‘Managed -
by the U.S.

Department
of Energy

QQEGRGM#\O’ :

Work performed under

DOE Contract -
No. DE-ACQ7-761D01570 -

EGG-SSRE-8137
January 1989

MIRAP, MICROCOMPUTER RELIABILITY
ANALYSIS PROGRAM

J. N. T. Jehee

Prepared for the
U.S. NUCLEAR REGULATORY COMMISSION

HISTRIBUTION OF THIS OOCUMENT IS UNLIMITER



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



EGG-SSRE-8137

EGG-SSRE--8137

MIRAP, MICROCOMPUTER RELIABILITY DE89 009743

ANALYSIS PROGRAM

J. N. T. Jehee

Published January 1989

EG&G Idaho, Inc.
Idaho Falls, ID 83415

Prepared under an agreement by
the United States Nuclear Regulatory Commission
and the
Netherlands Energy Research Foundation
through DOE Contract No. DE-AC07-761D01570

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer- [ON OF THIS DOCUMENT IS UNLIMITED
ence herein to any specific commercial product, process, or service by trade name, trademark, DISTRIBUT

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views \'6»)

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.



ABSTRACT

A program for a microcomputer is outlined that can determine minimal
cut sets from a specified fault tree logic. The speed and memory
limitations of the microcomputers on which the program is implemented
(Atari ST and IBM) are addressed by reducing the fault tree’s size and by
storing the cut set data on disk. Extensive well proven fault tree
restructuring techniques, such as the identification of sibling events and
of independent gate events, reduces the fault tree’s size but does not
alter its logic. New methods are used for the Boolean reduction of the
fault tree logic. Special criteria for combining events in the 'AND’ and
‘OR’ Togic avoid the creation of many subsuming cut sets which all would
cancel out due to existing cut sets. Figures and tables illustrate these
methods.

i



SUMMARY

A personal computer (PC) based, fault tree processing computer
program is outlined that uses both new and existing data processing and
management techniques. These techniques provide the program with the
éapability to process relatively large fault trees in the memory Timited
environment of the PC and in an expeditious manner.

The processing begins by restructuring the fauit tree prior to
Boolean reduction. This is done in two phases for maximum efficiency.
The first phase, which is fast executing, entails: 1) compressing
identical gate type, 2) combining events that always appear together, 3)
naming gates with identical input the same, and 4) promoting events common
to all the inputs to a specific 'AND’ gate to their highest level. The
second, more time consuming restructuring phase comprises: 1) removing
events that are subsumed by events higher in the tree and 2) identifying
independent subtrees.

After the restructuring is completed the Boolean reduction is
performed by storing the intermediate cut set information on a disk
(floppy, hard or virtual) in a Direct Access File. In this phase, the cut
sets are maintained in terms of independent subtrees and pseudo-gates,
which saves considerable space. Bitmaps and a binary data structure are
used to allow selective searches during the reduction, rather than
requiring a scan of the complete list of events. The actual cut set
generation is done using the bottom-up method and program, and although it
does not allow 'NOT’ events, it does remove any user-defined mutually
exclusive event combinations.

The final cut set list is displayed in a binned format that lets any
‘outliers’ to be easily recognized. The bins are defined by a matrix of
the cut set order and probability (or frequency). The number of cut sets,
their frequency, and their contribution to the total are all displayed.

MIRAP consists of approximately 6000 l1ines of code and is written in
FORTRAN 77. The program requires the fault tree to be in alphanumeric
form, which can be generated using an ordinary text editor.



ACKNOWLEDGMENT

This study was carried out during the author’s assignment at the
Idaho National Engineering Laboratory (INEL) under an agreement by the
United States Nuclear Regulatory Commission (USNRC) and the Netherlands
Energy Research Foundation (Energieonderzoek Centrum Nederland, ECN).
These organizations are acknowledged for supporting this study. The
author is particularly indebted to ECN employees Mr. H. J. van Grol for
managerial support, Dr. K. Terpstra for his introduction to reliability
analysis, Mr. E. van der Goot (former ECN employee) for advise on
informatics, and Mr. G. van Driel for commenting this report, and
INEL/EG&G employees Mr. D. L. Batt, Mr. R. J. Dallman for managerial
support, Mr. N. G. Cathey, Mr. W. J. Galyean, Mr. D. W. Stillwell for
comments on the applicational aspects, and finally Mr. B. W. Dixon, and
Mr. K. D. Russell for commenting the applied methods.

jiv -



MIRAP, MICROCOMPUTER RELIABILITY ANALYSIS PROGRAM
J. N. T. Jehee

CONTENTS
1. INTRODUCTION

1.1. General

1.2. Fault Tree Restructuring
1.3. Boolean Reduction

1.4. Computer Program

2. DEFINITIONS
3. RESTRUCTURING THE FAULT TREE

Restructuring Concepts

Compressing Cascading Gates

Creating Pseudo-gates of Sibling Events
Naming Identical Gates the Same

Removing First Order Inputs to 'AND’ Gates
Removing First Order Subsuming Events
Identifying all the Independent Gates

WWWWWwww
e o e & e s o
SN0 WR

4. DETERMINING THE MINIMAL CUT SETS

Handling Cut Set Data

Processing ‘OR’ Gates

Processing ‘AND’ Gates

Processing Mutually Exclusive Events
Presenting the Minimal Cut Sets

N A
D WN -

5. STRUCTURE OF THE COMPUTER PROGRAM
6. DISCUSSION OF THE RESULTS
7. REFERENCES

TABLES
FIGURES
APPENDIX A: Binary Data Structure of the Cut Set List

19
22
26



1. INTRODUCTION
- 1.1. General

Systems potentially capable of endangering the lives of many people, or
of destructing large sums of money require a safe operation. One method to
assess this safe operation is analyzing all the combinations of events, such
as component failure states and human errors, which if present and/or
occurred simultaneously would cause an undesirable event to occur. This
Tist of minimal combinations is with complex systems usually obtained from a
system logic model or a fault tree by means of a computer.

In this report a computer program is outlined that determines this list
of minimal combinations, or minimal cut sets, by using a microcomputer. The
limited memory and speed of these systems require special techniques to be
applied. The Boolean cancellation of the cut sets in the final process
stage is strongly enhanced by reducing the fault tree size in the early
process. Existing and new techniques are implémented in this preprocessing
stage. The Boolean reduction uses a direct search for specific cut sets
only as opposed to scanning a comp]ete'1ist. Memdry requirements to execute
the program are reduced by storing the intermediate information regarding
e.g. cut sets and event references, on disk. Simple word processor editing
skills are sufficient for preparing the input file. Extensive error
checking procedures are incorporated in the program.

1.2. Fault Tree Restructuring

Restructuring the fault tree prior to the complete Boolean reduction is a
crucial step in obtaining an efficient cut set determination process. In
this restructuring only logic criteria are applied which leaves the tree
lTogically equivalent to the original tree. Probabilistic reduction is only
considered in the cut set determination to decrease the size of the cut set
list.



The applied concepts for restructuring the tree are classified into two
groups with respect to their speed of execution, viz.:

- a group of relatively fast executing restructuring methods containing:

0 compressing cascading gate events of identical type,
combining events which as siblings always appear together in the
tree,

0 naming identical gate events the same, and

0 removing first order input events from the ‘AND’ gate input list;

- some more time consuming methods, viz.:

0 removing subsuming events based on first order events closer to
the top event, and
) identifying all the independent gate events.

The relatively fast executing methods are carried out first in an
iterative manner. When no further reduction can be achieved, the more time
consuming methods are addressed. If subsuming events are identified and
removed, the fast executing methods are applied another time. When no
§ubsuming events are found, the independent gate events are searched for at
Tast.

1.3. Boolean Reduction

The memory requirements and the execution time for the cut set
determination procedure are significantly reduced by restructuring and
simplifying the original fault tree. However the number of cut sets can
still be too large to fit in the computer’s memory. Therefore special
software techniques and program concepts facilitate the handling of sizeable
cut set Tists.

The software techniques concern mainly the use of disks for storage and
retrieval of cut set data. Hard, floppy, or - if the computer’s memory is
large enough - ‘Random Access Memory (RAM)’ disks can be used. A large
cache memory is used to enhance the retrieval efficiency by limiting the



frequency of disk access. The cut sets are stored in binary data structures
on Direct Access Files. These binary data structures enhance efficient
search procedures since ideally it would split its searchable list in half
at each step, requiring maximum only some 1log n steps for a list with n cut
sets. This opposed to a sequential data structure requiring n/2 steps in
average.

The selected program concepts include direct searches for specific cut
sets and subsets only, and a bottom-up fault tree processing procedure.
These as opposed to other feasible methods as searching a whole list for
matching or subsuming cut sets stored in a bit representation, see e.g.
Reference[l], and a top-down approach. To further discriminate the searches
for specific cut sets or subsets, bitmaps are used showing the existence of
events in the concerned lists. While applying the searches the cut set list
for an ‘OR’ gate is assembled. The processing of an 'AND’ gate requires an
intermediate step to ensure the removal of all the subsuming cut sets.
User-defined or default cut-off limits on order (max. 16) and probability or
frequency affect the logical combination of events in the ’AND’ gates.
Although 'NOT’ gates and complementary events cannot be processed, cut sets
with user-defined mutually exclusive events can be deleted from the final
Tist. '

1.4. Computer Program

The computer program is implemented on an IBM and an Atari ST mini-
computer and consists of approximately 6000 Lines of Code (6 KLOC) standard
FORTRAN 77. Although hard disks and extended memory enhance the speed of
the program execution considerably, only a mathematical co-processor for the
IBM is essential.

The input file consists of ASCII characters and comprises the fault
tree, and possibly the failure data, the cut-off criteria, and the 1ist with
mutually exclusive events. The input file can be created by users with
regular word processor skills. Many input checks are performed to aid the



user and to prevent erroneous results. Error and warning messages address:
- wrong or suspicious input specifications such as:

0 case significance, which is prone to errors and therefor all lower
case characters are transformed to upper case to effectively
neglect case significance,

0 multiple definition of the same gate, which will cause a warning
message if the gate is defined identically, and an error message
if the definitions differ,

0 fault trees possessing loop structures, which are trees containing
gate events that ultimately reference itself, this includes the
special loop structure of a tree without an identifiable top, and

0 suspicious failure data definitions, which generate warning
messages only for a large variety of conditions like multiple
failure data definitions, failure data for gate events, no failure
data for basic events, and data larger than 1 or negative;

- violations of the program’s Timits such as:

0 event names longer than 20 characters,
0 more than 40 events on one input line, and
0 more than 1500 different basic and gate events in the input file.

Although efficient methods have been applied to increase the processing
speed of the program, large problems can still take a considerable amount of
time. Therefore the program possesses a ‘walk-away capability’ meaning that
after defining the in- and output files and setting the program control
parameters no interaction with the program is required until it is finished.

2. DEFINITIONS

This section gives the definition of the used terminology in this
document. For a more elaborate list of definitions, the reader is referred

to [3].
: 4



A basic event is either a component or human fault that will not be
developed in more detail. The choice of basic events should be commensurate
with the required resolution of the analysis, e.g. for assessing the
reliability of a power plant, the diesel generator itself without its
interfacing systems can be regarded as a single basic event, while for
comparing different diesel generator designs many detailed basic events
relating to cooling and Tubricating the engine and to its fuel supply can be
distinguished.

Children of gate events are the events underneath it, and apply to gate
events only.

The domain of a gate event comprises of a list of all the basic and
gate events underneath it. This 1ist only registers the occurrence of
‘events, not the frequency of its occurrence and is stored in a so-called
‘bitmap’, viz.:

events 123456789 ... .1500
present yes or no? ynnyynynn etc.
bitmap 100110100 etc.

For 1500 events 1500 bits are required which translates into 1500/16 is 94
two-byte words.

Independent gate events or subtrees are parts of the fault tree that

can be evaluated separately since all of its constituent events exclusively
occur under the independent gate. For the boolean reduction of the
remaining part of the fault tree these independent gate events are
considered as basic events.

A gate event combines two or more basic or gate events according to its
associated logic. Two types of gates are used, viz. an ‘OR’ and an ‘AND’
gate. Within the terminology an ‘OR’ gate is true or occurs if either one
of its input is true, while an ’AND’ gate occurs if all of its inputs
occur. More special logic combinations such as exclusive 'OR’ gates and
priority ‘AND’ gates as discussed in [3] are beyond the scope of. this paper.



Parents of either gate or basic events refer to the gate events above
them.

A pseudo-gate event is a simple independent subtree consisting of
sibling events which occur once as input to this subtree only. Pseudo-gate
events are identified as such in the restructuring part and are treated as
basic events in the boolean reduction.

A reverse reference 1ist of basic and gate events contains all the gate
[
events which has the considered event as input.

A sibling event is a basic event that share its parent gate(s) with
other siblings from his group. A group of sibling events can only share
parent gates of one type of gate logic, either 'AND’ or 'OR’. After a group
of sibling events is identified, a pseudo-gate is created with these sibling
events as input.

A subsuming cut set is a cut set which is included in another cut set,
e.g. cut set ‘A, B, C’ can be deleted since it is included in,éut set '
‘A, B’. A subsUming event in the fault tree is an event which will result
in one or more subsuming cut sets and can thus be deleted from the fault
tree.-

3. RESTRUCTURING THE FAULT TREE

3.1. Restructuring Concepts

As mentioned in the introduction the restructuring of the fault tree is
a crucial step in simplifying the logic and obtaining an efficient cut sets
cancellation process. Existing codes apply many of the discussed methods,
however the beneficial effect of a concerted action of the methods, as
outlined here, is not fully explored.

The restructuring methods are derived from 1ogic.criteria,
probabilistic criteria are presently not applied in the fault tree
restructuring. This implies that the tree remains logically equivalent to



the original tree. Probabilistic reduction is only an option in diminishing
the size of the problem in the cut set determination process by using
cut-off criteria for order and probability or frequency.

Two groups of restructuring methods are identified with respect to
their required amount of execution time. One group of relatively fast
executing methods is addressed first in an iterative manner. Only after
these methods fail to achieve any further simplification more time consuming
methods are applied. An interactive option allows an experienced user to
modify this sequence.

The obtained reduction by restructuring the tree depends strongly on
characteristics of the original tree. Methods which perform well for one
tree might not be of any value for another. No general classification of
trees is attempted, however a general qualification of the methods is given.

3.2. Compressing Cascading Gates

Cascading gate events of the same type or gates with one child only can -
be compressed without changing the logic of the tree: This method is
demohstrated'on the tree of Figure 3-1 resulting in Figure 3-2 fault tree.
This method by itself geﬁera]]y does not reduce the tree, the number of
levels under the top or the depth of the tree is reduced at the expense of
increasing its width. However this procedure facilitates the identification
of sibling events and of first order inputs to "AND’ gates.

3.3. Creating Pseudo-gates of Sibling Events

Creating pseudo-gates of sibling events as is shown in Figure 3-3 is
generally the most powerful of the presented reduction techniques, see in
[2]. Three pseudo-‘OR’gates, each comprising two basic events, combined in
a cut set expand to eight cut sets. Especially when the resolution of the
system representation in the tree is large, many pseudo-gates can be
identified. Pseudo-gates can contain: basic events, independent gates, and
previously identified pseudo-gates.



The detection of pseudo-gates requires a reverse reference list for
each potential candidate. To avoid comparing the reverse references of a
large number of events, the sum of the assigned event numbers of the reverse
referenced event is stored in a list and ranked. Only those candidates with
the identical reverse reference number are further analyzed on pseudo-gate
characteristics. Obviously only those sibling events qualify which are
combined in the same logic, either all in ‘AND’ or in ‘OR’ gates.

3.4. Naming Identical Gates the Same

This method requires no further explanation. Identical gate events are
found which are either specified in the input or formed in the restructuring
process. Detecting similar gates is performed analog to the sibling events
while using the sum of assigned events numbers of the gate input events
instead.

3.5. Removing First Order Inputs to 'AND’ Gates

Either the user-defined fault tree or the restructured tree can possess
'AND’ gates with one or more children which are first order event(s) for
that gate. The procedure addressed here will introduce an intermediate ’'OR’
gate with these first order event(s) and the modified 'AND’ gate as inputs,
see basic event H in Figure 3-4. A special case is when only one or more
first order cut sets to the ‘AND’ gate remain in which case the modified
"AND’ gate is deleted. Events C and D in Figure 3-4 qualify for this
condition since modifying the 'AND’ gate by removing events C and D results
in an ‘empty’ ‘OR’ gate and consequently in an ‘empty’ set for the ’AND’
gate.

An appropriate renaming of the modified '‘OR’ gates is performed by this
program module since ‘OR’ gates could be used at other branches in the tree
which do not qualify for this reduction. An interesting result of this
‘promoting’ first order inputs to ‘AND’ gates is that first order events for
the top event will boil up to under the top of the tree assuming that the
option for compressing cascading events is selected.



Although it is acknowledged that an analog procedure could be followed
for 'AND’ gates under an ‘OR’ gate with identical input, see Figure 3-5,
presently this situation is left unchanged.

3.6. Removing First Order Subsuming Events

If the child event of a particular gate also occurs as input to a gate
in the same branch further from the top event, this latter input of the
child event can be changed, based on rules regarding the tree logic. If the
concerned gate or basic event is a child of an 'AND’ gate, the input of this
event to other 'AND’ gates downward in the branch can be removed, while the
'OR’ gates with this event as input can be deleted completely as shown in
Figure 3-6. If the concerned event is a child of an ‘OR’ gate then
analogously the inputs of this event to 'OR’ gates can be removed and ’'AND’
gates can be deleted completely. Since the affected gates, see Figure 3-6,
can also be used in other branches of the tree which do not qualify for this
reduction, only those gates are modified which in all cases qualify for this
reduction. Although a fairly complex renaming for the affected gates could
be used to apply this method also for partial modifications of the tree,
presently this is not implemented since it requires additional criteria for
large fault trees in order to prevent exceeding the maximum number of
events.

The previously established bitmaps of the domains of the gate events
and its reverse references are used to construct an efficient algorithm.
After finishing this option, another pass is made through the four simpler
methods.

3.7. Identifying all the Independent Gates

Independent gate events are subtrees which do not have events in common
with the rest of the tree and can for this reason be evaluated separately.
Existing independent gate events allow the division of the problem into a
number of smaller sized subproblems with more attractive properties. Either
straight inserting the subtree’s cut sets in the final result or simply
assigning the failure frequency of the independent subtree to the
independent gate in the final cut set list will yield responsibility. The



minimal cut set list expressed in the original events, or the top event’s
failure frequency. The separate treatment of all the independent gate event
relieves the program from all the events in those independent subtree which
otherwise should have been processed until the end.

The applied fault tree construction techniques, or the ’school’ of the
analysts, contribute greatly to the inclusion of independent subtrees, and
of the previously discussed pseudo-gate events. Especially the choice
between using large fault trees and small event sequences, or small fault
trees and large event sequences influence the characteristics of the fault
tree. The latter method will most Tikely treat larger independent subtrees
separately as events in the event sequences.

Not every independent subtree is as easily recognized. Although the
applied method requires more time than those previously described, it recog-
nizes all the independent subtrees, which can considerably save execution
time in the final cut set cancellation process. First bitmaps for all the
gate events are generated representing the occurrence of all the gate and
basic events in the inputs of the concerned gate and of its children,

' grandchi]dreh, etc., including the gate itself. A specific gate event is
independent if the reverse references of all its bitmap events are equal to
or a subset from that particular gate bitmap, see Figure 3-7. This method
identifies also higher order sub-subtrees.

4. DETERMINING THE MINIMAL CUT SETS

4.1. Handling Cut Set Data

Since the memory of microcomputers is limited and the number of cut
sets can be quite large, the cut sets are stored on disk (floppy, hard, or
memory ‘RAM’ disks) by using a Direct Access file. The cut set lists with
variable order cut sets are stored on this file. Apart from this the cut
sets are expressed in terms of the non-expanded evehts, such as independent
gates and pseudo-gates which saves a considerable amount of space.

10



Only selective searches for specific cut sets are required as opposed
to scanning a complete cut set Tist. To enhance the efficiency of this
process unnecessary searches are prevented at an as early as practical stage
and the data structure of the cut set list facilitates a fast search
procedure. This is accomplished by using bitmaps for presenting the
occurrence of events in lists and by using a binary data structure for the
cut set list organization, see annex A.

The cut set determination is a so-called bottom-up process, i.e., the
top event cut sets are obtained by starting at the end of the branches and
working consecutively to the top of the tree. To be able to substitute the
subtree probabilities into the final tree, the independent subtrees are
processed first.

In the author’s opinion the applied methods are better elucidated with
characteristic examples for the ‘OR’ and ’AND’ logic than with an elaborated
mathematical description. To this end lists with selected cut sets are
logically combined showing examples of all the discussed techniques. The
selected cut sets are supposed to be originated from processing Tower region
'gates which are not discussed.

The next presentation of the 'OR’ and ’AND’ gate logic closely follows
the program algorithms, which reduce the combination of more than two cut
set Tists to multiple combinations of two cut set lists. The simpler ‘OR’
gate logic is presented first in section 4.2. The ’AND’ gate logic is given
in section 4.3 and addresses especially the creation of large lists with
non-minimal or subsuming cut sets. Section 4.4 describes the treatment of
mutually exclusive events, which uses similar techniques as the ’AND’ and
‘OR’ logic combinations. Finally, the elaborate presentation of the cut
sets is presented in section 4.5.

4.2. Processing ‘OR’ Gates

The 'OR’ gate logic requires less steps than the ‘AND’ gate logic and
is therefor described first. As mentioned above any combination of more
than two lists can be reduced to multiple combinations of two lists. Basic
events will be treated as a cut set list with only one first order cut set.
Table IV-1 shows two cut set lists A and B that will be combined in an 'OR’

11



logic and that are obtained by processing gates 1 and 2. These lists
consist of selected cut sets which can illustrate all the characteristics of
this process. These Tists originate from processing lower region gates in
the tree starting with gates with basic events as input only. A basic event
in this concept is treated analog as a gate event with an elaborate cut set
1ist containing one cut set of order one, viz. the concerned basic event.
The precise creation of lists A and B is not relevant for the discussion in
this section.

If 1Tist A and B do not have common events, then the lists are simply
added, otherwise the cut sets are processed separately and added to the
final 1ist if they qualify. First each cut set of list A is processed and
second the remaining cut sets of list B. Table IV-1 shows two lists with
specially selected cut sets for illustrating the described mechanisms.

Each cut set of list A is compared with 1ist B with respect to
consecutively:

1) - its intersection of the cut set with the events in the domain of_‘
~ list B, |

2) the existence of an identical cut set in list B, and

3) the existence of any subset of the cut set considered in List B.

Based on the results of the above mentioned comparisons the following
actions are taken, respectively:

1) if no intersection exists this cut set is placed in the final
list,

2) if an identical cut set exists in list B this cut set is placed in
the final list and the identical cut set in 1list B is temporarily
incapacitated,

3) if a subset of this cut set exists in list B, then this cut set is
not added to the final list, and

4) finally if no identical cut set or subset is found, this cut set
is added to the final list. '

12



Table IV-1 shows examples of the above mentioned procedures.
Processing list B is essentially the same as processing list A, except for
the search of identical cut sets since they are incapacitated already. The
final Tist will be referenced by the concerned gate and the incapacitation
in Tist B should be made ineffective since list B might later be compared
with another cut set list. Table IV-2 shows the process for list B.

4.3. Processing ‘AND’ Gates

Processing the ‘AND’ logic requires more stages than the 'OR’ logic.
Any problem for the ‘AND’ combination is reduced to combining two cut set
lTists. The algorithm especially prevents the creation of too many
non-minimal cut sets since processing those cut sets is a time consuming
effort. Table IV-3 gives two cut set lists A and B, obtained by processing.
the input to gate 1 and 2. The selected cut sets will demonstrate all the
mechanisms in this process.

In case lists A and B do not have common events (intersection is zero)
the Tists are simp]ylcombined without giving attention to subsuming events.
If the Tists do possess common events then first Tist A will be processed,
second list B, and finally an intermediate list. The cut sets which qualify
for the final list need no further processing, the cut sets in the
intermediate 1ist need to be compared with the intermediate 1ist and with
the final list for the existence of subsuming cut sets.

Each cut set of 1ist A is compared with 1ist B with respect to
consecutively:

1) its intersection of the cut set with the events in the domain of
list B,

2) the existence of an identical cut set in list B, and

3) the existence of any subset of the cut set considered in List B.

13



Based on the results of the above mentioned comparisons the following
actions are taken, see Table IV-3, respectively:

1) if its intersection is empty, this cut set is not processed,

2) if an identical cut set exists in 1ist B then this cut set is
placed in the final list and the identical cut sets in list A and B
are temporarily incapacitated, and

3) if a subset of this cut set exists in 1ist B then this cut set of
Tist A is placed in the final 1ist and the cut set in 1ist A is
temporarily incapacitated.

While processing the cut sets of list B, essentially the same
comparisons are performed except for the search for identical cut sets.
However, the actions are different, see also Table IV-4, viz.:

1) if a subset of this cut set exists in list A, this cut set is
placed in the final list, and

2) if this subset does not qualify for direct transfer to the final
155t, all the combinations of this cut setAwith the cut sets of
list A are placed in an intermediate list.

Finally the intermediate 1ist is compared with itself, and with the
final 1ist for occurrence of subsets. If no subsets occur, the cut sets are
transferred to the final 1ist. Identical cut sets ‘collide’ in the same
branch position in the binary tree of the final 1ist and don’t have to be
searched for.

Finally, the incapacitations in list A and B should be made ineffective
at the end of the 'AND’ gate processing, since lists A and B might later be
compared with other cut set Tists.

4.4. Processing Mutually Exclusive Events

Mutually exclusive events can be specified by the user and will be
deleted from the final cut set 1ist. The final cut sets and its subsets
will be searched for in the Tist of mutually exclusive events. If a match
is found that particular cut set is eliminated from the final list.

14



4.5. Presenting the Minimal Cut Sets

Since the number of cut sets expressed in basic events can be prohibi-
tively large, the normally presented cut sets are expressed in independent
subtree gates and pseudo-gates which usually comprises a much smaller number
of cut sets, while the cut sets of the independent subtree gates and
pseudo-gates are presented separately. A 1ist of the cut sets expressed in
basic events with the specified cut-off criteria applied can be selected as
a program option.

The statistics of the cut sets are concisely presented in Table IV-5.
The format of the table is chosen such that ‘outlier’ cut sets can be
identified easily and that the information regarding top event and cut-off
criteria are all included.

The cut sets are classified per order and per probability or frequency.
The number of cut sets, their summarized frequency, and their fraction of
the total frequency are given per order. Within each order the cut sets are
distributed according to their value into 9 linear, 9 logarithmic, and 2
special bins. The bin boundaries are relative to a rounded value of the cut
sets’ maximum probability or frequency, as is explained in the notes of the
table. The two special bins contain cut sets with extremely small, but
non-zero values and cut sets with value zero, most likely caused by
definition (probability = 0).

The applied cut-off criteria are shown in the table and the number of
times the criteria were applied are given. The precise number should be
interpreted cautiously, it does not indicate the number of discarded cut
sets for the top events since that number could be larger through possible
later combinations of the discarded cut sets with other events; and on the
other hand could that number be smaller or zero as well since the discarded
cut sets might otherwise have been subjected to reduction by subsuming
events. However if a limit is never encountered, attempting to obtain more
cut sets by merely changing that 1imit (increasing for order and decreasing
for probability) has no effect. The probability cut-off value multiplied
with the number of times the criterion is applied gives an upperbound of the

15



discarded cut sets. A more accurate approximation of this upperbound will
be evaluated in the last update of the program. The cumulative
probabilities of the discarded cut sets by the cut set order and by the cut
set probability cut off criteria will be calculated and shown separately.

A discrepancy exists between the method of deriving the frequency per
order and the more accurate method of obtaining the total frequency. Since
the method per order is a straight rare event approximation, it can become
larger than 1.0 while the method for obtaining the total frequency applies
the inclusion-exclusion principle in a limited manner ensuring that its
total never exceeds 1.0 . The algorithm for calculating the consecutive
frequéncy uses the formula:

P + (1 -P ) *P

cut setI cut setI_1 cut setx.1 cut seti

in which 1 refers to the particular cut set frequency, and
I indicates the sum of the frequencies of cut set,
through cut set..

5. STRUCTURE OF THE COMPUTER PROGRAM

The computer program consists of approximately 6000 Lines of Code (6
KLOCs) of FORTRAN 77. The choice for this language is its superior
portability to other machines and the authors familiarity with it. The
realization of fancy screens and of elaborate interactive control is not
supported by this language. The advantage is that no complicated menu
sequences need to be learned. System and compiler dependent routines are
used for obtaining the time and the date, for setting and reading bits in
2-byte integers and for writing two 2-byte integers into one 4-byte integer
and vice versa.

A minimum of special knowledge is required for using the program; word
processor skills are adequate to write the input fault tree logic and
failure data. Knowledge of system analysis and reliability theory to define
the problem and to interpret its results is obviously required.

Memory efficiency is given a great deal of attention by using 2-byte
integers whenever possible, and by storing cut sets and other administrative

data on disk. Time efficiency is addressed by applying the described

16



methods, by using available fast algorithms for sorting and searching, and
by reducing the disk read operations through a large cache memory.
Structured programming techniques are inevitable for this medium-sized code.

A to be published user’s manual will contain example inputs and a 1ist
with the error messages.

6. DISCUSSION OF THE RESULTS

The described computer program MIRAP is capable of handling large fault
trees on microcomputers since it addresses the speed and memory limitations
of these machines adequately and incorporates special techniques as
described in this paper regarding fault tree restructuring. The results of
this program have been compared favorably with other programs during the
course of its development. However, these results are not reported here
since a more elaborate effort is required to appropriately compare the
various existing programs. A comparison of the characteristics of other
programs such are outlined in [3] and [4] is clearly beyond the scope of
this paper. After extensive error checking, a user’s manual will be
published that will include an analysis of a problem which has similar
characteristics as the benchmark fault tree of [4] and will facilitate
mutual comparisons. Due to proprietary aspects dissemination of that fault
tree and its data is not possible.

17



7. REFERENCES

[1] Terpstra, K.; Phased mission analysis of maintained systems - A study in
reliability and risk analysis; Netherlands Energy Research Foundation,
ECN-158(1984)

[2] Terpstra, K., Dekker, N. H., Driel, G. van; PHAMISS - A reliability
computer program for phased mission analysis and risk analysis; 2

volumes, ECN-183 (1986)

[3] Roberts, N. H., Vesely, W. E., Haasl, D. F., Goldberg, F. F.; Fault tree
handbook; US Nuclear Regulatory Commission, NUREG-0492 (1981)

[4] Amendola, A.; Systems reliability benchmark exercise, final report;
CEC-JRC Ispra, EUR 10696 (1985)

18



Table IV-1: Processing the first cut set list in an ‘OR’ gate (Jist A)

Each cut set of list A will be processed and if its characteristics meet
the criteria it will be transferred to the final list.

List A List B List C

Gate 1 Gate 2 |Final Tist Remark

a,b,c a,b,c1 a,b,c Cut set found in list B and placed in

: the final list. This cut set in 1list B
is temporarily incapacitated.

a,b,d a,d - A subset of this cut set matches a cut
set in list B and this cut set is for
that reason not placed in the final Tist

a,e a,b,e a,e Although cut set ‘a,b,e’ of List B is
not a minimal cut set, at this point
only cut sets and its subsets of List A
are searched in List B.

X,y X,y No events in common with 1ist B, this
cut set is placed in the final list.

Note: 1) This cut set is temporarily incapacitated.

Table IV-2: Processing the second cut set list in an ‘OR’ gate (list B)

Each cut set of 1ist B will be processed and if its characteristics meet
the criteria it will be transferred to the final list.

List B List A List C

Gate 2 Gate 1 |Final 1list Remark

a,b,c1 a,b,c - This cut set is incapacitated.

a,d a,b,d a,d Cut set ‘a,b,d’ of List A didn’t qualify
in the first step for inclusion in the
final list. Cut set ’a,d’ is added.

a,b,e a,e - A subset of this cut set matches a cut
set in 1ist A and the cut set is for

X,y this reason not placed in the final list

Note: 1) This cut set is temporarily incapacitated.

19




Processing the first cut set 1ist in an ‘AND’ gate (list A)

Table IV-3:

List A List B List C List D

Gate 1 Gate 2 |Int.list |Final 1ist Remark

a,b,c1 a,b,c1 a,b,c Identical cut set found in
list B. Place this cut set in
the final 1ist and incapaci-
tate both these cut sets.

a,b,d1 a,d a,b,d A subset of this cut set is
found in Tist B. This cut set

x,a2 as such will be placed in the

b,d,c final list, incapacitated, and
not combined since ‘a,b,d’
will be minimal.

X,y No events in common with Tist
B, not processed in this stage

Note: 1) This cut set is temporarily incapacitated.

2) These cut sets are added to show effects in the
second processing stage.

Table IV-4: Processing the second cut set list in an “AND’ gate (list B)
List B List A List C List D
" Gate 2 Gate 1 Int.1ist |Final list ‘Remark
X,y
X,a
1 b,d,c
a,b,c a,b,c1 a,b,c This cut set is incapacitated.
a,d a,b,d1 a,d,x,y3 No subset of this cut set are
a,d,e found in list A. This cut set
a,d,x will be combined with the re-
a,b,c,d3 maining cut sets of list A.
Its result is placed in inter-
mediate list C.
a,b,ezk a,e a,b,e A subset of this cut set is
found in list A. This cut set
as such will be placed in the
final Tist.
Note: 1) This cut set is temporarily incapacitated.
2) Since this cut set is no more addressed, incapacitation is
not required.
3) These cut sets will be deleted in the final process step

20




Table IV-5: Concise presentation of the cut set statistics

KREKK KRR KA KA AR KA AR KA R KR A AR A A R R A AR AT KR AR KRR R KRR AR RRA A AR ARNKRRRAKNKRKAKR R AN KA Ak Ak A Ak hkkkhkhkXk

**k

CuT SET STATISTICS FOR TOPEVENT: NO_FEEDWATER_TQ_SG **

B R o e e e e e e e o o o = e m = o = = = = = = = o P = 2 8 . . 0 4 4 48 D o o o e e x*k
**CUT-NUMBER | FRACTION | TOTAL | CUT SET CLASSIFICATION -see (1)  **
**SET| OF | OF TOTAL |FREQUENCY | LINEAR BINS | LOGARITMIC BINS [ZE-**
*XORD| CUTS  f==m=mmmmmmmmmmm el e [RO **
e 2.06-3 1.2E-3 4.0E-4 6.3E-6 6.3E-8 NIL**
** | 1.8€-3 1.0E-3 2.0E-4 2.0E-6 2.0E-8 **
** | 1.6E-3 8.0E-4 6.3E-5 6.3E-7 6.3(-9 **
** | 1.4€-3 6.0E-4 2.0E-5 2.0E-7 0.CE-1*
el e B T o e B T
* I I *
* 2 5 .43616 1.2800E-03 1 2 11 |PROB. *
* 3 34 .55635 1.6328E-03 1 1 113102 19s|cur- *
* 4 35 .00684 2.0087E-05 | 453779|0FF *
* 5 28 .00065 1.9091E-06 | 2 6 713]-X-x- *
* 9 CUT SETS LARGER THAN ORDER 8 ARE ELIMINATED ORDER CUT-0FF *
* oo TOTAL ----ommommmmmmmmmomcmcoc ottt oot | cbo bbbt b b oo ¥
* 102 1.00000 2.9348£-03 -see(3) 11 1 31 3147 5152427|-X-x- *

** FREQ. ABOVE IS RARE EVENT APPROX|CUT-OFF |PROB. 1.00E-08 9598 TIMES APPLIED ** see (2)
** FREQ. BELOW IS MORE ACCURATE [LIMITS |ORDER 8 LIMIT IS NEVER HIT **
** TOTAL FREQUENCY 2.9316E-03 |CUT-OFF NOT APPLIED TO 1-ST ORDER CUT SETS**

KAKKKKKKRKKKRKKKKKRKERRKEKRKRKAKREKXKXKXE KRR KKK AKKRRKRRRRKRRRRRRRRRRAKRKR AR R RARKRXKk IRk Ahkhk kA xXkKkXkk%k

** ELAPSED TIME 3634 SECONDS(TOTAL: 1 HRS, 9 MINS,36 S)** see (4)

XK e EeE - EeZeSeSeSeSeSeSeZeZeZ-S+Z-Z~Z-=-ZeZ-Z-Z-z-z-z=- *¥

** TIME IS 12:19: 4 ON APR 26 1988 *x

AKX e ZeZ-Z-Z~S-S-S-S-2-S-ZeZ-Z-Z-S-S-Z-S-S-S-S-S-S-z=-=- *¥

Notes:

(1) ‘'Outlier’ cut sets are more easily recognized by this classification. The 102 cut sets are clas-
sified in 9 linear, 9 logaritmic, and 2 special bins per order. The bin boundaries are deter-
mined relative to a rounded value of the cut sets maximum probability or frequency. The 9 linear
boundaries are 100%, 90%, 80%, etc. until 10% of Pmax, the 9 logaritmic boundaries are:

Pmax * 10-1, Pmax * 107" "7, Pmax * 10-2. etc. until Pmax * 10777 and the two special
bins summarize the cut sets with respectively an extremely small but non-zero probability and
those with zero (NIL) probability. A more elaborate form of this table is produced seperately.

(2) This table also shows whether the used order and probability cut-off values are actually applied
in the cut set determination process. Merely increasing the order cut-off would not change the
results in this case since that limit is never encountered, while decreasing the probability
cut-of f might yield more cut sets.

(3) The discrepancy between the two presented frequencies is caused by a different numerical sum-

mation. The row total frequency is a straight rare event addition of all the cut set frequencies
while the frequency in the table’s bottom line is obtained by applying the inclusion-exclusion
principle in a limited manner, viz. Pnew = Pold + (1 - Po1d) * Pcut set”
accurate and does not give probabilities larger than 1, but not exact.

This is more

The elapsed time refers to the time past since the previous time message (in this case the time
required for the cut set determination), while the TOTAL (time) is relative to the start of the
program.

21



1,3)

top a top a, '
'OR’ ==> 'OR’ ==> fig. 3-3
L L
Pl I ] 1 L 1 2.3) I 1
A 'OR'* 'AND' "AND’ "AND’ A*B*E'MWC' "AND’ "AND’
L 4 4 4
Féﬂ | | f T ] r*1 { T 1 { T 1 féq
B E "AND'* "OR' 'OR' 'OR’ 'OR' C D 'OR’ 'OR' 'OR' 'OR' 'OR' 'OR" C D
'OR" 'OR* CDFEHFHABGH CDECDCDFEHFHA*B*GH
CDECD
Note: Notes:

1) Compressed 'OR' gate.

2) Compressed 'AND' gate.

3) Subscript c denotes compressed
event.

The gate logic is written in these concise
fault trees and when opportune the gates are
labelled. Events marked with an "*’ will be
changed in the next permutation.

Fig. 3-1 Original fault tree Fig. 3-2 Compressing cascading gates

from fig. 3-1.
top a. top a.
"OR’ ==> "R’
4 L
1 1 3)1 1 | | 1t | ]
A UE ’AND'C* "AND'* "AND’ Ap E 'OR" 'OR’ 'AND’
4 4
I T I I T | FL12) FL11)FETL_1 Hﬁ
'OR'c "OR" 'OR* 'OR’' 'OR' 'OR" CD CD"'H™' 'AND' C D
coecocoVFEnFH Ap”e H ror+3) ror+3) r3)
LS B ey
E F Ap G
Notes: Notes:
1) Events A,B form a pseudo-gate. 1) Events C,D in an 'OR’ combination remain
2) Events C,D do not qualify for pseudo- from the 'AND' gate.
gate due to different gate logic. 2) Event H is the common input to 'AND’ gate.
3) Subscript o denotes pseudo-gate. 3) These gates might appear unchanged in

other parts of the tree.

Fig. 3-3 Creating pseudo-gates of sibling
events from fig. 3-2.

Fig. 3-4 Removing first order inputs
to 'AND’ gates from fig. 3-3.

top b top b
'0R’ 'AND’
—— =
"AND’ ‘AND' 'AND’ A ‘OR’
+rh A
ABCAEF AG G 'AND® 'AND’
-
BC EF
Notes:

1) Event A is the common input to ‘OR' gate.

Fig. 3-5 Removing first order inputs
to 'OR’ gates (not applied!)

22



top d Rules for removing subsuming events

"OR GO
[ T T L T 1 1) Events which are also inputs to ancestors
A 'AND'Gl 'AND'G2 'AND‘G7 ‘AND' will be removed if the gate logics are
Hﬁ I L | I T L ] r¥—1 simular in the corresponding cases,
B E 'OR'G3 'OR'G6 E ‘OR'G8 'OR' I 'OR' 2) The concerned gate of an event will be
r——rLrj r——Jﬁ rH rﬁhq—q removed if that event is also input to an
'AND'G41)'AND'GS AZ)B CDH 'AND'G5 G H etc.. ancestor with a different gate logic, and
r*éT'T FJ*W 3) Only those modifications are carried out
GiCD Es) F E ) F which apply to all the branches of the tree.
Notes:

1) 'AND' gate G4 can be removed because one of its inputs gate Gl also appears
under the top 'OR’' gate, see rule 2.

2) Event A can be removed from this 'OR' gate because event A also appears
under the top 'OR’ gate, see rule 1.

3) Event E could be removed from 'AND’' gate G5 in branch G0-G7-G8-G5 because this
event also appears in 'AND‘' gate G7, see rule 1, however because this gate in
branch G0-G2-G3-G5 does not qualify, see rule 3, this gate is not modified, rule 3.

Fig. 3-6 Removing first order subsuming events

Bitmaps gates |basic Example 0..34..7|A.CD.F

top ¢ -Events-01234567|ABCOEF  -Analyze the gates in
"0R'GO a bottom-up manner: |
— GO .1111111]111111 -Start with gate G6, its |
*AND'G1 ‘AND* G2 61 ...1..11|1111.. _ bitmap, inc}. G6 itself:...... 111, ...
—L— 8 .. 11111|111111 -Add the RRs°’ of A and B ....11[11....
0')'0R'G3  ‘OR'G4 'OR'GS 63 ...... 11]111... -Conclusion for gate G6 see 4)
—— A 8 |...11.  -Proceed with gate G3,  ...1..11|111...
‘AND'G6 AND'G7 D E F ‘AND'G3 G5 ...1..11J111..1  its bitmap incl. G3 is: ...1..11]111...
4 & 66  ........ {11.... -Add the RRs of A, B, C,
AB AC 67 ... [1.1... 66, and G7: 1L

-Conclusion for gate G3 see
Notes:
1) If this events would be 'F', then gate event Gl is a second order independent
"~ subtree, assuming gate G5 is named the same as gate Gl.
2) RR stands for reverse reference.
3) Since two gate events(G6 and G7) are referenced process is continued.
4) Since the determined bitmap references events outside the domain of gate G6,
this gate does not qualify for independent subtree.
5) Gate G3 is independent since its bitmap equals the determined bitmap, except
for its own reference.

Fig. 3-7 Identifying all the independent gates

23



Data input

Problem specification file
containing:

- fault tree logic,

- fault tree data,

- cut-off criteria, and

- mutually exclusive events.

Program control through key-

board commands concerning:

- names of problem specifi-
cation and extended out-
put files,

- selection of program options
from a menu, and

- optionally selecting the top
event and interactively

MIRAP

Data output

Extended output file reporting
all the main permutations and
steps during program execution.

Screen display showing data
written on the extended output
file and data concerning the
program’s progress.

controlling the program flow.

Fig. 5-1 Program structure of MIRAP

24

Concise output file containing
the final cut set list and its
statistics.

Direct access file to alleviate
the programs memory needs, to be
purged at normal end of program.

A temporary file to store the
data for the output file until

a file name is specified and the
file is appropriately opened.




APPENDIX A. Binary data structure of the cut set Tist

A.1. Implemented Binary Data Structure

To facilitate an efficient search procedure the cut set 1list is organized in
a binary data structure, which is stored on disk. The cut sets are ranked
according to (1) their order, and (2) the numbers of the contained events.

A pointer to a higher and a lower ranked cut set is stored together with a
backward referencing pointer as is shown below. This pointer structure supports
a cut set retrieval procedure in either a ranked or a ‘binary’ fashion, with
only the pointer to the previous cut set as input. The ’binary’ cut set
retrieval procedure obtains the cut sets in the same manner as the binary data
structure was created initially. This prevents the destruction of the binary
structure of a new cut set list, since retrieving the cut sets in a ranked
fashion and creating a new list with them makes the new data structure
sequential with unfavorable search properties.

The used record structure is :

cut set | address | address | address | event 1 | event 2 event n
order "parent’| lower higher of of of
cut set | ranked ranked cut set | cut set cut set
cut set | cut set
2 bytes | 4 bytes | 4 bytes | 4 bytes | 2 bytes | 2 bytes 2 bytes
Used rules: - Negative back reference indicates the root of the 1list,
(Conventions) - Referencing itself in the higher or lower ranked exit

indicates the end of that branch, and

- Negative order incapacitates this cut set definitively and
an order larger than 1500 incapacitates this cut set
temporarily. Eliminating a cut set from a binary tree
requires a complicated recreation of a part of the tree
pointers and is not performed.

A.2. Example of a binary data structure

Word lengths are assumed equal for simplicity.

(root, address 235)
3, -12, 242, 248, 2, 5, 7

(address 242)

2, 235, 255, 242, 7, 9

~

(address 248)
3, 235, 260, 267, 3, 6, 7

/

/

(address 255)
1, 242, 255, 255, 11

(address 260)
3, 248, 260, 260, 2, 5, 8

(address 267)
-3, 248, 274, 281, 4, 5, 7

\

AN

(address 274)

3, 267, 274, 274, 4, 5, 6

(address 281)
4, 267, ., .,

25




A.3.
addres
First

two
digits

Contents of the data file

ses

23.

260
281

267
248

last digit
.2 ..3  ..4 .5
3

2 235 255 242
3 6 7 1
260 260 2 5
5 7 3 267

267 .. .. etc.

26

-12
242
274

242

255
-3
274

248

255
248

235
274



<

NAC FOAM 338-
2-84)
NACM 1102,

3201, 3202 BIBLIOGRAPHIC DATA SHEET

SEE INSTRUCT{ONS ON THE REVERASE

U.S. NUCLEAR REGULATORY COMMISSION

1. REPORT NUMBER (Assigned by TIDC. a0d Vol No., it any)

EGG-SSRE-8137

2. TITLE ANO SUBTITLE

MIRAP, Microcomputer Reliability Analysis
Program

3 LEAVE SLANK

4. DATE REPORT COMPLETED

MONTH ] YEAR
S, AUTHORIS) Janua ry 1989
6. DATE REPORT ISSUED
J. N. T. Jehee o i e
January 1989
7. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (inciude 2y Code) 8 F\OJECT/TASKMOGK UNIT NUMBER
U. S. Nuclear Regulatory Commission I— ___
. 9. FIN OR GRANT NUMBER
Washington, D. C.
10. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (/ncivde Zip Code} 1%a. TYPE OF RE-'ORT
Technical

b, PERIOD COVERED (nciusive dates]

12 SUPPLEMENTARY NOTES

13. ABSTRACT (200 words or ‘ess)

A program for a microcomputer is outlined that can
determine minimal cut sets from a specified fault tree
logic. The speed and memory limitations of the :
microcomputers on which the program is implemented
(Atari ST and IBM) are addressed by reducing the fault
tree’s size and by storing the cut set data on disk.
Extensive well proven fault tree restructuring
techniques, such as the identification of sibling events
and of independent gate events, reduces the fault tree’s
size but does not alter its logic. New methods are used
for the Boolean reduction of the fault tree logic.
Special criteria for combining events in the 'AND’ and
‘OR’ logic avoid the creation of many subsuming cut sets
which all would cancel out due to existing cut sets.
Figures and tables illustrate these methods.

14 DOCUMENT ANALYSIS « KEYWOROS'DESCRIPTORS

b. IDENTIFIERS/OPEN.ENDED TERMS

15 AVAILABILITY
STATEMENT

16 SECURITY CLASSIFICATION
Moo .
Unclassified

(This report}

17 NUMBER OF PAGES

18 PRICE




