

BNL-NUREG--33322

DE83 015329

Conv-F-831047-52
Paper Submitted to the 1983 Annual Meeting of the
American Nuclear Society, San Francisco, California
October 30 - November 4, 1983

PRESSURE-VESSEL FLUENCE REDUCTION THROUGH SELECTIVE FUEL-ASSEMBLY REPLACEMENT*

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

M. Todosow
A.L. Aronson
J.F. Carew
D. Cokinos
P. Kohut

BROOKHAVEN NATIONAL LABORATORY

June 1983

*Work performed under the auspices of the U.S. Nuclear Regulatory Commission

MASTER

g)

PRESSURE-VESSEL FLUENCE REDUCTION THROUGH SELECTIVE FUEL-ASSEMBLY REPLACEMENT

The nil-ductility transition temperature (RT_{NDT}) of a PWR pressure vessel (PV) increases during its lifetime due to neutron-induced radiation damage. If during a pressurized thermal shock (PTS) event the PV is cooled below its RT_{NDT} and then repressurized, the vessel may undergo brittle fracture.¹ For several operating reactors it may be necessary to reduce this neutron-induced vessel damage in order to maintain the vessel RT_{NDT} below the range of concern. In this study we consider the potential fluence (and hence damage) reduction achievable by selective replacement of peripheral fuel assemblies with assemblies in which the fuel rods have been replaced by stainless steel rods.

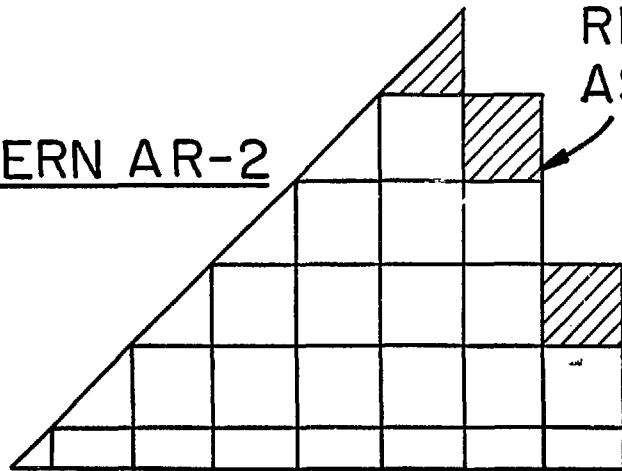
The fluence reductions obtained by assembly replacement are due to the increased distance and shielding between the core and PV. Since the same power output is demanded from a smaller number of assemblies, the fluence reductions are achieved at the expense of an increase in the core power peaking (or equivalently a loss of margin) in the core interior.

Calculations have been performed for three PWR core/PV geometries: a 133-fuel assembly (FA) Combustion Engineering (CE) reactor; a 157-FA Westinghouse (W) reactor; and a 177-FA Babcock and Wilcox (B&W) reactor.² The calculations were performed using the DOT-3.5³ discrete ordinates transport code in (r- θ) geometry, together with a 16-group, region-dependent cross section library based on the DLC-37/EPR (ENDF/B-IV) library.⁴

The assembly replacement (AR) patterns considered for the 177-FA B&W configuration are shown Figure 1. The selection of the assemblies to be removed was based on their location relative to the peak-wall fluence (PWF) location and/or the location of longitudinal welds in the PV shells which overlap the active core.

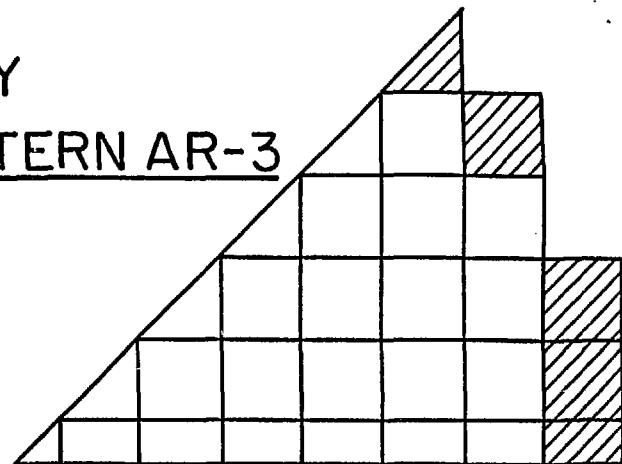
The resultant end-of-life (EOL) PWF's and weld fluences, relative to the PWF for the case with no assemblies removed (AR-1), are given in Table 1. Estimates for the power peaking penalties associated with each pattern are also included. The results for patterns AR-2 through 4 assume that the given pattern is implemented immediately, and applies for the remaining vessel life of ~ 27 Effective-Full-Power-Years. In addition, we show results for two cases where patterns AR-2 through 4 are assumed to apply for only portions of the remaining life. These latter cases represent an attempt to optimize the fluence reduction azimuthally, while minimizing the accompanying power peaking penalties.

The results show that reductions in PWF of from $\sim 18\%$ to a factor of ~ 4 are achievable with selective assembly replacement. Maximum reductions in the weld fluences are similar, with the exception that the minimum reduction obtained is a factor of ~ 2 . This is due to the specific location of the welds relative to the removed assemblies. The increases in power peaking range from $\sim 13 - 30\%$. It is important to note that these power peaking increases do not account for any power flattening that might be achieved by, for example, a judicious use of lumped burnable poisons.


While similar results were obtained for the CE and W configurations, the effectiveness of assembly replacement is strongly dependent on the shape of the azimuthal fluence at the PV, and the locations of the peak and of important welds. For these reactors the azimuthal fluence shape varies by factors of 2-6 (as compared to ~ 30% for B&W); consequently somewhat larger reductions were achieved with the removal of fewer assemblies. Increases in power peaking were also similar, ranging between ~ 8 and 40%.

The results of this study demonstrate that considerable fluence reductions can be obtained by selective replacement of peripheral fuel assemblies with assemblies containing stainless steel rods. These reductions are achieved at the expense of increased power peaking, or loss of available margin. Because of these penalties, as well as other considerations, assembly replacement is expected to be utilized only in extreme situations.

References


1. "Reactor Thermal Shock Problems - I," *Trans. Am. Nucl. Soc.*, 41, 255-259 (June, 1982).
2. A.L. Aronson, et al, "Evaluation of Methods for Reducing Pressure Vessel Fluence," BNL-NUREG-32876, Brookhaven National Laboratory (March, 1983).
3. "DOT 3.5, Two-Dimensional Discrete Ordinates Radiation Transport Code," Radiation Shielding Information Center Computer Code Collection CCC-276 (1976).
4. "EPR: Coupled 100-Group Neutron, 21 Group Gamma-Ray Cross Sections for EPR Neutronics," Radiation Shielding Information Center Data Library Collection, DLC-37 (1977).

PATTERN AR-2

REMOVED
ASSEMBLY

PATTERN AR-3

PATTERN AR-4

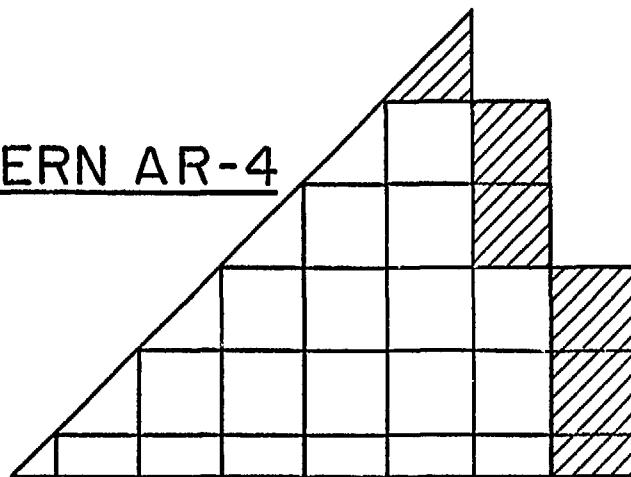


Figure 1. Assembly Removal Patterns for 177-FA Reactor

TABLE-1

177-FA REACTOR ASSEMBLY REPLACEMENT (AR) EOL VESSEL (>1.0 MeV) FLUENCE REDUCTION

<u>Peripheral Assembly Configuration</u>	<u>Peak Wall Fluence†</u>	<u>Weld Seam @ 19°††</u>	<u>Weld Seam @ 22°††</u>	<u>Weld Seam @ 45°†</u>	<u>ΔP(%)</u>
Base Case (AR-1) (4.0, 28.0, 0,0,0)*	1.0	0.883	0.130	0.810	0.0
Case (AR-2) (4.0, 1.1, 26.9,0,0)	0.824	0.434	0.065	0.276	12.7
Case (AR-3) (4.0, 1.1, 0, 26.9, 0)	0.374	0.355	0.060	0.283	22.1
Case (AR-4) (4.0, 1.1, 0,0,26.9)	0.273	0.249	0.038	0.268	29.2
Case (AR-5) (4.0, 1.1, 3.1, 17.6, 6.2)	0.346	0.340	0.055	0.279	22.7**
Case (AR-6) (4.0, 1.1, 9.3, 17.6, 0)	0.447	0.382	0.062	0.281	18.9**

† Axial factor is 1.0.

†† Axial factor is 0.16.

* (I,J,K,L,M) Read as I EFPY in pattern with equilibrium EOL source, J EFPY in pattern with present low-leakage source, K EFPY in pattern AR-2, L EFPY in pattern AR-3 and M EFPY in pattern AR-4; present accumulated exposure = 5.1 EFPY

** Exposure weighted over remaining 26.9 EFPY.