A.3) is 

established. Inequality (A.4) is established in an identical manner.

Part (a); Assume now that g(Q'(0)) > 0 and that condition 1 holds.

It will be shown that this implies that

(A.5) AX1 < * g(Q'(0)), for all i.

By inequality (A.3), if constraint (1) is not binding, inequality (A.5) 

holds trivially.
00 . ,

Let AX* equal the maximum of all AX1 for which j s1 (t)dt = ,
•'0 °

and let T* be the set of all t for which h(t)>^ AX*. By inequality 

(A.3), T* is not the null set. Assume that AX* > 0. If this inequality 

does not hold, then inequality (A.5) is established trivially. Let J be
<X>

the set of all i for which AX^" = AX* and for which (t)dt = .

i'Now for *i ^ J it follows from inequality (A.2) that As (t) 0 for all

t eT*. It can thus be shown that Q1(t*) > Q(t*) for some t*e T*.
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Assume that contrary, that Q'(t) < Q(t) for all t e T*. Then it

must follow that Z As*(t) < 0 for all t e T*. whenever t i T*,
ieJ

from inequality (A.2) it follows that

/.
Z As (t) ^.0- Therefore

ieJ *•
»• ».

Z As*(t)dt < 0, inequality (1) must not be binding for some 
0 ieJ ^

ieJ, and AA ^.0 for all ie J. This contradiction establishes

that Q'(t*) > Q(t*) for some t* e T*.

It follows directly from the avove that P(Q'(t*)) <_ P(Q (t*)),

for some t* e T*. Furthermore the above demonstration can be trivally

extended to show that if Q'(t) < Q(t) for some t e T*, then

Q'(t) > Q(t) for some t* e T,*. Hence either PtQ’tt*)) < P{Q(t*))
* *

for some t e T or P(Q'(t)) P(Q(t)) for all t e T*. Hence

h(t*) g(Q1(t*))D(t*), and by condition 1 we obtain for all i,

AA1 < h(t*) < g(Q'(t*))D(t*) < g(Q' (0)),

with the last inequality becoming a strict inequality if P(Q'(t*)) <

P(Q(t*)) or if P(Q’(t*)) P(Q(t*)) for some t* > 0. Hence, unless

t* = 0 is the time which uniquely maximizes h(t) \ inequality (A.5)
i

must be satisfied. If h(t) is uniquely maximized at t = 0, then it is

sufficient to show that AA* 5* h(0). Assume the converse, that AA* = h(0)

and that AA > h(t) for all t > 0. Then for t > 0, As1(t) 0

and As (t) < 0 if s1 (t) > 0. At t = 0, if As1(0) is infinitely

large then P(Q'(0)) < P(Q(0)), and inequality (A.5) is established. If
i • ” i

As (0) is not infinitely large, then /* As (t)dt is strictly negative and
yo
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constraint (1) would not be binding under the alternative regime and

AA*' 0, a contradiction. Thus, inequality (A.5) is established.

Finally, it will be shown that if Q(0) > 0, then Q'(0) > Q(0).

Assume the converse, that Q'(0) Q(0); then h(0) g(0) > AA'*'
* • •

for all i. By Eq. (A.Z), it follows that As (0) 0 and hs1 (0) > 0

if s^Q) > 0. Thus a contradiction is established: Q'(0) > Q(0) and

P(Q'(0)) < P(Q(0)). A similaji: proof holds for gfQ'fO)) < 0.

Parts (b) through (d) :

All other parts of the theorem are proved in a similar manner. Under 

Part b(i) assumptions, AAi = g(Q'(0)) for all i. under Part b(ii),

AA*- < g(Q'(0)) if g is positive; the reverse inequality holds for g 

negative. For Part c, AA^- > ,g(Q'(0)) if g is positive, with the re­

verse inequality holding for g negative. Note that if ultimate deple­

tion did not occur, then these inequalities could not be established [see 

Eqs. (A.3) and (A.4)].* In Part d, each AA^ is positive, negative, or 

zero for g(Q'(t)) positive, negative, or zero respectively. Thus, the

remaining parts of the theorem are proven in a manner similar to Part a.
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FOOTNOTES

♦Federal Energy Administration, on leave from Stanford University. I would

like to thank Prem Garg, Richard Gilbert, Hayne Leland, and David Mills

for helpful comments on and criticism of this paper.
*' *

1. This formulation implies an assumption that the total quantity which
j.

can ultimately be recovered is independent of the extraction rates at 

each time. This assumption can'be relaxed very easily without influencing 

any results in the subsequent sections of this paper. Such a relaxation 

would help to explain the concept of the maximal efficient rate of extrac­

tion of a resource.

2• In a more general formulation cost may also depend upon the resource

quantity not yet extracted: S / s(x)dT . Such a formulation will
0 Jo

not change any results of sections II and III. However, whether the 

results of section IV will be changed is an open question, although I 

suspect that they will not.

3. Note that if r(r) = r, which is independent of time, then

L
'(T)dr

-rte simplifies to the more familiar e

4. Thus, marginal extraction costs of the resource from two different 

reserves (evaluated at the optimal extraction rates) need not be equal 

to one another if both reserves are operated so as to maximize profit. 

This is true even if both reserves are characterized by the same cost 

functions (and the same price trajectories), as long as they contain dif­

ferent initial quantities of the resource. This result is in direct
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contrast to Gordon's [5, pp. 282-283] assumption that marginal extraction 

costs must be the same for all firms. That assumption is used heavily in 

arriving at his conclusion that competitive markets will not optimally 

deplete resources.
*-

5. A dot above any variable will indicate the time rate of change of

that variable, e.g., P = fr- •dt

6. This allowance is limited to 50% of net income. However, it will be 

assumed that this limit is not binding.

7. If e < 1 then no optimal depletion pattern will exist for the monop­

olist since a reduction of quantity towards zero can always increase rev­

enue and decrease costs.
/

8. As has been suggested by Vickrey [15] and by Hayne Leland (private 

communication).

\
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