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ABSTRACT

Regional studies of the lower Eocene Wilcox Group in Texas were conducted to assess the potential for
producing heat energy and solution methane from geopressured fluids in the deep-subsurface growth-
faulted zone. However, in addition to assembling the necessary data for the geopressured geothermal
project, funded by the U.S. Department of Energy, this study has provided regional information of
significance to exploration for other resources such as lignite, uranium, oil, and gas. Because the focus of
this study was on the geopressured section, emphasis was placed on correlating and mapping those
sandstones and shales occurring deeper than about 10,000 ft.

The Wilcox and Midway Groups comprise the oldest thick sandstone/shale sequence of the Tertiary of
the Gulf Coast. The Wilcox crops out in a band 10 to 20 mi wide located 100 to 200 mi inland from the
present-day coastline. The Wilcox sandstones and shalesin the outcrop and updip shallow subsurface were
deposited primarily in fluvial environments; downdip in the deep subsurface, on the other hand, the Wilcox
sediments were deposited in large deltaic systems, some of which were reworked into barrier-bar and
strandplain systems. Growth faults developed within the deltaic systems, where they prograded
basinward beyond the older, stable Lower Cretaceous shelf margin onto the less stable basinal muds.
Continued displacement along these faults during burial resulted in (1) entrapment of pore fluids within
isolated sandstone and shale sequences and (2) buildup of pore pressure greater than hydrostatic pressure
and development of geopressure.

Regional electric log correlation markers made possible the subdivision of the Wilcox into lower, middle,
and upper parts. The net-sandstone map of the lower Wilcox indicates a dominantly lobate pattern
northeast from De Witt County to the Sabine River. Fisher and McGowen (1967) interpreted the lower
Wilcox in that area to have been deposited in a high-constructive delta system, which they named the
Rockdale Delta System. To the south, the lower Wilcox net-sandstone map indicates a narrow, elongate
trend; Fisher and McGowen interpreted these sediments to have been deposited in strandplain and barrier-
bar systems and named them the San Marcos Strandplain and Cotulla Barrier-Bar Systems.

The dominantly shale section of the middle Wilcox was deposited as a result of a marine transgression
over the lower Wilcox. Thus, the shaleis an offshore equivalent both of middle Wilcox sandstones far updip
and of sandstones of the lower part of the upper Wilcox.

The net-sandstone map of the upper Wilcox indicates abrupt thickening along the Lower and Middle
Texas Gulf Coast, resulting from deposition contemporaneous with faulting in major deltaic systems. In
contrast, along the Upper Texas Gulf Coast, abrupt downdip thickening does not occur, and these strata
are not extensively growth faulted.

Information on subsurface pressures and pressure gradients was obtained from (1) bottom-hole shut-in
pressure data from drill-stem tests, (2) shale resistivity data from eléctric logs, (3) mud weights from well
log headings, and (4) shale transit times from sonic logs. The top of geopressure was picked at
approximately the depth where a pressure gradient of 0.7 psi per foot occurs. This depth is considered the
“operational” top of geopressure because it is somewhat higher pressure than the 0.465 psi per foot
hydrostatic pressure gradient. The zone where pressure gradients are between 0.465 and 0.7 psi per foot is
transitional and difficult to identify consistently. The resulting map indicates that the top of geopressure
occurs between depths of 8,000 and 13,000 ft along the Wilcox trend; in general, the top of geopressure is
deeper in high-sandstone areas and shallower in high-shale areas.

Formation temperatures, corrected to equilibrium values, were determined throughout the Wilcox trend
to permit calculation of the amount of methane dissolved in the water. Knowledge of subsurface
temperature is also essential in studying diagenesis of sandstone, dewatering of shale, and maturation of
organic material and generation of hydrocarbons.

As a result of this regional study of the Wilcox Group, six geothermal fairways were identified—Zapata,
Duval, Live Oak, De Witt, Colorado, and Harris. Thick sandstone units with formation temperatures
greater than 300°F occur in all fairways; however, high porosity and permeability occurin only the De Witt
Fairway (Cuero area), making it the only one having high potential for geopressured geothermal energy
production.




INTRODUCTION

This regional study of the distribution of
sandstone within the Wilcox Group (fig. 1) is part
of a much broader investigation that will assess
the potential for producing geothermal energy
from the deep subsurface geopressured zone of
onshore Tertiary strata along the Texas Gulf
Coast (Dorfman and Deller, 1975, 1976). The
objective of the study is to identify areas along the
Wilcox trend in Texas most favorable for testing
this potential resource. Criteria used to identify
geopressured geothermal reservoirs containing
resources suitable for electric power generation
included a reservoir volume of 3 mi®, fluid tempera-
ture greater than 300°F, pressure gradient of at
least 0.7 psi per foot, and permeability of more
than 20 md (Bebout and others, 1976a).

SYSTEM SERIES GROUP/FORMATION
Recent Undifferentiated
Quaternary .
Pleistocene Houston
Pliocene Goliad
. Fleming
M
focene Anahuac
-2 ?
Tertiary Oligocene
Jackson
Eocene Claiborne
AONWiHE0XANNNNNN N
Midway

Figure 1. Tertiary formations, Gulf Coast of Texas. The
Wilcox Group, the study interval of this geothermal
report, is shown by the diagonal pattern; the geothermal
potential of the Frio and Vicksburg Formations, shown
by the dot pattern, has been reviewed in other Bureau of
Economic Geology reports (Bebout and others, 1975a,
1975b, 1976a, 1978b; Loucks, 1978).

Reports summarizing similar regional
assessments of the Frio Formation and describing
a prospective test-well site have been published by
the Bureau of Economic Geology, The University
of Texas at Austin (Bebout and others, 1975a,
1975b, 1976a, and 1978b). The geothermal
potential of the Vicksburg Formation was
summarized by Loucks (1978).

The Wilcox and Midway Groups, lower Eocene,
constitute the oldest thick sandstone/shale
sequence within the Gulf Coast Tertiary System.
Wilcox sandstones and shales crop out in a 10- to
20-mi-wide band that is subparallel to and 100 to

200 mi inland from the present-day coastline
(fig.2). From the outcrop, the Wilcox dips
coastward into the subsurface, forming one of at @
least eight thick wedges of Tertiary
sandstone/shale in this area (Hardin and Hardin,
1961). Sediments within the updip part of the
wedges were deposited primarily by fluvial
processes. Downdip, sediments were transported
across the Wilcox fluvial plain and were deposited
in huge deltaic systems; some deltaic sediments
were reworked and transported along shore by
marine processes and then redeposited on barrier
bars and strandplains. A basic understanding of
the environmental setting of the Wilcox was
developed by Fisher and McGowen (1967) and
Fisher (1969), following earlier studies by
Culbertson (1940), Echols and Malkin (1948), and
Hargis (1962).

o] 40 80 120 mi
[T I T

1§ T T T T

O 40 80 120 !60km

Figure 2. Wilcox geothermal corridor. The corridor
occurs where Wilcox sandstones are present in the deep
subsurface under conditions of high temperature and
pressure.



Growth faults developed near the shorelines of
several of the larger delta lobes, where thick
wedges of sand and mud were deposited on
unconsolidated offshore mud of the previous
sediment wedge (fig. 3). Subsidence and
displacement along these faults during burial
isolated thick sandstone and shale sequences.
Isolation of the sandstone units prevented updip
escape of pore fluids during subsequent
compaction resulting from loading. Vertical
escape of pore fluids was prevented by low vertical
permeability of superposed shales. Limited fluid
circulation within these growth-faulted blocks
caused the downward increase in pressure
gradient from a normal hydrostatic pressure
gradient of 0.465 psi per foot to between 0.7 and 1.0
psi per foot. The increased porosity and water
content of sediments, caused by the buildup in
fluid pressure and consequent reduction in
overburden pressure, reduces the thermal
conductivity and increases the geothermal

NW

gradient. Gradients in the hydropressured zones
range from 1.5° to 2.0°F per 100 ft and from 2.0° to
more than 3.0°F per 100 ft in the geopressured
zones. The faulted, downdip section of the Wilcox
Group, which exhibits a high pressure gradient
and temperatures exceeding 300° F, constitutes
the Wilcox geothermal corridor (fig. 2). Along this
corridor, six geothermal fairways were outlined
(fig. 4) on the basis of sandstone distribution and
isotherm maps.

REGIONAL SETTING

The Wilcox Group is composed of a thick wedge
of sandstone and shale that crops out several
hundred feet above sea level at its updip limit.
More than 100 mi downdip, the Wilcox is 10,000 ft
below sea level (figs. 5 and 6). Regional dip
averages 100 ft per mile. Where Wilcox deltas
prograded guifward of the underlying Lower

SE

PRESENT
CONTINENTAL

~

- — i Sandstone and shale

Main sand depocenter

_——_|Shale

HOUSTON B

CORPUS
CHRISTI

Approximately
30,000 ft
(9200 m)

Figure 3. Depositional/structural style of the Tertiary section along the Texas Gulf Coast. Geopressured geothermal
reservoirs occur downdip of major growth faults where deltaic sandstones were hydrologically isolated from

surrounding rocks.




Cretaceous Stuart City shelf margin (Edwards
and Sligo Formations), growth faults developed in
a band 20 mi wide (fig. 7), indicating that the
gulfward edge of the shelf controlled the location
of the Wilcox growth faults. Sandstones and
shales of the Wilcox thicken abruptly downdip of
the Stuart City shelf margin (fig. 5, wells 7 and 8).

fluvial and deltaic facies (Culbertson, 1940; Echols
and Malkin, 1948; Johnston, 1977; Townsend,
1954). In agreement with the stratigraphic

boundaries defined by Culbertson (1940), Echols
and Malkin (1948), Murray (1955), and Fisher
(1969), the top of the Wilcox Group is placed at the

®

top of the Carrizo Sandstone.

The zone of steeper (more closely spaced) contours
on the structure and thickness maps (figs. 6 and 8)
coincides with the location of the best developed
growth faults.

The base of the Wilcox Group is transitional
with the underlying marine Midway Group. The
upper part of the Midway is believed by many to be
a prodelta marine facies of the lowermost Wilcox
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Figure 4. Wilcox geothermal fairways and lines of
regional cross sections 1 through 21 (figs. 11 through 33,
B in pocket).
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just downdip of the Lower Cretaceous Stuart City shelf margin by means of a complex system of growth faults.




STRATIGRAPHIC SECTIONS

Twenty-one regional stratigraphic dip sections,
spaced 15 to 20 mi apart, were constructed using
electric logs from wells along the Texas Gulf Coast
(fig. 9). On each well log, the top of the Wilcox and
two regional markers have been identified (fig. 10);
these markers were selected through the detailed
correlations of closely spaced wells in the fairway
areas discussed later in this report. The markers
were then projected onto the regional cross
sections and extended throughout the Wilcox
trend. The lower regional marker corresponds to
the top of the lower Wilcox Group of Fisher and
McGowen (1967). The upper regional marker is at

,,,,,,,,,,,,,,,,,,,,

the base of the upper Wilcox as delineated by
Fisher and McGowen, except in South Texas,
where their stratigraphic interpretations have
been modified (Zapata, Duval, and Live Oak
Fairways, this report; Edwards, 1981). Maps
showing the regional distribution of sandstone in

Wilcox Outcrop

Sea Level Datum
Contour inferval = 1,000 ft

n L] 20 40 &0 0 Miles
T ]
100 Kilometars

B ——20 & .80

Figure 6. Structural configuration on top of the
Wilcox Group.
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the lower and upper Wilcox have been constructed The shallowest depth at which the pressure
by Fisher and McGowen (1967) and Fisher (1969), gradient is 0.7 psi per foot is marked by the black
respectively. arrow on stratigraphic sections (figs. 11 through
Each of the dip sections (figs. 11 through 31, in 33). This pressure gradient occurs well beneath the
pocket) includes 10 to 15 wells. The sections extend base of the updip part of the Wilcox, whereas
from near the outcrop to the downdip limit of downdip, within the zone of growth faulting, the
Wilcox sandstones or well control. Strike sections U
(figs. 32 and 33, in pocket) were constructed to '
ensure correlation among dip sections. Datum for
the sections is the top of the Wilcox Group. Growth
faults present at the downdip end of the sections
have been omitted so as not to obscure well-to-well
correlation of sandstones.
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0.7-psi-per-foot gradient generally occurs within that areas of maximum net sandstone trend
the upper part of the Wilcox Group. A subsurface subparallel to the modern Gulf Coast. The
fluid temperature of 300°F is also indicated on the sandstone trends are broad (up to 80 mi wide) and
cross sections. lobate along the Upper and Middle Texas Gulf
Coast and narrow (approximately 20 mi wide) and
elongate along the Lower Texas Gulf Coast.

LOWER WILCOX SANDSTONE %
DISTRIBUTION o N

The net-sandstone map of the lower Wilcox
(fig. 34) is based on control provided by wells used
in this investigation and by maps previously
prepared by the Bureau of Economic Geology as
part of an extensive study of the lower Wilcox
(Fisher and McGowen, 1967). These maps show
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Figure 8. Total thickness of the Wilcox Group.



Net-sandstone values range from more than 2,000
ft to the north to slightly more than 400 ft to the
south.

Along the northern two-thirds of the Wilcox
trend, net sandstone exhibits a lobate pattern from
De Witt County to the south to Sabine County to
the north (fig. 34). Fisher and McGowen (1967)
interpreted these patterns to be those of a high-
constructive delta system (the Rockdale Delta
System). The southernmost delta lobe, named the

Guadalupe Delta by Fisher and McGowen, was
subsequently cut by a large erosional feature, the
Yoakum Channel (Hoyt, 1959). Fisher and

McGowen suggested that the Yoakum Channel is
a submarine canyon that was scoured by density
currents of reworked deltaic sediments that flowed

BN
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N Wilcox Outcrop

40 40
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29 Q

e
20 Q0 Kilometers

Figure 9. Well log control and location of sections for
figures 11 through 33 (in pocket). Supplemental well
data from Fisher and McGowen (1967) and Fisher (1969)
are not shown.
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Figure 10. Electric log showing division of the Wilcox
Group into the sandstone-rich lower and upper parts,
each of which represents a major progradational cycle,
separated by middle Wilcox shales deposited during a
marine transgression. This log is from well number 6 in
dip section 10, shown in figure 20 (in pocket).

down slope. In the axis of the channel, the entire
lower Wilcox sandstone section was removed and
replaced by a dominantly shale section (figs. 32
and 33, in pocket).

South of De Witt County, the lower Wilcox
exhibits a narrow, elongate net-sandstone trend
that contrasts with the broad lobate trend to the
north. Fisher and McGowen (1967) suggested that
this strike-dominated trend was deposited within
strandplain and barrier-bar depositional systems.
The trend was named the San Marcos Strandplain
and Cotulla Barrier-Bar Systems.

This geothermal assessment emphasizes the
most downdip Wilcox sandstone units where
reservolrs exist with potential for production of
300°F geothermal water. The sandstone lobes of
the lower Wilcox along the Middle and Upper
Texas Gulf Coast coincide closely with those
mapped by Fisher and McGowen (1967).

UPPER WILCOX SANDSTONE
DISTRIBUTION

The upper Wilcox along the Lower Texas Gulf
Coast consists of sandstone and shale and, in the
updip areas, thickens gradually from the outcrop
toward the Gulf of Mexico (fig. 35). Downdip,
across a distance of about 10 to 15 mi, the upper
Wilcox abruptly thickens as a result of deposition
contemporaneous with faulting. Along the Middle
and Upper Texas Gulf Coast, however, upper
Wilcox strata are not extensively growth faulted,
and abrupt downdip thickening of the
sedimentary section does not occur in the area of
well control. Thus, net sandstone in the downdip
parts of the upper Wilcox is thickest in the Lower to
Middle Texas Gulf Coast (fig. 35). In the Lower
Texas Gulf Coast, this linear trend was referred to
as the “shelf-edge sand facies of the lower Wilcox
South Texas Shelf System” by Fisher and
McGowen (1967). However, this important gas
trend consists of upper, rather than lower, Wilcox
deposits that have been growth faulted to great
depths (Edwards, 1980a, 1981).

The upper Wilcox growth-fault zone is about 10
to 15 mi wide, and dip sections transect many
faults. Just updip of the fault zone, the top of the
Wilcox is generally at a depth of about 6,000 ft. In
this updip part, the upper Wilcox ranges in
thickness from 1,400 ftin the north to 1,900 ft in the
south. Across the fault zone, the top of the Wilcox
occurs at depths as great as 9,000 to 12,000 ft.
Downdip, total thickness for the upper Wilcox
cannot be determined because of the lack of
sufficiently deep wells, but correlation of selected



EXPLANATION

[] <ot
100 - 400 ft
(M a00- 800t

800 - 1200 ft
1200 - 1600 ft

1600 - 20001t

> 2000ft

WILCOX OUTCROP

-) ,

NN
\\\\‘%\*\]‘F\l\}mnﬂ
Sl

il

‘ﬁ_dr/“‘\(

‘

NN e
" | g
L I’llnml‘,"n .

i?sl‘ |

'2 i Hx
Bt

60 80 mi

Q0 20 40 60 80 100km
———— __]

Contour interval 400f1, with suppiementary
100-ft contour in downdip Grea

R Figure 34. Net-sandstone map, lower Wilcox Group.

11




EXPLANATION l \\\\\\\Q}\\\k\\ R

i T e
[ ]<eo01t : . X -
[:1::7:7] 200 - 400+, l\ (LV\ ﬂ \

[ ] 00-6001t o \ B \

SN T QAN
& \ Y

- y s

g |7/ ' = :,,‘: X .' Zlf S
\\\\\\' AN

O 20 40 60 80 I00 Km
=

Figure 35. Net-sandstone map, upper Wilcox Group.

-

12



intervals of the upper part of the Wilcox indicates
expansion of the section by a factor ranging from
about 6 to 10. The deepest downdip wells penetrate
6,000 ft of upper Wilcox strata.

A stratigraphic strike section from Zapata to
Karnes Counties relates the sandstone-bearing
intervals of the three fairways in South Texas (fig.
36). The section shows that the high-sandstone
areas of the fairways extend 13 to 60 mi along
strike, and that the prospective sandstones
present in the fairways developed at different
times and do not correlate. Thus, the oldest
sandstones, situated in the lower part of the upper
Wilcox, occur in the Duval Fairway below marker
Du3. The intermediate sandstones, situated in the
middle part of the upper Wilcox, occur in the
Zapata Fairway between markers Z2 and Z3. The
youngest sandstones, at the top of the upper
Wilcox, occur in the Live Oak Fairway above
marker L2.

Along strike to the northeast in Karnes County,
the upper Wilcox is commonly developed as a
massive sandstone, exhibiting only minor, thin
shale intervals. Detailed correlation within this
sandstone sequence is therefore impossible.
Sandstone and shale intervals in the upper Wilcox
of South Texas are comparatively easy to
correlate. Downdip, across the growth-fault zone,
shales gradually become dominant, and
sandstones increase in thickness but decrease in
percent of total section (Edwards, 1980b). Detailed
examination of logs from both sides of major
growth faults shows that the sandstone/shale
ratio is not appreciably altered by the growth
faults, even where the thickness is increased by a
factor of 2 or more.

The geographic restriction of sandstone
depocenters along strike suggests that the
dispersal system was not strike oriented on a
regional scale. In updip areas, log patterns
generally show blocky patterns exhibiting sudden
lateral changes, and the sediments are interpreted
as having been deposited in distributary channels.
In contrast, sedimentsin downdip areas that show
upward-coarsening trends are interpreted as
having been deposited as delta-front and
distributary-mouth bar facies (Edwards, 1980b,
1981).

FORMATION FLUID PRESSURE

Subsurface fluid pressure is important in
determining (1) the ability of a reservoir to produce
fluids at the surface without pumping and (2) the
solubility of methane in formation waters. In the
hydropressured zone, which extends downward

13

from the water table, formation fluids are under
hydrostatic pressure only; thus, pumping is
required to bring fluids to the surface. In the deeper
subsurface, where permeability barriers occur,
confined formation fluids may support some of the
weight of the overlying rocks. These formation
fluids are considered to be geopressured, and fluid
pressure gradients are greater than 0.465 psi per
foot. The higher the pressure gradient is, the
greater the production potential will be, although
other factors also influence production. A pressure
gradient of approximately 0.7 psi per foot or
greater is considered necessary to make a
geopressured geothermal reservoir viable, This
pressure gradient has been referred to as the
“operational” top of geopressure (Bebout and
others, 1975a, 1975b, 1976a, and 1978b), as it may
have greater practical importance than the
conventional top of geopressure.

Four sources of information from which
pressures and pressure gradients can be
determined are currently available; however,
accuracy of predicting pressures is variable. The
information sources are: (1) bottom-hole shut-in
pressure (BHSIP) data from drill-stem tests (DST),
(2) shale resistivity data from induction logs, (3)
mud weights from well log headings, and (4) shale
transit time data from sonic logs. Itis important to
note that these data are based on different
characteristics of the formation, and therefore
may not produce similar results when used to
determine pressure.

Bottom-hole shut-in pressure data from drill-
stem tests were obtained from completion cards for
producing wells. Because only one or two pressure
measurements were made for each well, it was
necessary to combine information from numerous
wells in an area to determine the average pressure
gradient. A least-squares regression line through
the BHSIP data plotted against depth was used to
estimate pressure gradients at any depth within
the area of interest (for example, see the
discussions of the Live Oak Fairway).

Pressure gradients were determined in this
study primarily by calculating fluid pressure from
induction logs (fig. 37). Detection and evaluation
of geopressured formations using the short-
normal curve or amplified short-normal resistivity
curve (Hottmann and Johnson, 1965) rely on the
observation that, under conditions of normal
compaction, shale resistivity (Rs) increases with
depth as the porosity and water content of shales
decrease. Resistivities of geopressured shale
depart from the normal trend, and lower values of
R.h are recorded because of the increased porosity
and water content of the geopressured shales. The
amount of divergence of Re, from the established




normal compaction trend is a measure of the pore-
fluid pressureinthe shale and adjacent sandstone.
The normal procedure for detecting geopressures
involves a semilog plot with Rs, plotted on the
logarithmic scale and depth plotted on the linear
scale (fig. 38). Shale with higher than normal
resistivity (caprock) is sometimes observed above
the operational top of geopressure. The caprock
occurs in the transition zone between
hydropressured and strongly geopressured
conditions and may be sharp and definitive or
gradual and equivocal.

Divergence of R, from the normal compaction
trend is related to the observed pressure gradient
in adjacent sandstone formations. The ratio
R (normal)/R,. (observed) was plotted against
pressure gradient for Eocene formations (fig. 39) in
De Witt County. Geopressure profiles for
individual wells in the area can be constructed
using this curve.

1 ZAPATA FAIRWAY

Resistivity values were derived only from shales
greater than 30 ft thick; silty, calcareous, and
washed-out shales were avoided. Resistivity data
for shales at depths less than 4,000 to 5,000 ft were
disregarded because these shallow formations
contain fresh water having high resistivity values
that cannot be used to establish the compaction
trend; the presence of gas-cut mud or mud
containing additives to combat lost circulation
also contributes to spurious resistivity data. Other
discontinuities observed in the trend line may be
caused by an abrupt change in lithology (such as
from normal shales to bentonitic shales),
difference in the geologic age with consequent
changes in shale properties, major changes in
borehole size, and possibly the presence of
dispersed free gas. Shaleslocated near salt masses
were avoided because their low resistivity high
salinity) may falsely indicate higher than normal
pressure.
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Mud weight versus depth recorded on shale
resistivity plots (fig. 38) provided a first
approximation of the operational top of the
geopressured zone. Although some recorded mud
weights may be inaccurate and misleading for
determining geopressure tops, a mud weight of
12.6 to 13.6 1b per gallon was used to approximate
the operational top of geopressure, especially if the
quality of well log data was questionable. Depth to
top of geopressure could then be determined by an
interpretive process that included evaluating the
other sources of information listed above. Using
mud weights from well logs is not recommended
for quantitative evaluation of geopressure.

In fresh-water zones, sonic logs are considered
more reliable than electric logs for locating and
evaluating geopressures. By plotting shale transit
time versus depth on semilog paper (fig. 38), the
normal compaction curve (NCC) was established,
and the geopressure top was located at the depth

where shale transit time departs from the normal
trend. Usually there was good correlation between
top of geopressure determined from shale
resistivity and from shale interval-transit times.
As figure 38 shows, however, operational top of
geopressure determined from the transit time plot
is about 600 ft above that determined from shale
resistivity; this illustrates the divergence of results
that can be obtained from empirical relationships
based on measurements of different properties of
the same stratigraphic section.

FORMATION TEMPERATURE USED
TO DELINEATE GEOTHERMAL
FAIRWAYS

Formation temperature data corrected to
equilibrium values have been used in this study
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primarily to delineate areas where thick sandstone lower and upper Wilcox (figs. 40 and 41). Wilcox

reservoirs have temperatures greater than 300°F. sandstone reservoirs having fluid temperatures
Knowledge of the formation fluid temperatures is higher than 300°F are shown gulfward of this @
also essential in calculating the amount of isotherm. Six fairways — Harris, Colorado, De
methane in solution in the water and in studying Witt, Live Oak, Duval, and Zapata — were outlined

the diagenesis of the sandstone, shale, and organic in this manner (fig. 4).

material at depth (Burst, 1959, 1969; Dow, 1978).

Thus, temperature greatly affects factors that ': AN

control porosity, permeability, and -elastic
properties of prospective reservoir rocks.

The depth at which subsurface temperatures
reach 300°F is indicated on all wells on the
stratigraphic sections (figs. 11 through 33).
Geothermal fairways were identified by plotting
the 300°F isotherm on the net-sandstone maps of

&\‘ Wilcox Outcrop

Contour Interval=1000ft

2 [ 20 4 s 80 Miles
e —————
E ) 20 40 60 B0 100 Kilometers

Figure 37. Depth to the operational top of geopressure
along the Wilcox geothermal corridor, Texas Gulf Coast.
These depths were determined primarily on the basis of
shale resistivity (Rs) versus depth plots.

16



s19}3N  (00O0IX) wdag
L2}

Afsh, /IS/ Ft

Rgh, Ohm - Meters

—_ (¥ <
C 10— g
9____ Q
8____ == =: = — = = e
[ A—
[-I—
S
[T
a___ _ = =3 = : = ==
a____ ey & S
ESc S i3
== = = 5
= S
2____
.
]
G- = 74
1 G )
3 —— a K= 1
oo = 8
9___ =
L ——
Nll' ——
[-T— " :
5 i — 1 T
4 = === =E=S==
3___
2.
Y o)
D
i
3] e
Tl
- = u L o
9 . === =
8 _ = = = ==
7. =S %
6__ £ 288 = %
= Y f
5 = 1 T
4 _ = = = = = — == ===
3 = =
= B
a iy
2 _
o
/ H
Py 4 7 1
1 —
9. =
8. == = = =
7. = ==
s :
t
5_
4 = = = ==
3.
= e
= 1 =5
2. P -
el T 1
11V |
1. [ -
~ © © o o < ©

1993 (000Ix) UidagQ

17

Figure 38. Operational top of geopressure determined from shale resistivity and transit times for a well in De Witt County.




Plots of temperature versus depth for wells in
these fairways illustrate the presence of three
geothermal gradients that change slope as a
function of depth. These gradients are referred to
as shallow, medium, and deep (figs. 42 through 44).
In addition, gradients increase, and higher
temperatures occur at shallower depths toward the
southwest along the Wilcox trend.

Temperature data used to obtain gradients for
this report were taken from well logs and corrected
to approximate thermal equilibrium by the
empirical relation developed by Kehle (1971).

T = T. — 8.819 X 10?D® — 2.143 X 10D?

+4.375 X 10°D — 1.018 (1)

equilibrium temperature (°F)
bottom-hole temperature from well
logs (°F) and

D = depth (ft).

where Tg =
TL -

FORMATION POROSITY AND
PERMEABILITY

Porosity and permeability values from whole-
core analyses were used when core data were

available. Porosity (¢) was also computed from the
formation resistivity factor (F) and the
cementation factor (m), using the empirical
equation developed by Archie (1942).

F=¢" 2

where m = 1.8 for sandstones.

Formation factor is defined as a ratio of
resistivities that can be obtained from induction
and SP well logs. It is assumed that

R, = Ry, and

F =R./R. (3)

where R, = R = resistivity of rock that is 100-
percent saturated with forma-
tion water of resistivity R,
determined from the deep in-

duction log (ohm-meters), and

resistivity of formation water
at given temperature and
salinity, determined from the
SP log (ohm-meters).

Pressure Gradient, psi/ft

DE WITT CO, TEXAS

CURVE CONVERTS
RESISTIVITY RATIO
TO PRESSURE GRADIENT

Pressure Gradient,kPa/m-*

|
Rsh(N)/Rsh(ob)

0 20

Figure 39. Shale resistivity ratio curve for De Witt County.
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ZAPATA FAIRWAY

The Zapata Fairway, elongated north to south,
is located primarily in Zapata County but also
extends to the south into Starr County (figs. 45 and
46). The fairway is approximately 27 milong and 6
mi wide and has an area of 110 mi®. It was
delineated as an area of possible geopressured
geothermal reservoirs during regional study of the
Wilcox Group along the Texas Gulf Coast (Bebout
and others, 1978a). Selection of this study area was
based on the presence of considerable thicknesses
of sandstone having fluid temperatures higher
than 300°F. The sandstones of the Zapata
Fairway are of the upper Wilcox Group and are
part of a general, gradually upward-coarsening
sequence about 2,000 ft thick.

This sequence was subdivided and correlated in
the fairway area using numerous markers; only
five markers are shown in this report (figs. 47
through 49). Most of the markers are in sections
having many alternating layers of sandstone and
shale, and some appear to be persistent over large
areas. The two principal markers, which have
been correlated throughout the Texas Gulf Coast,
are the top and the base of the upper Wilcox
(fig. 36). Three additional markers are shown:
(1) marker Z1 occurs at the top of the main
sandstone-bearing interval and below an upper-
most shale-rich interval (fig. 47); (2) marker Z2 is
above the sandstone units in the middle part of the
upper Wilcox, these units being the prime targets
of this geothermal study; and (3) marker Z3 occurs
below the main sandstone-bearing part of the
upper Wilcox. Correlation of these markers with
markers in the Duval and Live Oak Fairways is
shown in table 1.

The most prospective reservoirs of the Zapata
Fairway are two distinct sandstone bodies
occurring immediately below marker Z2. These
sandstones range from about 280 to 620 ft thick
and occur at depths of 7,800 to 10,150 ft. Wells
farthest downdip show that these sandstone
bodies grade into shale toward the east.

The Zapata Fairway is located on the growth-

faulted upper Wilcox shelf edge, which includes
two or three major growth faults with displace-
ments of up to 3,000 ft at the level of the Z2 marker
and at least 10 smaller faults. The zone of growth
faulting is more than 13 mi wide. Sedimentary
units in the upper part of the Wilcox increase in
thickness by a factor of 3 from west to east because
of faulting contemporaneous with sedimentation.

The top of geopressure, defined as the depth at
which the pressure gradient exceeds the
hydrostatic pressure gradient of 0.465 psi per foot,
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occurs at an average depth of 6,000 ft in Zapata
County (fig. 50). However, some reservoirs as deep
as 10,700 ft are not geopressured. The gradient of
0.7 psi per foot occurs at an average depth of 9,000
ft. Maximum pressure gradients of about 0.85 psi
per foot, determined from bottom-hole shut-in
pressures measured during drill-stem tests, occur
in a few reservoirs below 10,000 ft (fig. 50).
Maximum gradients of up to 0.96 psi per foot are
indicated by geopressure profiles computed for
individual wells (fig. 51).

Temperatures of 200° and 300°F occur at
average depths of 7,000 and 11,400 ft, respectively
(fig. 52). A geothermal gradient of 1.59°F per 100 ft
is common down to 8,000 ft, and 2.1°F per 100 ftis
common at greater depths.

Salinity of shallow reservoir waters varies
widely from 10,000 to 75,000 ppm NaCl. Upper
Wilcox sandstones in Zapata County have water
salinities that range from 17,000 to 60,000 and
average 40,000 ppm NaCl, on the basis of
computations from electric logs of five wells (fig.
53).

Few core analyses are available for Zapata
County, but sidewall-core data for limited depth
intervals in two wells are listed in table 2. These
limited data suggest that porosity and
permeability are very low.

Table 1. Correlation of stratigraphic markers in the Zapata,
Duval, and Live Oak Fairways.

BASE OF UPPER WILCOX (REGIONAL MARKER)

ZAPATA DUVAL LIVE OAK
FAIRWAY FAIRWAY FAIRWAY

é TOP OF WILCOX “Slick Sand”

8 % L1 “Luling Sand”

= Z1 Dul L2 “Mackhank” - “Massive”

Z 79

2% 7 Dug L3

&= Du3 14

o)

Table 2. Sidewall-core data from two wells in Zapata County.

DEPTH PERMEABILITY POROSITY
(ft) (md) (%)
9,153 to 9,558 0 to 2.9 17 to 21
(avg. 0.5) (avg. 18.0)
10,027 t0 10,634 0to 6.6 18 to 22
(avg. 2.0) (avg. 20.0)
10,498 t0 10,499 8 to 19 18 to 20
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DUVAL FAIRWAY

Q The Duval Fairway trends southwest through

Duval and Webb Counties and also extends south
into Jim Hogg County and north into McMullen
County (figs. 54 and 55). This fairway, which is
approximately 60 mi long and 9 mi wide, was
originally designated as two separate fairways
(Duval and Webb) in previous studies (Bebout and
others, 1978a). During the present study, these two
areas were observed to contain one continuous
stratigraphic unit of geopressured Wilcox
sandstones with fluid temperatures greater than
300°F.

In the Duval Fairway area, prospective thick
sandstones occur in the lower part of the upper
Wilcox; shallower sandstones are relatively thin.
The Rosita and Seven Sisters gas fields are located
along this trend. In updip areas, the upper Wilcox
is about 2,000 ft thick. Downdip it thickens to at
least 6,000 ft. In the fairway area, the upper Wilcox
was subdivided and correlated with three markers
(Dul, Du2, Du3), in addition to the top and base of
the upper Wilcox (fig. 56). Equivalent markers in
the Zapata and Live Oak Fairways are shown in
table 1.

The main sandstone-bearing interval occurs
beneath the Du3 marker. This interval extends
downward to theregional marker at the base of the
upper Wilcox and contains very massive
sandstones over a large part of the updip area of
the fairway. Downdip, the sandstones are
separated by thick shale sequences and are
arranged into upward-coarsening sequences.

The prospective sandstone interval of the Duval
Fairway occurs in the Rosita Field area below
marker Du2 at a depth of about 11,000 ft and
continues down to at least 15,000 ft. Sandstones
whose total thickness is at least 600 ft in this
fairway contain fluids with temperatures greater
than 300°F. Wells farthest downdip do not show
significant thinning of sandstone bodies.

The elongate trend of the Duval Fairway
approximately coincides with the belt of linear to
arcuate growth faults that developed along the
upper Wilcox shelf edge contemporaneous with
deposition (fig. 54). This hinge zone includes five to
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seven faults with displacement of as much as 2,000
to 3,000 ft at the level of the Du2 and Du3 markers.
Given present well control, the growth-faulted
zone appears to be 11 to 14 mi wide, but the
downdip limit of the fairway is poorly outlined.
The upper Wilcox increasesin thickness across the
growth-faulted zone by a factor of approximately
6. Lack of adequate well control in the Duval
Fairway limits fairway evaluation.

The top of geopressure, defined as the depth at
which the pressure gradient exceeds 0.465 psi per
foot, occurs at an average depth of 8,600 ftin Duval
County (fig. 57). The gradient of 0.7 psi per foot
occurs at an average depth of 10,000 ft. Gradients
reach 0.9 psi per foot at 11,800 ft. Operational top of
geopressure determined from shale resistivity
plots for two wells in Duval County occurs between
depths of 8,150 and 9,800 ft (figs. 58 and 59).

In Duval County, the geothermal gradient is
1.6°F per 100 ft above a depth of 8,000 ft (fig. 60). At
greater depths, the gradient increases to 3.1°F per
100 ft in the geopressured zone. The average
gradient in the fairway is 2.7°F per 100 ft (fig. 44).
A temperature of 300°F occurs at an average depth
of 10,750 ft.

Salinities of formation waters range from 10,000
to 55,000 ppm NaCl. These values were calculated
from water resistivities derived from the SP logs
for five wells in Duval County (fig. 61).

Porosity and permeability data from five wells
in Duval County are listed in table 3. These data
suggest that porosity and permeability in the
fairway are too low for production of geopressured
geothermal resources.

Table 3. Diamond-core data from five Duval County wells.

DEPTH PERMEABILITY POROSITY
(ft) (md [avg.]) (% [avg.])

9,500 to 9,530 253 235
10,524 to 10,542 2 15
11,362 t0 11,368 5 to 44 8 to 14
11,853t012,033 0.17 6.8
12,1330 12,333 0.29 126
13,800 to 14,000 0.1 12.0
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Figure 57. Bottom-hole shut-in pressures plotted as a function of depth for Duval County.
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LIVE OAK FAIRWAY

Q The Live Oak Fairway is entirely within Live

Oak County (figs. 62 and 63) and is approximately
13 mi long and 6 mi wide. The total area is
approximately 70 mi®. This fairway was
delineated in earlier studies (Bebout and others,
1978a) on the basis of thick, laterally extensive,
geopressured sandstones having fluid tempera-
tures greater than 300°F.

Prospective sandstones in the fairway occur in
the upper Wilcox. Updip toward the northwest, the
upper Wilcox is about 1,300 ft thick; downdip,
where only the uppermost part of the upper Wilcox
has been penetrated, it is at least 3,000 ft thick
(figs. 64 through 66). Major fields producing
hydrocarbons from the upper Wilcox in this area
include the Tom Lyne Field updip and the Katz-
Slick Field downdip.

In the Live Oak Fairway, four markers were
used to subdivide the upper Wilcox; two of the
markers (L1 and L.2) are near the top of the Wilcox
and were correlated throughout the fairway, and
two lower markers (L3 and 1.4) were identified only
in updip wells. Additional markers are the top of
the Wilcox and base of the upper Wilcox regional
markers. Equivalent markers in the Zapata and
Duval Fairways and locally recognized names are
shown in table 1.

The prospective reservoirs in the Live Oak
Fairway are sandstones between the top of the
Wilcox and the L2 marker (figs. 67 through 69).
Most of the sandstone units exhibit complex
upward-coarsening sequences. These sandstones
become increasingly shaly in downdip areas (figs.
67 through 69; Edwards, 1980b). The L2 sandstone
is 300 ft thick in the northwest and has not been
penetrated in downdip areas. Beneath marker L4
is another section of thick, upward-coarsening
sandstone and shale sequences.

In the downdip parts of the Live Oak Fairway,
the prospective sandstone-bearing interval begins
at the top of the Wilcox at approximately 9,200 to
10,600 ft, and extends downward at least 4,000 ft
and possibly as much as 8,000 ft. However, only
the upper part of this interval, which contains
600 ft of net sandstone, has been penetrated.

Growth faults in the Live Oak Fairway (fig. 62)
probably developed at the margin of a rapidly
prograding delta (Edwards, 1981). The
growth-faulted zone has a total known width of
about 16 mi, but faulting in downdip areas is not
well understood, although the largest faults occur
in the central and downdip areas. Approximately
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nine faults are present across the growth-fault
zone in this fairway. From northwest to southeast
across the growth-fault zone, the upper part of the
Wilcox (the “Slick” sands) increases in thickness
from 140 to 1,400 ft, indicating an unusually large
growth factor of 10 (figs. 67 through 69).

The top of geopressure occurs from 7,000 to
8,000 ft, on the basis of bottom-hole shut-in
pressures from drill-stem tests for 26 wells in Live
Oak County (fig. 70). A gradient of 0.7 psi per foot
occurs at an average depth of 9,950 ft. The
maximum pressure gradient observed was 0.78 psi
per foot at 10,450 ft.

Shale resistivity plots demonstrate that updip
wells on cross section A-A’ were not geopressured
(fig. 71). Tops of isopiestic gradient surfaces along
cross section A-A’ show that only the two wells
farthest downdip penetrate highly geopressured
zones; the detailed shale resistivity plot (fig. 72)
shows that the top of geopressure occurs at a depth
of 9,000 ft in the well farthest downdip.

The geothermal gradient shallower than 8,990 ft
in the Live Oak Fairway (fig. 73)is 1.9°F per 100 ft.
At greater depths, in the geopressured zone, the
gradient increases to 3.2°F per 100 ft, higher than
the average gradient of 2.7°F per 100 ft for the
larger fairway area including parts of Live Oak,
McMullen, Duval, Webb, and Zapata Counties (fig.
74). Temperature versus depth plots and
isothermal surfaces of 200°F, 250°F, and 300°F are
shown for control wells in cross section A-A’ (fig.
71).

Salinities of formation waters in the six wellson
cross section A-A’ increase to a maximum value of
about 150,000 ppm NaCl (figs. 71 and 75) at depths
of 4,400 and 9,400 ft. Limited data showing low
salinities between depths of 4,400 and 7,800 ft are
of doubtful quality. Below 7,800 ft, salinities
decrease to an average value of about 38,000 ppm
NaCl at a depth of 11,000 ft.

Porosities computed from formation resistivity
factors for six wells on cross section A-A’ (figs. 71
and 76) decrease from about 35 percent at 3,000 ft
to about 10 percent at 11,000 ft. Limited diamond-
core data from two wells in Live Oak County show
an average porosity of 21 percent and permeability
of 20 md in the sandstone interval from 7,982 to
8,000 ft. From 10,470 to 10,480 ft, the porosity and
permeability average 16 percent and 8 md,
respectively. Sidewall cores from depths of 10,000
to 12,000 ft indicate porosity ranging from 17 to 24
percent and permeability ranging from 5 to 40 md.
These values indicate generally poor reservoir
quality relative to other fairways.
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DE WITT FAIRWAY

Depositional and Structural Style

The De Witt Fairway, located in southeastern
De Witt County (fig. 77), is 40 mi long northeast to
southwest and 6 mi wide. It was first recognized
with widely spaced well control on the regional
cross sections. Detailed study of the De Witt
Fairway is based on analysis of all available
electric logs from wells that penetrate the lower
Wilcox (fig. 77). Five stratigraphic dip sections and
one stratigraphic strike section established the
correlation grid into which all well logs were
correlated; only stratigraphic section D-D’ is
included in this report (fig. 78). Closely spaced
wells in the fairway can be correlated confidently
with electric logs, primarily by means of resistivity
markers within the shale and siltstone sections.

Several of these markers have been extended
across the entire fairway and are the basis for
subdividing the formation into five units in the De
Witt Fairway. Two of these markers (D1 and D2)
are regional markers used to informally subdivide
the Wilcox into lower, middle, and upper. These
markers have been extended throughout the
Wilcox trend in Texas, asindicated on theregional
cross sections (figs. 11 through 33, in pocket). The
other markers pertain only to the De Witt Fairway
and do not correspond to those used in the other
fairways described in this report. These markers
do, however, provide a basis for subdividing the
formation into thinner map units, which are more
useful in delineating sandstone and shale trends
and interpreting general depositional
environments. Potential geopressured geothermal
sandstonereservoirs occur beneath the D4 marker.

The Wilcox Group in the De Witt Fairway can be
divided vertically into three main parts (fig. 78).
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The lower part, beneath the D2 marker, is
characterized by high sandstone content that is
highly variable laterally as a result of rapid facies
changes. The middle part, between the D2 and D1
markers, consists predominantly of shale and thin
sandstone units that are generally strike aligned,
are persistent over a large area, and provide
excellent correlation markers. The upper part,
above the D1 marker, is mainly massive
sandstone, which, when mapped, shows that
sandstone trends are dip oriented (fig. 79); detailed
correlations are possible only in the thin
sandstones and shale of the lower part.
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The depositional/structural style of the Gulf
Coast Basin is controlled by growth faults that
formed contemporaneously with deposition. The
De Witt Fairway is located in the complexly
growth-faulted part of the Wilcox trend (figs. 7, 80a
and b) just downdip of the Lower Cretaceous
Stuart City carbonate shelf edge. The faults trend
northwest parallel to the carbonate shelf edge and
to the strike of the Wilcox. Displacement across the
faults ranges from tens of feet to several hundred
feet (figs. 81 through 87), but, in general, fault
displacement and section thickening is greatestin
the lower part of the Wilcox beneath the D3
marker.

Local thickening of the sandstone and shale
section updip into the bounding growth fault,
although characteristic of growth faults, is not
commonly documented because of a lack of well
control close to the faults. In the De Witt Fairway,
thickening is particularly well documented on line
E-E’ (fig. 85) where the section thickens between
markers D1 and D3 updip from well 15 to well 11.
Regional thickening of the sections on the

downdip side of growth faults is common and is
illustrated on all of the dip cross sections (figs. 81

through 86).

Formation Pressures and Temperatures

Below a depth of 10,000 ft, most of the gas- and
oil-producing reservoirs in the Wilcox are
geopressured, and the pressure gradient increases
with depth. Bottom-hole shut-in pressures from
drill-stem tests in the De Witt County area (fig. 88)
clearly show that most geopressured formations
first occur between depths of 9,000 and 10,000 ft;
generally, pressure gradients increase with depth
to a maximum of about 0.85 psi per foot. Top of
geopressure determined from shale resistivity
data occurs from 9,550 to 10,500 ft along structural
cross section D-D’ (fig. 89). Depth to the isopiestic
gradient of 0.8 psi per foot decreases sharply from
12,000 ft in the updip wells (fig. 90) to 10,850 ft in
the Kilroy No. 1 Mueller (fig. 91) and 11,750 ft in
the Texaco No. 1 Angerstein (fig. 92).

The geothermal gradient in the upper Wilcox at
depths of 7,400 to 14,000 ft is about 2.6°F per 100 ft;
a gradient of 1.2°F per 100 ft occurs in the lower
Wilcox at depths of 14,000 to 19,000 ft. Shallow
formations above the Wilcox at depths of 0 to
8,500 ft have a geothermal gradient of about 1.5°F
per 100 ft. A temperature of 300°F is attained ata
depth 0of 11,700 ft (fig. 93); updip of the fairway, this
temperature occurs at greater depth (13,000 ft) and
downdip, at shallower depth (approximately
11,000 ft).
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Geothermal gradients in the control wells in the
De Witt Fairway sections show only slight
variations (fig. 94). For wells in sections B-B’, C-C’,
D-D’, and E-E’, the average gradient is 1.7°F per
100 ft in the Wilcox at depths of 0 to 11,000 ft and is
2.4°F per 100 ft at depths of 11,000 to 14,100 ft.
Temperature profiles (fig. 89) correspond to data
points for section D-D’ (fig. 94).

Porosity and Permeability

Diamond-core data for three wells in the Wilcox
geopressured sandstones in the De Witt Fairway
area (figs. 95 through 97) show that porosities
range from 5 to 23 percent and permeabilities
range from lessthan 2.1 to more than 100 md. Most
of the core data are for the depth interval of 10,680
to 12,080 ft. Permeabilities for the Atlantic No. 1
Schorre well (fig. 98) range from less than 0.1 to
more than 200 md in the depth interval of 10,800 to
11,800 ft. There is an approximate linear decrease
in porosity as depth increases for the six control
wells in section D-D’ (figs. 89 and 99). The
anomalous increase in porosity at a depth of about
11,000 ft coincides with the top of the lower Wilcox
Group. This porosity increase occurs in the

prospective reservoir section containing proximal
deltaic facies (distributary-mouth bar and
distributary channel).

Formation Water Salinity

Salinity of formation waters was derived from
formation water resistivity (R.) obtained from the
spontaneous potential (SP) log, following the
algorithm developed by Bateman and Konen
(1977). Estimation of the equivalent sodium
chloride concentration (salinity) from R, at any
formation temperature (Ty) is made from the

relation
ppm (NaCl) = y'*® 4)

where y = 3 X 10°/[Ru(Tr + 7) — 1].

Salinity as a function of depth in the De Witt
Fairway area can be divided into four generalized
trends (figs. 100 and 101): (1) salinity increases at
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Figure 79. Net sandstone between the top of the Wilcox and the D1 marker, De Witt Fairway.




shallow depths of 2,000 to 6,000 ft; (2) from about
5,900 to 8,200 ft, salinities are high, having
reasonably constant average values of more than
100,000 ppm NaCl; (3) below 8,200 ft and extending
to the operational top of geopressure as determined
from shale resistivity data, salinities decrease to
about 40,000 ppm; and (4) in the deep geopressured
zones, salinity oscillates between higher and lower
values for different sandstones. Most of these
trends are recognizable in salinity plots for the
Atlantic No. 1 Schorre well (fig. 102) and on the
D-D’ cross section (fig. 89).

No salinities from chemical analyses of water
samples were available for use in this report.

Cuero Fault Block

The Cuero fault block is located in the northeast
part of De Witt Fairway (fig. 103). The growth fault

defining the northwest (updip) side of the block is
displaced approximately 700 ft at the top of the
reservoir section (D4 marker); the fault at the
southeast (downdip) side is displaced
approximately 400 ft at the same marker. The
width of the Cuero fault block between these two
faults varies from 1.7 to 2.0 mi. The length of the
fault block is approximately 15 mi.

More than 550 ft of sandstone occurs in the lower
Wilcox section beneath marker D4 in the Atlantic
No. 1 Schorre well located at the southwest end of
the Cuero fault block. Individual sandstone beds
range in thickness from 5 to 40 ft, but composites of
several beds occur near the top of many correlation
units (labeled “B” through “H,” figs. 104 and 105),
grading from shale at the base to sandstone at the
top. Each unit is interpreted to represent an
upward-coarsening sequence. Sedimentary
structures in whole cores from several of the
sandstones in the Schorre well (sandstone units B,

7S

9s

10S

Figure 80a. Structure on top of the D4 marker, De Witt Fairway.
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C, and F) indicate that they were deposited in a
variety of deltaic environments. Furthermore, the
deeper sandstones were deposited on the distal
parts of the delta front and on the delta-front slope;
the intermediate sandstones were deposited in
interdistributary bays and crevasse splays; and
the upper sandstones were deposited in
interdistributary bays, distributary channels,
distributary-mouth bars, and marshes. Thus, more
distal deltaic environments are represented in the
lower sandstones, and more proximal deltaic
environments are indicated in the upper units. The
electric log of this section, obtained from the
Schorre well, shows thin, high-resistivity
sandstones in the lower part and thick, low-
resistivity sandstones near the top, also indicating
the upward transition from distal to proximal
deltaic facies.

Net-sandstone maps (figs. 106 through 111) of
correlation units B through G are based on the
detailed correlations of wells within the fault
block. Because these correlations cannot be

extended beyond the bounding faults, the maps
are considerably limited in areal extent in dip
direction, and the entire facies tract is not
represented. However, these maps show that dip-
aligned sandstone patterns, interpreted as
representing the distributary-channel facies, shift
from the northeast in the lower correlation units to
the southwest in the upper units. Thus, the lower
Wilcox section in the Atlantic No. 1 Schorre well is
represented by more distal delta-front facies lower
in the section, and by proximal distributary-
channel and marsh facies at the top of the section
as a result of the shift of the distributaries to the
southwest.

The top of the sandstonerich lower Wilcox
section below marker D4 varies in depth from
10,490 to 10,660 ft below sea level. The operational
top of geopressure occurs at approximately
10,000 ft in the Cuero fault block, and subsurface
fluid temperatures of 300°F have been measured
within the lower Wilcox section below the D4
marker.
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Figure 80b. Index cross section showing mapping horizon in figure 80a.
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COLORADO FAIRWAY

Depositional and Structural Style

The Colorado Fairway extends over
approximately 440 mi’ in parts of Colorado,
Austin, and Wharton Counties (fig. 112). The area
was recognized as a geopressured geothermal
fairway in an earlier study by Bebout and others
(1978a). A thick section of sandstones, having net-
sandstone values of 1,200 to 1,600 ft, occurs in the
lower Wilcox in parts of the fairway (fig. 34).
Although most of the wells in the area do not
penetrate the geopressured zone, certain wells
show that the deepest sandstones of the lower
Wilcox are geopressured and have fluid
temperatures greater than 300°F.

The Wilcox section in the Colorado Fairway is
similar to that of the De Witt Fairway; the upper
and lower Wilcox contain thick sandstones and
are separated by the more shaly section of the
middle part of the Wilcox (fig. 113). A correlation
marker, C1, occurs at the base of the upper Wilcox
and can be extended into other fairways. This is
the “regional marker” shown on regional cross
sections (figs. 11 through 33, in pocket) and is
equivalent to D1 in the De Witt Fairway and H1in
the Harris Fairway. Three other Wilcox
stratigraphic markers, C2, C3, and C4, were used
for local correlation within the Colorado Fairway
(fig. 113); the C3 marker, equivalent to the H3
marker in the Harris Fairway, was the only one of
these three markers to be traced outside the
Colorado Fairway.

The C4 marker occurs at depths of 160 to 250 ft
above the top of the lower Wilcox, shown on
regional cross sections 13 and 14 (figs. 23 and 24).
Throughout most of the Colorado Fairway, the
lower Wilcox contains massive sandstones.
Rapid facies changes, however, in addition to
faults and sparse deep well control, make the
lower Wilcox section difficult to correlate. Only
within the Eagle Lake fault block was the lower
Wilcox subdivided.

Down-to-the-coast faults are common in the
Colorado Fairway, as shown by the structure map
of the C4 marker (figs. 114a and b) and cross
sections A-A’, B-B’, and C-C’ (figs. 115 through
117). However, no large upper Wilcox growth
faults that are characteristic of the fairways of the
Lower Texas Gulf Coast occur in the Colorado
Fairway. Growth faults affecting the lower Wilcox
probably exist but are not detected because of the

@sparse deep well control.
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Formation and Fluid Properties

Many wells in Colorado County do not reach
highly geopressured zones. Some wells have
pressure gradients only slightly greater than
hydrostatic, probably because they were not
drilled deep enough to penetrate formations with
higher pressures. The shale resistivity versus
depth plot for the Union No. A-1 Thomas well is
typical of wells in the Colorado Fairway (fig. 118).
The Union No. A-1 Thomas, located on cross
section M-M’ (fig. 119), was a dry hole drilled to a
total depth of 11,901 ft. Details of core-analysis
data and fluid properties are given for this well in
the next section.

An equilibrium temperature of 300°F occurs at
an average depth of 12,470 ft in Colorado County
(fig. 120). Geothermal gradients average 1.40°F
per 100 ft down to a depth of 8,000 ft. Below 8,000 ft,
the gradient is 2.67°F per 100 ft.

Average porosity and permeability in the depth
interval of 9,840 to 9,854 ft in the Shell No. 1
Engstrom (5S-29E-9), 17 mi to the southwest of the
fault block, were 15.9 percent and 16.8 md,
respectively. Sidewall-core measurements from
several wells indicate porosities of 20 to 30 percent
and permeabilities up to 450 md in sandstone
intervals occurring between depths of 8,000 and
11,000 ft.

Eagle Lake Fault Block

The Eagle Lake fault block extends over an
elongate area of approximately 17.4 mi® within the
Colorado Fairway in eastern Colorado County
(fig. 121). The block is bounded on the northwest
and southeast by major faults.

The top of the lower Wilcox sandstone section
below marker C4 in the Union No. A-1 Thomas
well (fig. 119) occurs at a depth of 11,180 ft. Within
the fault block, the top of the sandstone interval
ranges in depth from 10,960 to 11,400 ft. Although
none of the existing wells in the fault block
penetrated the entire sandstone interval, wells
along strike but several miles from the fault block
indicate that the entire sandstone section is at
least 1,600 ft thick. Trends of the lower Wilcox
sandstone are projected to thicken into the
syncline in the fault block, as shown by detailed
correlation units A through F (fig. 122). The base of
the sandstone interval in the fault block should be
at depths ranging from about 12,600 to 13,300 ft.
The sandstone beds range in thickness from 8 to 70
ft, and theintervening shale beds are from 5 to 40 ft
thick.




Diamond-core analyses from the sandstone
interval below marker C4 in the Union No. A-1
Thomas well show that porosity ranges from 4 to
19 percent and averages 13 percent. Most of the
sandstone section is characterized by
permeabilities of less than 5 md (fig. 123).
However, permeabilities range from 89 to 545 md
and average 275 md in the thin sandstone interval
between depths of 11,620 and 11,624 ft. Several
otherisolated thin sandstones have permeabilities
ranging from 10 to 100 md.

In the Union No. A-1 Thomas well, fluid
temperatures of 200° and 300°F occur at depths of
7,100 and 11,780 ft, respectively. Temperatures in
the sandstone section of this well range from
275°F, calculated for the top of the sandstone

interval at 11,180 ft, to 302°F, recorded at the total
depth of 11,826 ft.

As determined from mud weights, the highest
pressure gradient in the Union No. A-1 Thomas
well is 0.634 psi per foot, which was reached at a
depth of 11,300 ft. Bottom-hole pressure was
calculated to be 7,164 psi on the basis of that
gradient (fig. 118).

Salinities were computed only for this well (fig.
124). In shallow formations, values of salinity
increase from about 60,000 ppm to a maximum of
119,000 ppm NaCl at a depth of 6,665 ft, where the
temperature approaches 200°F. Below 6,665 ft,
salinities decline to a minimum value of 59,000
ppm NaCl at a depth 0of 10,910 ft and then increase
again to 113,000 ppm NaCl at a depth of 11,760 ft,
where the temperature is about 300°F.
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Figure 112. Location of wells and lines of section, Colorado Fairway.
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HARRIS FAIRWAY

The Harris Fairway trends northeast and
extends over parts of Waller, Fort Bend, Harris,
Grimes, Montgomery, Liberty, and San Jacinto
Counties (fig. 125). The fairway study area is
approximately 77 mi long and 34 mi wide. This
fairway was delineated as an area of potential
geopressured geothermal reservoirs in an earlier
study (Bebout and others, 1978a). This area was
selected for continued study because very thick,
massive sandstones are present in the lower
Wilcox. Maximum net-sandstone values

HARRIS
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37E

AR WALKER CO |
MONTGOMERY CO

(thicknesses of more than 2,000 ft) for the lower
Wilcox of Texas occur within the Harris Fairway
(fig. 34). Much of the lower Wilcox sandstonein the
downdip parts of this area is geopressured and has
fluid temperatures greater than 300°F.

The Harris study area extends farther updip
than do the Colorado or De Witt study areas. The
Wilcox in these updip parts of the Harris Fairway
is sandy throughout, as shown by the logs of wells
farthest updip on stratigraphic section D-D' (fig.
126). Downdip in this fairway, however, the Wilcox
section is similar to that of the Colorado and De
Witt Fairways; the middle Wilcox is shaly, and the
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Figure 125. Location of wells and lines of section, Harris Fairway.




upper and lower Wilcox sandy intervals are much
more distinct.

The upper Wilcox contains massive sandstone
units over the entire Harris Fairway. The H1
marker occurs at the base of the upper Wilcox
(fig. 126) and can be correlated into other fairways.
This marker is the “regional marker” shown on
the regional cross sections (figs. 11 through 33, in
pocket) and is equivalent to C1 in the Colorado
Fairway and D1 in the De Witt Fairway. Three
other markers, H2, H3, and H4, are recognized
locally within the Harris Fairway (fig. 126); H3 is
the only marker to be traced outside the Harris
Fairway and is equivalent to the C3 marker in the
Colorado Fairway (fig. 113).

The H4 marker occurs at depths of 40 to 360 ft
below the top of the lower Wilcox, shown on
regional cross sections 15 through 19 (figs. 25
through 29). Throughout most of the Harris
Fairway, the lower Wilcox contains massive
sandstones. As in the De Witt and Colorado

Fairways, however, rapid facies changes, faults,
and sparse deep well control make the lower
Wilcox section difficult to correlate. Thus, the thick
section having potential for geopressured
geothermal reservoirs could not be subdivided for
more detailed study and construction of
meaningful net-sandstone maps. Cross sections,
however, indicate areas of maximum sandstone.
Lower Wilcox intervals of thick net sandstone, all
or much of it geopressured and having fluid
temperatures greater than 300°F, are shown on the
Humble No. 31 Katy Gas Field well log (cross
section D-D', fig. 127) and the Texaco No.1
Mergele and Texaco No. 1 Sweeney Estate logs
(section E-E’, fig. 128).

The Harris Fairway is an area of salt domes
and salt withdrawal basins. Parts of the middle
and upper Wilcox thin over a few of the domes.
The thinning is probably due to a lack of
deposition, rather than the result of erosion.
Therefore, some of the domes began to grow
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during or before Wilcox deposition, whereas
others did not affect Wilcox structure until
after deposition and burial.

Down-to-the-coast faults are common in the
Harris Fairway, but Wilcox growth faults with
large displacements are rarer here than in most of
the other fairways to the southwest. The upper and
middle Wilcox show no differential growth caused
by fault movement except in the areas farthest
downdip (southeastward). Stratigraphic section
D-D’ (fig. 126) illustrates the gradual downdip

thickening of the intervals defined by the various
correlation markers. Examples of growth faults
occurring in the most basinward part of the
fairway are shown on the Scurlock No. 1 Meek well
log on structural cross section D-D’ (fig. 127) and
on the Superior No. 1 Hightower well log on section
H-H’ (fig. 129). Growth faults affecting the lower
Wilcox within the fairway may be more numerous
and of greater magnitude but are much more
difficult to characterize because of the sparse deep
well control.
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Figure 127. Structural dip section D-D’, Harris Fairway.
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Average depths to the top of geopressure
gradients of 0.465 and 0.70 psi per foot are 9,150
and 11,550 ft, respectively (fig. 130); these
calculations are based on bottom-hole shut-in
pressure measured in 23 wells in Harris County.
Pressure gradients increase with depth to a
maximum of 0.84 psi per foot at a depth of 13,350 ft.
Operational top of geopressure was picked from
shale resistivity plots for selected wells on the
geological cross sections. Wells with shale
resistivities that fall on or to the right of the
normal compaction curve (NCC) were not
considered to be geopressured in this report (fig.
131). Geopressure profiles were computed for wells
with shale resistivity values that were less than
normal. An example of a well with highly
geopressured formations is the Humble No. W-21
Katy Gas Field, Unit No. 1 (fig. 132).

Equilibrium temperatures and geothermal
gradients have been calculated for an area
that includes parts of Harris, Liberty,
Austin, Colorado, and adjacent counties
(fig. 133). The geothermal gradient in the
upper Wilcox is about 2.10°F per 100 ftin the depth
interval of 8,300 to 14,000 ft. The lower Wilcox
from a depth of 14,000 to 18,000 ft has a
gradient of about 1.20°F per 100 ft. Formations
above the Wilcox at depths of 0 to 10,000 ft have
a geothermal gradient of about 1.40°F per

100 ft. A subsurface temperature of 300°F
occurs at 13,050 ft below sea level.

Plots of temperature versus depth (fig. 134) for
wells on geological cross sections D-I), E-E/, and
H-H’ show a geothermal gradient of 1.58°F per 100
ft above a 12,000-ft depth. A gradient of 2.16°F per
100 ft is present in deeper formations down to a
17,500-ft depth. A temperature of 300°F occurs at
depths of about 12,990 ft.

As observed in 14 Harris Fairway wells, salinity
decreases between depths of 7,600 and 13,000 ft
(fig. 135). Maximum salinity of 197,000 ppm NaCl
occurs at 8,500 ft, and minimum values 0of 11,500 to
20,000 ppm NaCl occur at depths between 10,600
and 14,450 ft. Few salinity values were calculated
for shallow sandstones, but the normal trend is
one of increasing salinity between depths of 2,000
and 8,200 ft.

Available diamond-core data for several wellsin
Harris County show that most permeabilities of
sandstones in the deep subsurface are less than
1 md. Moderately good permeabilities of 1.5 to 19
md occur in a few thin sandstone intervals at
depths exceeding 13,120 ft. Porosities in these thin
sandstones average about 15 percent. Sidewall
cores from the same wells have measured average
permeabilities and porosities of 241 md and
32 percent, respectively, in the depth interval of
6,420 to 6,800 ft.

DEPTH (THOUSANDS OF FEET)
3
T

07 psi/it

0465 psi/ft

HARRIS COUNTY AREA
{WILCOX}

Figure 130. Bottom-hole shut-in pressures
plotted as a function of depth for 23 wells
in Harris County area.
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Figure 133. Temperatures and geothermal gradients for Harris Fairway.
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SUMMARY AND CONCLUSIONS

Areas in Texas having the greatest potential for
containing geopressured geothermal fluids in
economic quantities in the Wilcox Group occur
where the gulfward-dipping sandstone/shale
wedge thickens abruptly across a complex growth-
fault system. As a result of faulting occurring
contemporaneously with deposition, the Wilcox
thickens from less than 2,000 ft updip near the
outcrop belt to more than 8,000 ft downdip at
depths greater than 10,000 ft. The Wilcox is
divided into three parts—the sandstone-rich upper
and lower parts, which represent two major
progradational cycles, and the shale-rich middle
part, which in part represents a major
transgression. In the lower Wilcox, thick
sandstone and shale sequences occur in deltaic
lobate patterns along the Middle and UpperTexas
Gulf Coast; in the upper Wilcox, on the other hand,
similar thick deltaic sandstones and shales occur
along the Lower and Middle Texas Gulf Coast.

The objective of this study was to identify areas
along the Wilcox trend favorable for testing the
feasibility of producing large quantities of hot
water from the geopressured zone. Methane would
then be separated from solution, and the hot water
would be used to produce electric energy from heat.

Criteria used to identify geopressured geothermal @
reservoirs with resources suitable for electric
power generation were a sandstone reservoir of
3mi’, fluid temperature greater than 300°F,
pressure gradient of at least 0.7 psi per foot, and
permeability of more than 20 md (Bebout and
others, 1976a).

The top of geopressure (0.465 psi per foot) occurs
at depths of 8,000 to 10,000 ftin those areas where
shale is dominant and 11,000 to 13,000 ft where
sandstone is dominant. Formation temperatures
also vary within the Wilcox according to the
position along dip, the lithology, the location of
growth faults, and the location along the Texas
Gulf Coast. Temperatures higher than 300°F occur
at depths ranging from 10,800 to 13,100 ft.

Six geothermal fairways in the Wilcox—Zapata,
Duval, Live Qak, De Witt, Colorado, and Harris—
have been delineated along the Texas Gulf Coast
by combining information from the sandstone-
distribution and isotherm maps (fig. 4).
Sandstone-rich sections that have formation fluid
temperatures of greater than 300°F occur in these
fairway areas.

The Zapata, Duval, and Live Oak Fairways
(table 4) contain thick, laterally extensive

Table 4. Summary of the physical characteristics of the six Wilcox geopressured geothermal fairways.

ZAPATA DUVAL LIVE OAK DE WITT COLORADO HARRIS
PART OF
WILCOX Upper Upper Upper Lower Lower Lower
DEPTH
TO TOP OF
PROSPECTIVE
SANDSTONE (ft) 9,600 to 10,500 11,000t012,000 9,200 to 11,000 10,490 t0 10,660 10,960 to 11,400 12,500 to 13,300
THICKNESS OF
PROSPECTIVE
SANDSTONE (ft) 280 to 620 > 600 > 600 550 1,600 > 2,000
TOP OF
GEOPRESSURE
(0.7 psi/ft) 10,700 ft 10,000 ft 9,950 ft 10,000 ft 12,000 ft 11,550 ft

300° F at 300° F at 300° F at 300° F at 300° F at 300° F at
TEMPERATURE 11,400 ft 10,750 ft 11,000 ft 10,850 ft 11,780 ft 12,990 ft
POROSITY (%) 17 to 22 7 to 14 16 to 24 6 to 25 4to 19 Average: 15
PERMEABILITY 0to 19 0.1 to 44 5 to 40 0.01 to 242 Most < 5; Most < 1
(in millidarcys) *SWC *DC SWC + DC DC locally up to 545 DC

DC

*SWC = Sidewall core
*DC = Diamond cores
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sandstone units in the upper Wilcox. The sections
in which these sandstones occur are extremely
thick as a result of contemporaneous subsidence
along large growth faults. Fluid temperatures are
greater than 300°F in the Zapata and Duval
Fairways but are lower in the Live Oak Fairway.
Core analyses indicate that porosity and
permeability are low in these deep sandstone
units, and, for this reason, these sandstones are
not considered favorable for geopressured
geothermal energy production.

The De Witt Fairway is located in a complex
growth-faulted part of the lower Wilcox trend
just downdip of the underlying Lower
Cretaceous Stuart City trend (fig. 7). The
Cuero fault block, within the De Witt Fairway,
contains more than 550 ft of geopressured
sandstone. These sandstones, deposited in
a variety of deltaic environments, occur at
the tops of at least eight upward-coarsening
cycles. Overall, the sequence is regressive; progres-
sively shallower cycles contain sandstones
deposited in more proximal deltaic environ-
ments. Fluid temperatures of 300°F have been
recorded within the reservoir section. Core
analyses from the De Witt Fairway indicate
that permeabilities range from less than 2.1 to
more than 100 md. The highest permeability is at

the top of the sandstone-bearing interval in
thick, well-sorted channel sandstones occurring
in the most proximal deltaic facies. Sandstones
in this fairway have a high potential for
geopressured geothermal energy production.

In the Colorado Fairway, 1,200 to 1,600 ft of
sandstone with fluid temperatures of greater than
300°F occur in the lower Wilcox Group. Few
growth faults have been recognized in the fairway
area, perhaps in part because of lack of adequate
deep well control. The lower Wilcox contains as
much as 1,600 ft of net sandstone within the Eagle
Lake fault block. Pressure gradients in the
Colorado Fairway are generally low, and many
wells in the area do not penetrate the top of
geopressure. Most permeabilities are lower than
5 md, but some range up to 545 md in thin, isolated
sandstones.

The Harris Fairway contains a massive
sandstone section with more than 2,000 ft of net
sandstone in the lower Wilcox. Most of the lower
Wilcox in the downdip part of the fairway is
geopressured and has fluid temperatures greater
than 300° F. However, most permeabilities are less
than 5 md, and many are less than 1 md. The
Colorado and Harris Fairways are considered to
have poor potential for geopressured geothermal
energy production.
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APPENDICES

APPENDIX A

METRIC CONVERSION FACTORS

Standard Unit x Conversion Factor

ft
ft/mi
Ib/gal
md
mi
mi®
mi®
psi
psi/ft
°F/100 ft
°F

KoM oM oMo W M M M M

= Metric Unit
0.3048 = m
0.189394 = m/km
119.8264 = kg/m®
0.00098692 = um’®
1.609344 = km
2.589988 = km?
4168182 = km?
6.894757 = kPa
22.62059 = kPa/m
1.825 = °C/100 m
(°F - 32)/1.8 = °C
APPENDIX B

WELL NAMES AND LOCATIONS

Township
Range

23S-8E-5
23S-8E-2

23S-8E-6
23S-8E-7
23S-8E-9

23S-8E-6
23S-8E-5

23S-8E-1
23S-8E-8

238-8E-1
238-8E-1
23S9E-1
23S-9E-1

23S-9E-1
23S-9E-2
238-9E-3
23S-9E-1
24S-7E1
24S-8E-7
24S-8E-7
24S-8E-7
24S8-8E-7
24S-8E-6
248-9E-1

24S-9E-3
245-9E-3
24S-9E-3
245-9E-8
, 258-7TE-2
258-7E-3

1
2

D U

O GO DD ke ke e O O

BN O LoD

ZAPATA FAIRWAY

Well
No.

Well Name

Belco #1 Frost National Bank
Killam and Hurd

#1 Fulbright et al. Fee
Atlantic #1 Lopez Estate
Union #1 De Cuellar
Hughes & Hughes and Pennzoil

#1 Martinez
Hughes & Hughes #1 Fulbright
Hughes & Hughes

#A-1 De Uribe Estate
Killam and Hurd #1-16 Killam Fee
Hughes & Hughes and Pennzoil

#1-B Cuellar Estate
Killam and Hurd #1 Uribe
Atlantic #1 Hinnant
Atlantic Richfield #4-C Marrs Mclean
Atlantic Richfield

#2-C Marrs McLean Trust
Standard #2 Holbein
Hamon #2 Holbein
Atlantic #1-B Hinnant
Atlantic Richfield #2-C McLean Trust
Blanco #1 Jennings
Halbouty and Jonnell #1 Garza “C”
Lively and Fountain #1 Trevino et al.
Halbouty and Jonnell #1 Trevino
Halbouty and Jonnell #D-1 Garza
Gulf #1 Trevino
Standard of Texas

#1 Frost National Bank et al. “3”
Gulf #1 H. Vela
Union #18 Jennings
Gulf #1 Garza et al.
Standard of Texas #1 Rancho Blanco
Gulf #1 Flores
Gulf #1 Ramirez

Township
Range

258-7TE-6
25S8-7E-3
25S-7E-6
258-TE-4
258-7E-6
25S-7E-8
25S8-7E-8
25S-7E-8
25S8-7E-8
25S-7E-8
25S-7E-8
25S-7E-8
258-7E-5
258-7E-5
25S-7E-5
258-7E-5
25S8-7E-5
258-7E-5
258-TE-5
258-7E-9
25S-7E-9
258-7E-9
258-8E-1
258-8E-1
258-8E-4
255-8E-4
258-8E-5
258-8E-5
25S-8E-6

258-8E-7
25S8-8E-8
25S-8E-9
258-8E-9
25S-8E-8
258-8E-8
25S-9E-9
26S-7E-8
26S-7E-8
26S-7E-8
26S-7E-8
26S-8E-1
26S-8E-2
26S-8E-3
268-8E-5
26S-8E-5
26S-8E-5
26S-8E-8
26S-8E-8
26S-8E-8
26S-8E-8
26S-8E-9
26S-8E-8
26S-8E-5
26S-8E-5
26S-8E-8
278-7TE-7
278-7E-1
27S-7E-3
27S-8E-3

ZAPATA FAIRWAY (cont.)

Well
No. Well Name

3 General Crude (Gulf) #1 Romero
4 Killam and Hurd et al. #1 Flores Heirs
5 Samedan #1 Matles Unit
6 Coastal States #1 Flores
7 Rutter et al. #1 Volpe
9 Gulf #1 De Pena
10 Alaska Steamship et al. #1 Cuellar
11 Osage #1 Uribe
12 MacDonald #1 Uribe
14 Rio Grande Valley #1 Dodier
15 Miller and Fox #1 Dodier
16 Coastal States #4 Dodier
17 KRM #1 Volpe
18 McAll #3 Singer
19 McDaniel #1 Singer
20 Bateman #1 Gutierrez
21 Miles #1 Ramirez
22 McAll #1 Gutierrez
23 Rowe #1 Flores
24 Alaska Steamship et al. #1 Vasquez
25 Solo #1 N. Singer
26 Solo #1 Singer
1 Halbouty and Jonnell #1-E Garza
2 Blanco and Dougherty #1 Benavides
4 Pennzoil #4 Haynes
5 Pennzoil and Patrick #2 Haynes Estate
6 Pennzoil and Patrick #1 Haynes Estate
8 Humble #1 Haynes Estate
9 Gulf #1 Security National Bank
of L.A. et al. Fee
10 Gulf #1 Trevino
11 Crescent #1 Haynes
12 Pennzoil #1 A. Vela
13 Gulf #1 Volpe
15 Bright & Schiff #1 Vela

16 Pennzoil #1 L. Vela et al.
2 Hamon #1 Campbell
1 Texas #1-M Guerra
2 Pan Am (Stanolind) #1 Vela
3 Texas #1 Guerra “I”
4 Hamon #1 Alexander
1 Suburban #1 Sanchez
5 Katz #1 Vela
6 Standard of Texas #1 Garcia “2”
8 Trahan #1 Garcia
9 Crescent and Wynn #1 Morales
10 Tenneco (Delhi-Taylor et al.) #1 Garcia
11 Crescent #1 Foss
12 Gulf #1 Benavides
13 Crescent #2 Benavides
14 Jonnell #3 Benavides
15 Frankfort #1 Benavides
17 Clinton #1 Benavides
18 Trahan #1 Whittier
19 Crescent #1 Vela
20 Jonnell #1 Zamora
1 Standard of Texas #1 Ramirez
2 Fullerton #1 Vela
4 National #1 Barberio
1 Hudson #1 Zamora




Township
Range

27S-8E-3
27S-8E-3
27S-8E-3
27S-8E-4
27S-8E-8
278-8E-9
27S-8E-9
27S-8E-9
27S-8E-9
278-8E-4
27S-8E-9
275-8E-4
275-8E-4
27S-8E-4
27S-8E-9
27S-8E-9
27S-8E-9
27S-8E-2
27S-9E-4
28S-7E-1
28S-7E-1
28S-7E-1
28S-8E-2
285-9E-4

Township
Range

14S-13E-7
15S5-13E-1
158-13E-3
158-13E-7
158-13E-2
158-13E-5
158-13E-5
15S-13E-5
158-13E-8
16S-12E-1
165-12E-9
16S-12E-4
168-12E-8
16S-12E-8
16S-12E-1
16S-12E-6
16S8-13E-3
16S-13E-4
165-13E-4
16S-13E-6
16S-13E-6
16S-13E-6

16S-13E-6
16S-13E-7
16S-13E-7
16S-13E-8
16S-13E-9
16S-13E-6
168-13E-2
16S-13E-1

ZAPATA FAIRWAY (cont.)

Well

Well
No.
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10
1
12
13
14

Well Name

Frankfort #1 Sanchez

Frankfort #1 Garcia

Jonnell #1 Lopez Heirs

Cosden and Mid America #1 Ramirez
Union #1 McDermott

Jonnell #1 Yzaguirre

Jonnell #1 Ramos

Jonnell #1-A Guerra

Jonnell #2 Ramos

Ashland #1 Munoz

Standard of Texas #1 Ramirez “2”
Katz #1 Ramirez

Jonnell & Sohio #2 Ramirez

Delhi #2 Ramirez

Jonnell #2 M. Ramirez

Jonnell #2 B. Ramirez

Jonnell #1 Guerra

Frankfort #2 Sanchez

Sun #1 Guerra Gas Unit

Hamon and Colorado #1 Guerra
Hamon #1 Yzaguirre

Hamon #1 Ramirez “A”

Humble #1 Humble-Martinez Fee
Austral and Tidewater #1 Sanchez

DUVAL FAIRWAY

Well Name

Archer #1 Wheeler

Delange & Neathery #B-1 Brown

Davenport #1-A Dolph

Argo #V-1 Edrington

Pace & Vreeland #1 La Jolla

Southland, Delange and Ellis #1 Caron

Olson #1 Whitfield

Texaco #1 Rhode

Argo #R-1 Edrington Estate
Cox #1 Atkinson

Atlantic #1 Hagist Ranch
Hawkins & Ranger #1 Hagist Ranch

Marion #1 Welder Heirs

Humble #26 Dowdy Fee

Atlantic #1 Atkinson

Rutherford #1 Pursch

Argo #1 Roos

Harkins #1-112 Murphy Estate

Coastal States #1 Ragsdale

Humble #1 Yeager

Sun-DX #4 Penn

Sunray #1 American National
Insurance

Seaboard of Delaware #1 Lowe

Siegfried #1 Lowe

Petro-Lewis #1 Bindewald

Mobil #1 Labbe Ranch

Harkins & Humble #1 Ragsdale

Texaco #2 Gouger Gas Unit #3

Argo #Q-1 Edrington

Sunray #1 Penn
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Township
Range

178-11E-7
178-11E-7
17S-11E-9
17S-11E-6
178-11E-7
17S-12E-1
178-12E-1
17S-12E-5
17S-12E-5
17S-12E-6
175-12E-1

178-12E-1
17S8-12E-1
178-12E-1
17S-12E1

175-13E-5
18S-10E-5
185-11E-2
18S-11E-8
18S-12E-2
18S-12E-5
18S-12E-5
18S-12E-5
18S-12E-6
18S-12E-6
18S-12E-5
18S-12E-6
18S-12E-6
18S-12E-9
18S-12E-6
19S-9E-5

19S-10E-9
198-10E-2
19S-10E-9
19S8-10E-5
19S8-10E-8
19S-10E-7
195-11E-9
19S8-11E-9
19S-11E-4
20S-9E-4

20S-9E-4

20S-10E-4
20S-10E-5
20S-10E-5
20S-10E-6
20S-10E-6
20S-10E-8
20S-11E-3
21S-8E-7

21S-8E-8

215-8E-8

21S-8E-1

218-9E-5

21S-9E-9

218-9E-5

21S-9E-5

21S-10E-2
21S-10E-4
218-10E-5

DUVAL FAIRWAY (cont.)

Well
No.
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Well Name

Trans Texas #1 Hahl-Burch
Mavin #1 Hahl-Wiederkehr
Magnolia #9 D.C.R.C.
Horizon #1 Lundell
Fair & Woodward #1 Luptack
Argo & Haring #1 Gorman
Texaco #1 Marshall
Humble #B-1 Welder Heirs
Ramada #1-B Welder Heirs
Ramada et al. #1 Welder Heirs
Atlantic-Richfield

#1 Arco et al. Humble Fee
Atlantic-Richfield #B-7 Welder
Humble #2 Welder Heirs “F”
Cherryville #1 Gorman
Atlantic-Richfield

#F-1 Welder Heirs
Stanolind #1-D Farmers Life Insurance
Shell #1 Duval County Ranch
Humble #98 White “B”’
Waggoner Estate #1 Arnstein et al.
Huber et al. #1 Hubberd
Shell #1 Penwell
Shell #1 Hubberd “B”

Shell #A-3 Weatherby

Shell #1 L. C. Weatherby “A”
Shell #1 Stegall “A”

Shell #A-2 Weatherby

Huber and Shell #1 Stegall
Socony Mobil and Lacy #1 Weatherby
Hamm et al. #15 Duval-Hoffman
Huber #1 Hoffman et al.
Sundance #1 Frost
Atlantic #1-A Billings Ranch
Mayfair #1 Kirkpatrick et al.
Houston Oil & Minerals #1 Billings
Rowe #1 Pearl Estate

Harrell et al. #1 Lopez
Humble #100 Kohler “A”
Eason-Harper #1-160 Peters Estate
Eason #1 Peters Estate

Monterey #1 Peters

Frost et al. #1 Walker

Sunray #1 Walker

Shell #1 El Paso - Benavides Ranch
Hamon #1 Perez et al.

Hamon (Hawkins & Hawkins) #1 Leal
Houston Oil & Minerals #1 Dinn
Morgan #3-B Richardson

Mobil #1 Dinn

Gulf #1 Gulf-Peters
Texaco #28 Da Camara
Skelly #6 Martin
Skelly #1 Martin

Gulf #1 Villareal

Brown et al. #1 Laurel Heirs
Atlantic #1 Garcia Estate “A”
Pauley #1 Laurel Fee
Amistad #1 White “A”

Hamon #1 de Benavides
McCulloch and Venus #1 Cuellar
Getty #1 de Benavides

-




Township
Range

218-10E-7
218-10E-3
21S-10E-3
225-8E-8
22S8-9E-2
228-9E-2
228-9E-3
228-9E-4
22S-9E-4
228-9E-7
228-9E-7

228-9E-7
228-9E-7
228-9E-7

228-9E-7
22S-9E-7

22S-9E-9
22S-9E-2
228-9E-4

Township
Range

11S-18E-9
11S-18E-5
11S-18E-8
11S-18E-2
11S8-18E-5
11S-18E-7
12S-17E-9
12S-17E-2
1258-17E-2
12S8-17E-1
128-17E-3
12S-17E-9
128-17E-4
12S8-17E-5
128-17E-2
12S-17E-6

12S-17E-6
128-17E-7
12S-18E-2
12S-18E-1
12S-18E-2

12S-19E-3
12S-19E-4
12S-19E-4
12S-19E-8
13S-16E-1
13S-16E-6
138-16E-7
13S-16E-7

Q 13S-16E-1

DUVAL FAIRWAY (cont.)

Well
No.
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15

17
18

20
21
22

Well Name

Union #1 Brennan-Benavides
Standard of Texas #1-B de Benavides
Morgan #2-B de Benavides
Shell #1 Bruni Trust & Killam Trust
Atlantic #1 Garcia Estate
Coastal States #2 Puig
Atlantic #1 Puig Gas Unit
Hamon #1 Ramirez
Pickens #1 Bruni
Atlantic #2 Bruni Gas Unit #1
Atlantic and Austral

#1 Stroman-Armstrong
Atlantic #2 Stroman-Armstrong
Austral #1 Marrs McLean Trust
Atlantic-Richfield

#3 Marrs McLean “C”
Austral #2 Marrs McLean
Coastal States

#1 Yeager-Armstrong
Atlantic #A-1 Hinnant
4-B Trust #1 Laredo National Bank
Atlantic #1-A Puig

LIVE OAK FAIRWAY

Well
No.
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Well Name

Cox and Haring #1 Copeland
Union #2 Burnell Unit Spielhagen
Pennzoil #79 Ray
Sohio et al. #1 Nichols Estate
Pennzoil #10 N. P. U.-Ray
Union #6 N. P. U.-Ray
Northern Pump and Hunt #A-1 Hall
Forest #1 Borroun “B-C” Unit
Southland #1 Barber et al.
Stanolind #1 Dugat Estate
Shell #1 Gordon
Dyco #1 Ballard
Texas #A-1 Knight
Texas #1 Rodriguez Gas Unit
Carrl Oil et al. #1 Copeland
Clover #1 South Texas Children’s
Home
Arkansas Fuel et al. #1 Booth
Gasoline #A-1 Bast
Frankfort (Texas Pacific) #10 Walton
Texas #A-1 McKinney
Texas Pacific (Rowan & Tong)
#9 Freeland
MPS #1 McKinney
Hewit et al. #1 Weiss
Martin (Miller) #1 Farish
Coastal States #1 Farish
Sinclair #3 Dilworth
Newman Bros. #1 Edwards et al.
Jones et al. #1 Dunn
National Exploration
#1 McKinney et al.
Hanson & MacDonald #1 Maguglin
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Township
Range

135-16E-6
13S-16E-1
13S-16E-2
13S-16E-2

13S-16E-6
135-16E-6
135-16E-6
13S-16E-6
13S-16E-6
13S-16E-8
135-17E-1
135-17E-1
13S-17E-6
135-17E-6
13S-17E-6
138-17E-7
13S-17E-7
138-17E-8
13S-17E-8
138-17E-9
138-17E9
138-17E-2
135-17E-1
13S-17E-3
135-17E-2
135-17E-2
13S-18E-4
135-18E-4
13S-18E-8
135-18E-4
14S-14E-4
148-14E-6
14S-14E-9
145-14E-1
148-14E-6
145-14E-6
14S-14E-8
148-14E-9
148-14E-9
148-14E-8
148-14E-5
145-15E-6
148-15E-6

14S-15E-6
145-15E-6
148-15E-8
14S-15E-8
14S-15E-7
145-15E-8
14S-15E-8

14S8-15E-9
148-15E.9
14S-15E-2
148-15E-2
14S-15E-3
14S-15E-3
148-15E-3
14S-15E-3
14S-15E-9

LIVE OAK FAIRWAY (cont.)

Well
No.

Well Name

Blanco #1 Gillette Unit

Texas Oil & Gas #1 Maguglin

Venus #1 Goebel

Service Contracting & Longhorn
#1 Goebel

Ryan et al. #1 Gillette

Stanolind #1 Coquat

Davis #1 Dunn

Texaco #1 Cochran

Abercrombie et al. #1 Dunn

Coastal States #1 Morrison

Hughes et al. #1 MacDon-Holzmark

Hughes et al. #1-A Pouloit

Carl #1 Gillette

Carl #1 Turnbow

Dow #1 McCollum

North Central et al. #1 Bomar

Coastal States #1 McCord

Argo #1 Huegler

Colorado #1 Choate

Quintana #1 Vickers

Atlantic #1 Coward

Hamon #1 Ragsdale

Viking and Delange #1 Williams

Warren #1 Dove

Bright and Schiff #1 Schoolfield

Stanolind #1 McCollum

White Shield #1 Martin Unit

Tidewater #1 Taylor

Tamarack #1 Humberson

Halbouty #1 Gillette et al.

Texam #1 Hayes-Ezzell

Magnolia #1 Means

Jones #1 Shiner

Kilroy #1 Herring

Tenneco #1 Stephens

Scoggins & Troporo #1 Schmid

Magnolia #1 Jones

Jones #C-2 Ezzell

Jones #C-4 Ezzell

Meeker #1 Lebman

Magnolia #1 Block 86

Humble #1 Coker

Mosbacher (Hughes & Hughes)
#1 Kendall

Hanson #1 Prosen et al.

Mosbacher #1 Garza Unit 1

Continental #2 Burns

Atlantic #8 Lyne

Getty #1 Christenson

La Gloria et al. #1 Bush Unit

Kilroy and Southland (Fountain)
#1 Bierwirth et al.

Atlantic-Richfield #12 Lyne

Atlantic #9 Lyne

Jones #1 West Estate

Texas Eastern #1 Schreiner

Argo #1 Schreiner

Kilroy of Texas #A-1 Herring

Interamerican Funds #2 Herring

Venus #1 Schreiner

Argo et al. #1 Houdman




LIVE OAK FAIRWAY (cont.) LIVE OAK FAIRWAY (cont.)

Township Well Township Well
Range No. Well Name Range No. Well Name
14S-15E-9 25 Warren #1 Whitley-Johnson 158-16E-4 4 Highland #1 Crocker Transfer &
14S-15E-9 26 Atlantic #11 Lyne Storage
14S-15E-9 27 Mesa #1 Johnson 15S8-16E-8 5 Austral #1 Hinnant “A”
14S-15E-8 28 Gulf Coast (Fischer) 16S-14E-1 1 Skelly #1 “A” Weil
) #1 Korczinsky-Wojtasczyk 16S-14E-3 3 Atlantic-Richfield #4 Baker

14S-16E-1 1 Cherryville #1 Williams 16S-14E-3 4 Argo #1 De Arman
145-16E-3 3 Gulf #1 Lee 16S-14E-4 5 Argo #2 De Arman
14S-16E-4 4 Pan American #B-1 West 16S-14E-6 6 Humble #1 Brookshire
14S-16E-6 5 Brown #1 Hayes 16S-14E-9 7 Austral #1 Baker
14S-16E-8 8 Atlantic #1 Riser 16S-15E-3 2 Hamon #1 Hefner
14S-16E-8 9 Pan American #1 Randall
14S-16E-8 10 Union of California #1 Riser
14S-16E-9 11 Abercrombie #1 West & Perkins DE WITT FAIRWAY
145-16E-9 12 Patrick #1 Abbey
14S-16E-4 13 Hanson #1 Perkins Township Well
14S-16E-4 17 Hughes & Hughes #2 Kendall Gas Unit Range No. Well Name
14S-16E-4 18 American Petrofina #1 Perkins
158-14E-1 1 Davis #2 Lyne 7S-23E-5 1 Avalanche Journal #1 Palmer et al.
158-14E-1 3 El Chorro & Lawley #1 Paul et al. 7S-23E-7 2 Rowe #2 Parker
15S-14E-5 4 Atlantic #1 Morris 7S-23E-7 3 Apache and N. Central #1 Daniels
15S-14E-6 5 Davis #1 Sanger Heirs 7S-23E-7 4 Patrick #1 Daniels
15S-14E-6 6 Atlantic-Richfield #1 El Paso “300” 7S-23E-7 5 Weaver #1 Bolton
158-14E-7 7 Continental #4 Somerset Land 7S-24E-3 2 Mobil #1 Hagen

and Cattle 7S-24E-7 5 Shell #1 Carroll
15S-14E-7 8 Continental #5 Somerset Land 7S-24E-8 6 Argo et al. #1 Granberry

and Cattle 7S-24E-9 7 Humble #1 Kunetka
15S-14E-7 9 Coastal States et al. #1 Lehmberg 7S-24E-5 8 Lone Star #1 McManus
158-14E-7 10 Southland #1 El Paso 7S-24E-8 9 Lone Star #1 Garrett
15S-14E-8 11 Argo #1 Baker 7S-24E-7 10 Humble #1 Matthews
15S-14E-8 12 Rutherford #2-A Baker et al. 8S-21E-1 1 Gulf #1 Mueller
15S-15E-2 1 Coastal States and King #2-A Lennox 8S-21E-4 3 Shell #1 Brown
15S-15E-2 2 Atlantic #1 Burns 8S-21E-4 4 Lone Star #1 Alex
158-15E-2 4 Pace #1 Burns 8S-21E-5 5 Atlantic #1 Smith
15S-15E-2 5 Continental #A-1 Burns 8S-21E-6 6 International Nuclear #1 Weber et al.
158-15E-2 6 Cox #1 Sparkman 8S-21E-7 7 Commonwealth #1 Richards
15S-15E-2 7 Hanson and Hurt #1 Sparkman 8S-21E-7 8 Scurlock #1 Murray
15S8-15E-3 10 Hanson #1 National Bank of 8S-21E-8 9 Highland #1 Wood

Commerce 8S-21E-8 11 McCulloch #1 Domann
15S-15E-3 11 Austral #1 Lyne 8S-21E-8 12 Brown #1 Jablonski
158-15E-3 12 Standard of Texas #1 Lyne et al. “1” 8S-21E-9 14 Shell & Mobil #1 Roehl
15S-15E-3 13 Midwest #1 Lyne 8S-21E-6 15 Superior #1 Blackwell
15S-15E-3 14 S.R.G. #1 Lyne 8S-21E-4 16 Esperanza #1 Sheppard
15S-15E-4 15 Atlantic #2 Lyne 8S-22E-3 1 Sterling & Fox #1 Hamilton
156S-15E-4 16 Katz #1-B Slick 8S-22E-9 2 Humble #1 Cook
15S-15E-4 17 Sands #1 Dolan 8S-22E-5 4 Argo #1 Keseling
15S8-15E-4 19 Cherryville #1 Lyne 8S-22E-5 5 Coastal States #1 Lackey
158-156E4 20 Coastal States #1 Ferrell 8S-22E-6 6 Viking #1 Ward
158-15E-5 22 Tidewater #1 Burns 8S-22E-6 7 Venus #1 Hartman
155-15E-6 23 Huber #1 Tullis 8S-22E-6 8 Gas Producing Enterprises
15S-15E-6 24 Tidewater #1 Tullis Unit #1 Musselman Gas Unit
15S-15E-6 25 Cherryville #1 Tullis 8S-22E-6 9 Texaco #1 Jernigan
158-15E-6 26 Cities Service #1 Bailey “C” 8S-22E-6 10 Harkins #1 Jernigan
15S-15E-8 27 Tenneco #1 Jones Gas Unit 8S-22E-6 11 Harkins & Cox #1 Henneke Unit
158-15E-8 28 Placid #1 Patteson 8S-22E-6 12 Sun #1 Henneke Gas Unit
158-15E-9 29 Cities Service #1 Hendrick “B” 8S-22E-7 13 Lone Star #1 Mueller
15S8-15E-9 30 Hamill #1 McClure 8S-22E-7 14 Humble #1 Hartman
158-15E-9 31 Continental #3 Somerset 8S-22E-7 15 Humble #1 Keseling
15S-15E-9 32 Katz #C-1 Slick 8S-22E-7 16 Edwards #1 Keseling
158-15E9 33 Coastal States #1 Slick 8S-22E-7 17 Angelina, Owen and Smith
15S-16E-2 1 Lone Star #1 Watson #1 Keseling (Unit #3)
155-16E-3 2 Hanson and McCormick #1 Johnson 85-22E-8 18 Tesoro #1 Keseling-Johnson .
15S-16E-4 3 Tidewater #1-A Hall Estate 8S5-22E-8 19 Humble #1 Schorlemer @
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DE WITT FAIRWAY (cont.) DE WITT FAIRWAY (cont.)

Township Well Township Well
Range No.  Well Name Range No. Well Name
8S-22E-9 21 Tana #1 White 9S-20E-5 11 Tidewater #1 Korth
8S-22E-5 22 Scheig #1 Brown 9S-20E-6 12 Harkins #1 Korth
8S-22E-5 23 Abercrombie #1 Williams 9S-20E-6 13 Holmes and Union Texas #1 Mann
8S-22E-8 25 Braman #1 Keseling 9S-20E-6 14 Mortimer #1 Butler Gas Unit
8S-22E-8 27 Harkins and Humble 9S-20E-7 15 McCulloch #1 Hurst & Poehlmann
#1 Keseling Gas Unit #2 9S-20E-7 16 Monsanto #1 Estrella
8S-22E-9 28 Lone Star #1 Angerstein 9S-20E-7 17 Humble #1 Guaranty Title & Trust
8S-22E-9 29 Atlantic #1 Schorre 9S-20E-7 18 McCulloch #1 Franke
8S-22E-5 30 Catlett & Ferguson #1 Thomas 9S-20E-7 19 Monsanto and Bridger #1 Green
8S-22E-5 31 Monsanto #1 Ley 9S-20E-7 20 Cox #1 Clark
8S-22E-1 32 Bridewell #1 Burns Estate 9S-20E-8 21 Colorado #1 Clark
8S-22E-6 33 Hanover #1 Sager 9S-20E-8 22 Monsanto #1 Hilgartner
8S-22E-2 34 Tesoro #1 Kirkham et al. 9S-20E-8 23 Cox and Hewitt #1 Kleine
8S-23E-1 1 Arco #1 Daniels 9S-20E-8 24 Coloma #1 Buesing
8S-23E-1 2 Zinn et al. #1 Daniels “A” 9S-20E-8 25 Hanson et al. #1 Waskow
8S-23E-1 3 Seeligson #1 Friar 9S-20E-8 26 Hanson and Cox #1 Buesing
8S-23E-2 4 Apache and North Central #1 Friar 9S8-20E-8 27 Hanson et al. #1 Altman
8S-23E-2 6 Coastal States #1 Friar 9S-20E-8 28 Hanson et al. #1 Kolodzey
8S-23E-2 7 Sinclair and Coastal States #1 Stiles 9S-20E-8 29 M.K. #1 Dean Trust
85-23E-2 8 Brown #1-A Friar 98-20E-8 30 Hanson et al. #1 Rau
8S-23E-3 9 Texas Gas #1 Adams 9S-20E-8 31 Hanson et al. #1 Matejek
8S-23E-3 10 Viking #1 Schultz 9S8-20E-9 32 Hanson #1 Schlosser
8S-23E-3 11 Osborn #1 Wesley 9S-20E-9 33 Brown #1 Leister
8S-23E-4 12 Tidewater #1 Adams 9S-21E-1 1 Austral #1 Schroeter
8S-23E-4 13 Argo #1 McDougal 9S-21E-1 2 Argo #1 Schroeter
8S-23E-4 15 Lone Star #1 Hiller 9S-21E-1 3 Harkins et al. #1 Duderstadt
8S-23E-4 16 Viking #1 Reuss 9S-21E-1 4 Harkins et al. #2 Duderstadt
8S-23E-5 17 Texaco #1 Probst 9S8-21E-2 9 Houston Natural Gas #3 Boldt
8S-23E-5 18 Texaco #1 Cheatham 9S-21E-2 10 Quintana #1 Jochen
8S-23E-5 19 Coastal States 9S-21E-2 11 Monsanto et al. #1 Boldt
#1 Legalley and Harwood 9S-21E-2 12 Commonwealth et al. #1 Machost
8S-23E-6 20 Whiffen Estate #1 Legalley 9S-21E-3 15 Mobil #1 Berck
8S-23E-8 21 Atlantic #1 Hartman 9S-21E-3 16 Harkins and Musselman #1 Sauermilch
8S-23E-9 22 Humble #1 Goebel 9S-21E-3 17 Musselman #1 Danysh et al. Gas Unit
8S-23E-9 23 Mitchell #1 Koenig 9S8-21E-3 18 Brown #1 Henze Gas Unit
8S-23E-9 24 Zachry #1 Rath 9S-21E-4 20 Amarillo #1 Gips
8S-23E-9 25 Bright & Schiff #1 Brown 9S-21E-4 21 Lone Star and Musselman #1 Gips
8S-23E-4 26 Hunt #1 Garza 9S-21E-4 22 Hanson #1 Gips Gas Unit
8S-24E-2 1 Avalanche Journal #1 Boothe 9S-21E-4 23 Lone Star #1 Gips
8S-24E-3 2 Lone Star #1 Means 98-21E-4 24 Lone Star #1 Felter
8S-24E-3 3 Lone Star #1-A Friar 9S-21E-4 25 Monsanto and Hughes & Hughes #1 Norris
8S-24E-4 4 Humble #1 Pridgen’ 9S-21E-4 26 Greenbrier #1 Alves
8S-24E-4 5 Shell #1 Blackwell 9S-21E-4 27 Skelly #1 Menn
8S-24E-6 8 Shell #1 Collum 9S-21E-5 28 Monsanto #1 Witte
9S-18E-6 1 Occidental #1 Osterloh et al. 9S-21E-5 29 Monsanto #2 Houchins
9S-19E-6 2 Hunt Trust #1 Schuenemann 9S8-21E-5 31 Monsanto #1 Fromme
9S-19E-6 3 Texas Eastern #2 Voelkel Gas Unit #1 9S-21E-5 32 Monsanto #3 Kulawik
9S-19E-6 4 Texas Eastern #1 Mugge 9S-21E-6 33 Brazos #1 Sievers et al.
9S-19E-6 5 Standard of Texas #1 Mugge 9S-21E-8 34 Alcoa #1 Casper
9S-19E-8 6 Hunt #1 Flenniken 9S-21E-9 35 Atlantic #1 Ladner
9S-19E-8 7 Standard of Texas #1 Tipton 9S-21E-9 36 Lone Star #1 Gips
9S8-19E-2 9 Union Texas et al. 9S-21E-9 38 Atlantic #2 Kerlick
#1 Musselman Band Unit 9S-21E-5 41 Monsanto #2 Kulawik
9S8-19E-7 11 Stone #1 Waskow Unit 9S-21E-2 42 Texaco #2 Broughton
9S8-20E-1 1 Harper-Smith #1 Gips 9S-21E-6 43 Pace #1 Coleman
9S-20E-1 3 Southland & Auld #1 Gips 9S-21E-4 44 Monsanto #1 Alves
9S-20E-1 4 Haxwell #1 Gips 9S-21E-3 45 Ada #1 Jendrzey
9S8-20E-2 6 Magnolia #1 Kleberg Eckhart 9S8-22E-3 2 Kilroy of Texas #1 Mueller
9S-20E-2 7 Hamon and Ehman #1 Kleberg 9S8-22E-3 3 La Gloria #1 Ferguson
9S-20E-3 8 Dixel #1 Roeder 9S8-22E-3 4 Austral and Crown Central
9S-20E-3 9 Union Texas #1 Warwas #1 Ferguson
9S8-20E-5 10 Monsanto and Ada #1 Roberts 98-22E-5 5 Texaco #1 Angerstein
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Township
Range

10S8-17E-7
10S-18E-6
10S-18E-7
10S-18E-5
108-18E-9
10S8-19E-1
10S-19E-2
10S-19E-2
10S-19E-6
10S8-19E-7
10S-19E-9
108-19E-9
10S-19E-1
10S-19E-1
108-19E-2
10S-19E-4
10S-19E-8
10S-20E-2
10S-20E-3
10S-20E-3
10S-20E-3
108-20E-6
10S-20E-3
10S-20E-2
10S-21E-2
108-21E-3
10S-21E-3
108-22E-9
118-19E-1
118-19E-1
11S-20E-6
118-21E-1

115-22E-4

Township
Range

28-31E-8
25-31E-8
25-31E-8
28-31E-8
2S-31E-8
28-31E-8
28-31E-9
28-31E-9
2S-31E-8
2S-31E-8
2S-31E-8
2S-31E-8
28-31E-9
38-29E-4
3S-29E-3

3S-29E-2
3S-29E-6
3S-29E-2
35-29E-8
3S-29E-7

DE WITT FAIRWAY (cont.)

Well
No.

=
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Well Name

General Crude #1 Grunwald
General Crude #1 Wessendorff
Atlantic #1 Pullin et al.

Hunt #1 Huckman

General Crude #1 McDowell
Cities Service #1 Stanchos “A”
Argo #1-A Dittmer Estate
Mobil #1 Speary

Cities Service #1-A Janssen
National Exploration #1 Effenberger
Shell #1 Atkinson

Shell #1-R Atkinson

Cities Service #1-A Gaus

Kirk and Need #1 Mueller Estate
Mobil #1 Meyer Unit
Cities Service #1 Wood “B”
Hunt #1 Zavesky
Atlantic #1 Skinner

Humble #1 Nordheim Gas Unit
Getty #13 Nordheim
Getty #11 Nordheim
Lone Star #1 Jank

Southland #1 Fuhrken
Cox #1 Riedel
Humble #1 Meyer
Humble #2 McMillan
Lone Star #1 Haynes Estate
Chevron #1 Jacobs
Samedan #1 Berckenhoff
Haring et al. #1 Powell
Humble #1 Neese
Associated and Halbouty

#1 Von Dohlen
Shell #1 Friedrichs

COLORADO FAIRWAY

Well
No.

O -3 W W

10

12
14
15

@O -3 O

Well Name

Mound #1 Newsome

Delhi-Taylor #1 Hillboldt

Shell #1 Hintz

Shell #2 Hillboldt

Shell #1 Cole

Mound #1 Hillboldt

Delhi-Taylor #1 Findeisen

Shell #1 Sealy Gas Unit

Mound #1 Konesheck

Ranger #3 Hintz Estate “A”

Ranger #1 Finke

Shell #5 Hillboldt

Scurlock #1 Kulow-Bielefeld Unit

Evans #1 Wilson

House and American Republics
#1 Tolbirt

Cummins and Walker #1 Nelson

Skelly #1 Stringer

Texas #1 Coddou

King Resources #1 Lyle

Prairie #1 Thomas
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Township
Range

35-29E-7
38-29E-7
35-29E-7
38-30E-1
38-30E-1
3S-30E-1
3S-30E-2
3S-30E-2
3S-30E-2
38-30E-2
38-30E-4
38-30E-4
3S-30E-4
38-30E-7
3S8-30E-9
38-30E-5
3S-30E-5
3S-30E-9
38-30E-9
3S-31E-4
38-31E-7
38-31E-8
38-31E-4
3S8-31E-5
38-31E-5
38-31E-8
3S-31E-8
38-32E-9
48-29E-3
45-29E-3
45-29E-4
4S-29E-8
48-29E-5
4S-29E-2
4S-29E-2
48-29E-9
4S-29E-8
4S-29E-8
4S-29E-1
4S-29E-7
4S-29E-3
4S-29E-2
4S-29E-3
45-29E-3
45-29E-4
4S5-29E-1
48-29E-3
4S-29E-4
45-29E-4

4S-29E-9
45-29E-2
458-30E-1
4S8-30E-1

48-30E-2
48-30E-4
4S-30E-5
48-30E-5
48-30E-6
4S-30E-6
4S-30E-7

Well
No.

—
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COLORADO FAIRWAY (cont.)

Well Name

Cities Service #B-2 Stephens
Cities Service #1 Pode
Cities Service #A-2 Pode
Carthay #1 Ludwig
Boston #A-1 Frobel
Alcoa and Boston #1 Amthor
Intercoastal #1 Krueger
Hanson and McCormick #1 Krueger
International Nuclear #1 Weishun
Union #1 Glueck
King Resources #1 Wintermann
Natural Resources #2 Wintermann
King Resources #1 Herder
Gray #1 Vineyard and Foster
National Resources #1 Birdwell
Newmont and Tidewater #1 Everett
Apexco #1 Meir
Cico #2-A Wintermann
Hanson #1 Wintermann
Gray #1 Bonnette
International Nuclear #1 Odom
Humble #1 Hillboldt
Hillard #1 Hillboldt
Sundance and Stuarco #3-A Best
Sundance et al. #2 Best
Texas #1 Kaechele
Humble #1 Kaechele
Southern #1 Unyrek
Superior #D-1 Tait
Superior #D-2 Tait
Skelly #1 Johnson
Shell #1 Kyle Estate
Brazos #1 Struss
Tidewater et al. #1 Brandon
Skelly #1 Walker
Bright and Schiff #1 Struss
Texas #1 Johnson “E”
Texas #1 Bunge

Skelly #1 Wintermann
Rain and Buck #1 Duncan
British-American #1 Wells
Continental #1 Tait
Superior #1 Tait
Superior #1 Tait
Fidelity #1 Dodson
Dow #1 Lange

Superior #D-3 Tait
Superior #1 Meyer
Parker Brothers

#1 Parker Brothers Fee
Fidelity #1 Struss
Mosbacher #1 Tait

Shell #2 Hayes-Stephens
Clark-Sherwood (Stanolind)

#1 Stephens Gas Unit
Union #A-1 Thomas
Brown #1 Wintermann
Tex-Star and Harkins #1 Haley Trust
Mosbacher and Harkins #1 Foster
Shell #1 Martin
Fidelity #1 Hoyo
Midwest #1 Haley

=



Township

Range

48-30E-8
4S-30E-8
4S-30E-8
4S-30E-9
4S-30E-9
48-30E-8
45-30E-3
4S-30E-3
48-30E-5
45-30E-7

4S-30E-8
4S-30E-6
4S-30E-6
4S-31E-4
4S-31E-7
48-31E-9
4S-31E-4
4S-31E-9
4S-31E-4
558-29E-1
58-29E-3
58-29E-1
58-29E-2
558-29E-3
58-30E-1
58-30E-1
58-30E-3
58-30E-3

Township

Range

5N-38E-5
5N-38E-7
5N-38E-8
5N-38E-8
5N-38E-8
5N-38E-8
5N-38E-8
5N-38E-8
5N-38E-8
5N-38E-8
5N-39E-3
5N-39E-7
5N-39E-7
5N-39E-8
5N-40E-6
5N-40E-6

5N-41E-4
5N-41E-4
5N-41E-4
5N-41E-4
5N-42E-9
4N-35E-7
4N-36E-6
4N-36E-6

¢ 4N-36E-6

Well
No.

14
15
16
17
18
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COLORADO FAIRWAY (cont.)

Well Name

Mosbacher #1 Duncan
Starr #1 Wintermann
Frio #1 Waddell
Fidelity #1 Duncan
Cherry #1 Wintermann Estate
Sun #1 Duncan et al.
Mutex #3-B Wintermann
Chicago and Skelly #1 Dennis
Flaitz #1 Hoyo
Clover and Hanover

#1 Harrison et al.
Scurlock #1 Duncan-Wintermann Unit
Barnwell #1 Colorado Rose
Fidelity #1 Briggs
Crosby #1 Poole
Getty #1 Leveridge
Newmont #1 Poole
Humble #1 Thomas et al.
Magnolia #1 Poole
Humble #1 Isenhower
Socony-Mobil #5 Gracey
Halbouty #1 Lehrer
Shell #1 Thompson
Shell #1 Hudson
Mosbacher et al. #1 Lehrer
General Crude #1 Wintermann
General Crude #3 Wintermann
Brazos #1 Matthews et al.
Magnolia #1 Gracey-Wegenhoff

HARRIS FAIRWAY

Well Name

Cities Service #B-1 Browder
Texas City #1 Elmore
Dominion #2 Elmore et al.
Dominion #1 Elmore
Houston #1 Lewis Unit
Cities Service #1 Ellisor
Triton #1 Roche-Ellisor
Barnes #1 Johnson

Cities Service #1 Melvin Unit
Cities Service #1 Browder
Glen Rose #1 Cary Heirs
Standard of Texas #1 Foster
Shell #1 Coline

Reserve #2 Richards

Sun #1 McGowan Unit 1
Viking and De Lange #1 Langham
GasUnit

Amoco #A-3 Langham

Pan American #B-2 Langham
Stanolind #B-1 Langham
Stanolind #C-1 Langham
Sunray #1 Bell

Capital #1 Alliance Trust
Superior & Speed #1 Elam
Superior & Speed #1 Sykes
Moran #1 Sykes

HARRIS FAIRWAY (cont.)

Township Well

Range No.  Well Name
4N-36E-9 4 Cities Service #1 Madeley
4N-36E-6 5 Sunset International #1 Shaver
4N-37E-6 1 Oil Reserves #1 Foster Estate
4N-37E-7 2 Moran #3-A Hutchins-Sealy
National Bank
4N-37E-7 3 Moran #3 Hutchins-Sealy.
National Bank
4N-37E-7 4 Moran #2-A Hutchins-Sealy
National Bank
4N-37E-8 5 Texmo #1 Hutchins-Sealy
National Bank
4N-37E-8 6 Texmo-Brown #1 Gas Unit #2
4N-37E-8 7 Kirby (McKay & Donkin et al.)
#1 Rawson
4N-37E-7 8 Glen Rose #1 Champion
4N-37E-7 9 Moran #1-B Hutchins-Sealy
National Bank
4N-38E-1 1 Continental #1 Gibbs
4N-38E-1 2 Continental #2 Gibbs
4N-38E-1 3 Huber Co. #1 Gibbs
4N-38E-1 4 Texas City #1 Foster Estate
4N-38E-2 5 Cities Service #1 Frazier & Campbell
4N-38E-2 6 Dominion #1 Campbell
4N-38E-3 7 Continental #1 Frazier
4N-38E-4 8 Donkin & Smith #1 Browder
4N-38E-4 9 Moran #1 Browder
4N-39E-3 1 Prairie & Convest #1 Gibbs et al.
4N-39E-3 2 Impact #1 Mays
4N-39E-4 3 Continental #1 Mays et al.
4N-39E-7 5 Amerada & Mid-States
#1 Central Coal & Coke
4N-39E-7 6 Russell & Moran
#1 Central Coal & Coke
4N-39E-8 7  Shell #11 Central Coal & Coke
4N-39E-8 8 Superior #1 Foster
4N-39E-8 9 Manning #1 Central Coal & Coke
4N-39E-9 10 Fain #1 Baldwin
4N-40E-1 1 Texas Gas Exploration #1 Ogletree
4N-40E-1 2 Magnolia #2 Dixon-Falvey
4N-40E-4 3 Magnolia #1 Hinchliff-Sims
4N-40E-8 4 Magnolia & Abercrombie #1 Brewer
4N-40E-8 5 Davis #1 Sims
4N-41E-9 1 O1l Reserves #1 Jefferson
4N-41E-1 2 Continental & Speed #1 Frost
4N-41E-6 3 Pan American #1 Moore Estate
3N-33E-8 1 Gulf #2 Gardner
3N-33E-8 2 Millican #1 Gardner
3N-33E-8 3 Gulf #1 Gardner
3N-33E-8 4 Atlantic #1 Sanders
3N-33E-8 5 Millican #1 Baner
3N-34E-7 1 Colorado #1 Rice University
3N-34E-7 2 Callery #1 Thompson
3N-34E-8 3 McCarthy #1 Gibbs-Elgin et al.
3N-34E-8 4 Standard of Texas #2 Sanders et al.
3N-36E-1 1 Feldman #1 Teas Nursery
3N-36E-4 2 Socony-Mobil
#1 Sealy-Smith Foundation
3N-36E-7 3 Prairie & Convest #1 Madeley et al.
3N-36E-7 4 Delhi-Taylor
#2 Sealy-Smith Foundation
3N-36E-7 5 Delhi-Taylor

#1 Sealy-Smith Foundation




HARRIS FAIRWAY (cont.) HARRIS FAIRWAY (cont.)

Township Well Township Well
Range No. Well Name Range No. Well Name
3N-36E-8 6 McCulloch & Venus #1 Frost 2N-33E-4 3 Mana #1 Smith
3N-36E-8 7 Prairie #1 Frost et al. 2N-33E-2 4 Brazos #1-A Connell
3N-36E-8 8 Superior #3 Frost 2N-33E-2 5 Sun-Indiola #1 Connell
3N-36E-8 9 Superior #1 Frost 2N-34E-3 1 Strake #1 Humphries
3N-36E-8 10 Mecom & Cockrell #1 Bertrand 2N-34E-3 2 Speed #1 Sauerbrunn et al.
3N-36E-9 11 Stanolind #1 William 2N-34E-3 3 Texas #1 Humphries
3N-36E-9 12 Sinclair #1 Grogan 2N-34E-4 4 Associated et al.
3N-36E-9 13 Mitchell #1 Asche et al. #1-A Rice University
3N-37E-4 1 Moran #1 Cartwright 2N-34E-4 5 Texas #1 Rice University
3N-37E-5 2 Hagen & Litchfield 2N-34E-5 6 Superior #1 Harry Brown

#1 Harris & Freeman 2N-34E-5 7 McCarthy #1 Tucker
3N-37E-8 3 Skelly #1 Tipton 2N-34E-7 8 Enterprises #1 Welch Foundation
3N-37E-8 4 Humble #1 Grande Lake Gas Unit #2 2N-34E-7 9 Ashland #1 Welch Foundation
3N-37E-9 5 Humble #1 Grande Lake Gas Unit #1 2N-35E-2 5 Gray Wolfe #4 Pan Am
3N-37E-9 6 Humble #2 Grande Lake Gas Unit #1 2N-35E-2 6 Gray Wolfe #3 Pan Am
3N-37E-9 7 Humble #1 Council 2N-35E-2 7 Pan Am #1 Posey
3N-38E-1 1 Sands #1 San Jacinto Trust 2N-35E-2 8 La Gloria #2 Cochran
3N-38E-5 2 Texaco #1 Griffin 2N-35E-3 9 Hawkins & Hawkins #1 Von Streety
3N-39E-1 1 Atlantic #1 White 2N-35E-3 10 Christie et al. #1 Von Streety
3N-39E-1 2 Trice #1 Foster 2N-35E-3 11 Standard of Texas #1 Dean et al.
3N-39E-2 3 Cauble #1 Combe Heirs 2N-35E-4 12 Humble #1 Lewis et al.
3N-39E-2 4 Gulf #1-A Foster 2N-35E-4 14 Superior #1 Kramer
3N-39E-5 5 Rowan #1 Dunnam 2N-35E-4 15 Gose #1 Kramer
3N-39E-5 6 Atlantic #1 Foster 2N-35E-4 16 Mitchell #1 Hagen
3N-39E-5 7 Halbouty #1 Foster-Gulf 2N-35E-5 17 Superior #3-A Dean
3N-39E-8 8 Pure Oil #1 Foster 2N-35E-5 18 Superior #A-1 Dean
3N-39E-5 9 Halbouty #1-B Foster 2N-35E-4 19 Gray Wolfe #6 Pinehurst
3N-39E-5 10 Halbouty #2 Foster 2N-35E-5 20 Superior #2-A Dean
3N-39E-5 11 Halbouty #1-A Foster 2N-35E-5 21 Gray Wolfe #3 Pinehurst
3N-39E-8 12 Union & Halbouty #E-1 Foster 2N-35E-5 29 Gray Wolfe #4 Pinehurst
3N-39E-6 13 Amerada #1 Foster 2N-35E-8 23 Commercial #1 Pills & Leyle
3N-39E-6 14 Halbouty #1 Godejohn 2N-35E-9 24 Pan Am #1 Welch Foundation
3N-39E-6 15 Amerada #1 Godejohn 2N-35E-1 26 Superior #A-5 McWhorter
3N-39E-6 16 Halbouty #1 Burkett 2N-35E-1 27 Superior #2-C McWhorter
3N-39E-7 17 Halbouty #1 Leggett 2N-35E-1 31 Superior #1-C McWhorter
3N-39E-8 18 Halbouty #1 Southland Paper 2N-35E-1 32 Superior #1-D McWhorter
3N-39E-5 19 Sohio & Leben #1 Kingswood et al. 2N-35E-1 34 Superior #4-A McWhorter
3N-39E-6 20 Sanchez-O’Brien #1 Friendswood 2N-35E-1 36 Progress #1 Winslow
3N-39E-6 21 Sanchez-O’Brien #1 Friendswood 2N-36E-1 1 Superior #1 McMahon
3N-39E-7 22 Halbouty #1 Todd 2N-36E-1 2 Texaco #1 Winslow
3N-40E-1 1 Sun #1 Quinn 2N-36E-2 3 International Nuclear & Prairie
3N-40E-1 2 Karsten #5-A Quinn #HIM&M
3N-40E-1 3 Houston Mineral #1 Ott Gas Unit 2N-36E-2 4 Stanolind #1 McMahon
3N-40E-1 4 Pan American #1 Howard 2N-36E-2 5 Royal#1 M & M
3N-40E-1 5 Ohio #1 Quinn 2N-36E-2 6 Magnolia #1 Chase National Bank
3N-40E-1 6 Pan American #A-1 Kirby 2N-36E-3 7 Superior #A-7 McWhorter
3N-40E-2 7 Sundance #1 Davis 2N-36E-3 8 Stanolind #A-1 South Texas
3N-40E-3 8 Mitchell #1 Cherry 2N-36E-3 9 Superior #1 Homer Brown
3N-40E-8 9 Superior #1 Bosworth 2N-36E-3 10 Superior #30 Lake Creek
3N-40E-8 10 Hunt #1 Grogan 2N-36E-3 11 Superior #1 South Texas
3N-40E9 11 Superior #1 Hightower 2N-36E-3 12 Superior 41 M & M
3N-40E-9 12 Superior #1 Hightower 2N-36E-3 13 Del Mar #1 South Texas
3N-40E-9 13 Humble #1 McDonald 2N-36E-5 14 Moran #1 M & M
3N-41E-3 1 Humble #1 Smith 2N-36E-6 15 Superior #1 Foley
3N-41E-3 2 Cherryville #1 Jackson 2N-36E-6 16 Sohio et al. #1 1936 Development
3N-41E-3 3 Brazos #1 Ballard 2N-36E-7 17 Shell #1 Peden
3N-41E-4 4 Porter & Phillips #1 Champion 2N-36E-8 18 Shell #1 Holderreith
2N-32E-5 1 Continental Thomas & Scardino 2N-36E-2 19 Vaquero #B-1 M & M
2N-32E-6 2 Harrison #1 Gaines 2N-36E-3 20 Superior #3 South Texas
2N-32E-7 3 Sinclair #1 McDade 2N-36E-3 21 Superior #2 South Texas
2N-33E-4 1 Brazos #1 Sledge 2N-37E-4 1 Sinclair #1 Grogan-Cockran
2N-33E-4 2 Sun #1 Von Blucher 2N-37E-4 2 Sinclair #1 Porter @
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HARRIS FAIRWAY (cont.)

f Township Well

W Range No. Well Name

2N-37E-7 3 Texaco #1 Bender
2N-37E-9 4 Shenandoah #1 Evans
2N-37E-9 6 McDaniel #1 Baldwin
2N-38E-1 1 Atlantic #1 South Texas
2N-38E-5 3 Standard of Texas

#1 Anderson et al.
2N-38E-7 4 Winwell #1 Schwing
2N-38E-7 5 Lacal #1 Schwing
2N-38E-7 6 Humble #1 Wickizer
2N-38E-2 8 Humble #1 Hines
2N-38E-2 9 Goodale Bertman #1 Maynard
2N-39E-1 1 Samedan #1 Coleman
2N-39E-2 3 Humble #B-1 Long Leaf
2N-39E-2 4 Kurth Trustee #4 Southland Paper
2N-39E-4 5 Humble #1 Ovalline
2N-33E-4 6 Sinclair #1 Foster
2N-39E-5 7 Humble #1 Patton
2N-39E-6 8 Union #1 Foster
2N-39E-6 9 Atlantic #1 Foster
2N-40E-2 1 Humble #B-1 Quinn
2N-40E-2 2 Sun #2 Quinn
2N-40E-2 3 Sundance #1 Quinn
2N-40E-2 4 Sun #1 Quinn
2N-40E-2 5 Gulf #C-1 Quinn
2N-40E-2 6 Allday & Hammax #1 Quinn
2N-40E-5 7 Sun #1 Friendswood
IN-30E-5 1 Holmes & Mosbacher #1 Wright
1IN-31E-1 1 Karsten #1 Menke
IN-31E-9 2 Skelly #1 Sander
IN-33E-1 1 Sinclair #1 Krezdorn
IN-35E-8 1 Texaco #1 Mergele
1IN-37E-1 1 Humble #1 Bender
IN-37E-2 2 Humble #1 Baldwin
1IN-37E-8 4 Houston Natural Gas

#1 Tanneberger
1N-38E-3 1 Mobil #1 Bender Estate
1N-38E-3 2 Continental #1 Bender Estate
1N-38E-3 3 Texaco #1 Bender
1S -32E-3 1 Humble #17-B Hardy “B”
1S-33E-6 1 Humble #1 Sparks
1S-33E-8 2 Halbouty #1 Harris et al.
1S-33E-7 3 Exxon HW-46 K.G.F.U. #2
1S-33E-8 4 Pet-Tex #1 Harris
1S-35E-4 1 Standard of Texas

#1-1 Logenbaugh
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HARRIS FAIRWAY (cont.)

Township Well
Range No. Well Name

1S-35E-4 2 Standard of Texas
#1 Josey et al.
1S-35E-4 3 Scurlock #1 Josey
1S -35E-5 4 Texaco #1 Sweeney Estate
15 -35E-8 7 Standard of Texas
#1 Millinger et al. #4

1S-35E-2 9 Roeser & Pendleton #1 Townes
1S-36E-8 1 Pan American #1 Brown
1S-37E-1 1 Meredith et al. #1 Ross et al.
1S-37E-2 2 Ginther & Warren
#1 Taub-Dwyer-McCall Unit #1
1S-37E-2 3 Sunset #1 Hamill
1S-37E-3 4 Houston Natural Gas
#1 Hamill Gas Unit #1
1S-37E-3 5 Texaco #1 Sweeney Gas Unit #1
1S-37E-1 6 Texaco #1 Sharman Gas Unit #1
1S-37E-4 7 Texaco #1 Rodgers
1S -37E-3 8 Houston Natural Gas
#1 Hamill Gas Unit #1
1S-37E-3 9 Houston Natural Gas
#1 Hamill Gas Unit #3
2S -33E-1 1 Exxon #W-45 K.G.F.U.
25 -33E-5 2 Houston Natural Gas & Halbouty
#1 Ainsworth
25 -33E-6 3 Stanolind #1 Freeman
(#8 K.G.F.U. Unit 1)
2S-33E-6 4 Humble #W-31 K.G.F.U.
28 -33E-6 5 Humble #W-32 K.G.F.U.
258 -33E-6 6 Exxon #W-44 K.G.F.U.
2S -33E-6 7 Exxon #W-38 K.G.F.U.
2S -33E-6 8 Humble #W-34 K.G.F.U.
2S5 -33E-6 9 Exxon #W-41 K.G.F.U.
28 -33E-6 10 Humble #33 K.G.F.U. #1
2S5 -34E-8 1 Scurlock #1 Arnold
25-34E-9 2 Scurlock #1 McMillian
25 -34E4 3 Exxon #W-43 K.G.F.U.
28 -34E-4 4 Exxon #W-35 K.G.F.U.
2S-34E-4 5 Exxon #W-42 K.G.F.U.
2S -34E-9 6 Exxon #W-36 K.G.F.U.
2S5 -35E-8 1 Conroe #1 Addicks
3S-33E-3 1 Mound #1 England et al.
3S-34E-2 1 Scurlock #1 Meek
3S-34E-9 2 Enserch #1 Foster Farms
3S-34E-9 3 Mobil #1 Foster Farms
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Figure 14. Stratigraphic dip section 4.

The locations of these sections are shown in figure 9 (in text). The datum for each
section is the top of the Wilcox Group, and the transition between the Wilcox and the
underlying Midway is shown by the dashed line. A pressure gradient of 0.7 psi per foot
is shown by the black arrows; the approximate points at which a temperature of 300°F
occurs are shown by the arrows so labeled.
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Figure 18. Stratigraphic dip section 8.

The locations of these sections are shown in figure 9 (in text). The datum for each
section is the top of the Wilcox Group, and the transition between the Wilcox and the
underlying Midway is shown by the dashed line. A pressure gradient of 0.7 psi per foot
is shown by the black arrows; the approximate points at which a temperature of 300°F
occurs are shown by the arrows so labeled.
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Figure 25. Stratigraphic dip section 15.
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The locations of these sections are shown in figure 9 (in text). The datum for each
section is the top of the Wilcox Group, and the transition between the Wilcox and the
underlying Midway is shown by the dashed line. A pressure gradient of 0.7 psi per foot
is shown by the black arrows; the approximate points at which a temperature of 300°F
occurs are shown by the arrows so labeled.
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Figure 30. Stratigraphic dip section 20.

The locations of these séctions are shown in figure 9 (in text). The datum for each
section is the top of the Wilcox Group, and the transition between the Wilcox and the
underlying Midway is shown by the dashed line. A pressure gradient of 0.7 psi per foot
is shown by the black arrows; the approximate points at which a temperature of 300°F
occurs are shown by the arrows so labeled.
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Figure 33. Stratigraphic strike section B.
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