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ABSTRACT

A program for a microcomputer is outlined that can determine minimal 
cut sets from a specified fault tree logic. The speed and memory 
limitations of the microcomputers on which the program is implemented 
(Atari ST and IBM) are addressed by reducing the fault tree's size and by 
storing the cut set data on disk. Extensive well proven fault tree 
restructuring techniques, such as the identification of sibling events and 
of independent gate events, reduces the fault tree's size but does not 
alter its logic. New methods are used for the Boolean reduction of the 
fault tree logic. Special criteria for combining events in the 'AND' and 
'OR' logic avoid the creation of many subsuming cut sets which all would 
cancel out due to existing cut sets. Figures and tables illustrate these 
methods.

ii



SUMMARY

A personal computer (PC) based, fault tree processing computer 
program is outlined that uses both new and existing data processing and 
management techniques. These techniques provide the program with the 
capability to process relatively large fault trees in the memory limited 
environment of the PC and in an expeditious manner.

The processing begins by restructuring the fault tree prior to 
Boolean reduction. This is done in two phases for maximum efficiency.
The first phase, which is fast executing, entails: 1) compressing 
identical gate type, 2) combining events that always appear together, 3) 
naming gates with identical input the same, and 4) promoting events common 
to all the inputs to a specific 'AND' gate to their highest level. The 
second, more time consuming restructuring phase comprises: 1) removing 
events that are subsumed by events higher in the tree and 2) identifying 
independent subtrees.

After the restructuring is completed the Boolean reduction is 
performed by storing the intermediate cut set information on a disk 
(floppy, hard or virtual) in a Direct Access File. In this phase, the cut 
sets are maintained in terms of independent subtrees and pseudo-gates, 
which saves considerable space. Bitmaps and a binary data structure are 
used to allow selective searches during the reduction, rather than 
requiring a scan of the complete list of events. The actual cut set 
generation is done using the bottom-up method and program, and although it 
does not allow 'NOT' events, it does remove any user-defined mutually 
exclusive event combinations.

The final cut set list is displayed in a binned format that lets any 
'outliers' to be easily recognized. The bins are defined by a matrix of 
the cut set order and probability (or frequency). The number of cut sets, 
their frequency, and their contribution to the total are all displayed.

MIRAP consists of approximately 6000 lines of code and is written in 
FORTRAN 77. The program requires the fault tree to be in alphanumeric 
form, which can be generated using an ordinary text editor.
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1. INTRODUCTION

1.1. General

Systems potentially capable of endangering the lives of many people, or 
of destructing large sums of money require a safe operation. One method to 
assess this safe operation is analyzing all the combinations of events, such 
as component failure states and human errors, which if present and/or 
occurred simultaneously would cause an undesirable event to occur. This 
list of minimal combinations is with complex systems usually obtained from a 
system logic model or a fault tree by means of a computer.

In this report a computer program is outlined that determines this list 
of minimal combinations, or minimal cut sets, by using a microcomputer. The 
limited memory and speed of these systems require special techniques to be 
applied. The Boolean cancellation of the cut sets in the final process 
stage is strongly enhanced by reducing the fault tree size in the early 
process. Existing and new techniques are implemented in this preprocessing 
stage. The Boolean reduction uses a direct search for specific cut sets 
only as opposed to scanning a complete list. Memory requirements to execute 
the program are reduced by storing the intermediate information regarding 
e.g. cut sets and event references, on disk. Simple word processor editing 
skills are sufficient for preparing the input file. Extensive error 
checking procedures are incorporated in the program.

1.2. Fault Tree Restructuring

Restructuring the fault tree prior to the complete Boolean reduction is a 
crucial step in obtaining an efficient cut set determination process. In 
this restructuring only logic criteria are applied which leaves the tree 
logically equivalent to the original tree. Probabilistic reduction is only 
considered in the cut set determination to decrease the size of the cut set 
list.
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The applied concepts for restructuring the tree are classified into two 
groups with respect to their speed of execution, viz.:

a group of relatively fast executing restructuring methods containing:

o compressing cascading gate events of identical type,
o combining events which as siblings always appear together in the 

tree,
o naming identical gate events the same, and
o removing first order input events from the 'AND' gate input list;

- some more time consuming methods, viz.:

o removing subsuming events based on first order events closer to 
the top event, and

o identifying all the independent gate events.

The relatively fast executing methods are carried out first in an 
iterative manner. When no further reduction can be achieved, the more time 
consuming methods are addressed. If subsuming events are identified and 
removed, the fast executing methods are applied another time. When no 
subsuming events are found, the independent gate events are searched for at 
last.

1.3. Boolean Reduction

The memory requirements and the execution time for the cut set 
determination procedure are significantly reduced by restructuring and 
simplifying the original fault tree. However the number of cut sets can 
still be too large to fit in the computer's memory. Therefore special 
software techniques and program concepts facilitate the handling of sizeable 
cut set lists.

The software techniques concern mainly the use of disks for storage and 
retrieval of cut set data. Hard, floppy, or - if the computer's memory is 
large enough - 'Random Access Memory (RAM)' disks can be used. A large 
cache memory is used to enhance the retrieval efficiency by limiting the
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frequency of disk access. The cut sets are stored in binary data structures 
on Direct Access Files. These binary data structures enhance efficient 
search procedures since ideally it would split its searchable list in half 
at each step, requiring maximum only some log n steps for a list with n cut 
sets. This opposed to a sequential data structure requiring n/2 steps in 
average.

The selected program concepts include direct searches for specific cut 
sets and subsets only, and a bottom-up fault tree processing procedure.
These as opposed to other feasible methods as searching a whole list for 
matching or subsuming cut sets stored in a bit representation, see e.g. 
Reference[l], and a top-down approach. To further discriminate the searches 
for specific cut sets or subsets, bitmaps are used showing the existence of 
events in the concerned lists. While applying the searches the cut set list 
for an 'OR' gate is assembled. The processing of an 'AND' gate requires an 
intermediate step to ensure the removal of all the subsuming cut sets. 
User-defined or default cut-off limits on order (max. 16) and probability or 
frequency affect the logical combination of events in the 'AND' gates. 
Although 'NOT' gates and complementary events cannot be processed, cut sets 
with user-defined mutually exclusive events can be deleted from the final 
list.

1.4. Computer Program

The computer program is implemented on an IBM and an Atari ST mini­
computer and consists of approximately 6000 Lines of Code (6 KLOC) standard 
FORTRAN 77. Although hard disks and extended memory enhance the speed of 
the program execution considerably, only a mathematical co-processor for the 
IBM is essential.

The input file consists of ASCII characters and comprises the fault 
tree, and possibly the failure data, the cut-off criteria, and the list with 
mutually exclusive events. The input file can be created by users with 
regular word processor skills. Many input checks are performed to aid the
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user and to prevent erroneous results. Error and warning messages address:

wrong or suspicious input specifications such as:

o case significance, which is prone to errors and therefor all lower 
case characters are transformed to upper case to effectively, 
neglect case significance,

o multiple definition of the same gate, which will cause a warning 
message if the gate is defined identically, and an error message 
if the definitions differ,

o fault trees possessing loop structures, which are trees containing 
gate events that ultimately reference itself, this includes the 
special loop structure of a tree without an identifiable top, and

o suspicious failure data definitions, which generate warning 
messages only for a large variety of conditions like multiple 
failure data definitions, failure data for gate events, no failure 
data for basic events, and data larger than 1 or negative;

violations of the program's limits such as:

o event names longer than 20 characters,
o more than 40 events on one input line, and
o more than 1500 different basic and gate events in the input file.

Although efficient methods have been applied to increase the processing 
speed of the program, large problems can still take a considerable amount of 
time. Therefore the program possesses a 'walk-away capability' meaning that 
after defining the in- and output files and setting the program control 
parameters no interaction with the program is required until it is finished.

2. DEFINITIONS

This section gives the definition of the used terminology in this 
document. For a more elaborate list of definitions, the reader is referred 
to [3].
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A basic event is either a component or human fault that will not be 
developed in more detail. The choice of basic events should be commensurate 
with the required resolution of the analysis, e.g. for assessing the 
reliability of a power plant, the diesel generator itself without its 
interfacing systems can be regarded as a single basic event, while for 
comparing different diesel generator designs many detailed basic events 
relating to cooling and lubricating the engine and to its fuel supply can be 
distinguished.

Children of gate events are the events underneath it, and apply to gate 
events only.

The domain of a gate event comprises of a list of all the basic and 
gate events underneath it. This list only registers the occurrence of 
events, not the frequency of its occurrence and is stored in a so-called 
'bitmap', viz.:

events 123456789, . . . 1500
present yes or no? ynnyynynn etc.
bitmap 100110100 etc.

For 1500 events 1500 bits are required which translates into 1500/16 is 94 
two-byte words.

Independent gate events or subtrees are parts of the fault tree that 
can be evaluated separately since all of its constituent events exclusively 
occur under the independent gate. For the boolean reduction of the 
remaining part of the fault tree these independent gate events are 
considered as basic events.

A gate event combines two or more basic or gate events according to its 
associated logic. Two types of gates are used, viz. an 'OR' and an 'AND' 
gate. Within the terminology an 'OR' gate is true or occurs if either one 
of its input is true, while an 'AND' gate occurs if all of its inputs 
occur. More special logic combinations such as exclusive 'OR' gates and 
priority 'AND' gates as discussed in [3] are beyond the scope of this paper.
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Parents of either gate or basic events refer to the gate events above
them.

A pseudo-oate event is a simple independent subtree consisting of 
sibling events which occur once as input to this subtree only. Pseudo-gate 
events are identified as such in the restructuring part and are treated as 
basic events in the boolean reduction.

A reverse reference list of basic and gate events contains all the gate(
events which has the considered event as input.

A sibling event is a basic event that share its parent gate(s) with 
other siblings from his group. A group of sibling events can only share 
parent gates of one type of gate logic, either 'AND' or 'OR'. After a group 
of sibling events is identified, a pseudo-gate is created with these sibling 
events as input.

A subsuming cut set is a cut set which is included in another cut set, 
e.g. cut set 'A, B, C' can be deleted since it is included in cut set 
'A, B'. A subsuming event in the fault tree is an event which will result 
in one or more subsuming cut sets and can thus be deleted from the fault 
tree.

3. RESTRUCTURING THE FAULT TREE

3.1. Restructuring Concents

As mentioned in the introduction the restructuring of the fault tree is 
a crucial step in simplifying the logic and obtaining an efficient cut sets 
cancellation process. Existing codes apply many of the discussed methods, 
however the beneficial effect of a concerted action of the methods, as 
outlined here, is not fully explored.

The restructuring methods are derived from logic criteria, 
probabilistic criteria are presently not applied in the fault tree 
restructuring. This implies that the tree remains logically equivalent to
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the original tree. Probabilistic reduction is only an option in diminishing 
the size of the problem in the cut set determination process by using 
cut-off criteria for order and probability or frequency.

Two groups of restructuring methods are identified with respect to 
their required amount of execution time. One group of relatively fast 
executing methods is addressed first in an iterative manner. Only after 
these methods fail to achieve any further simplification more time consuming 
methods are applied. An interactive option allows an experienced user to 
modify this sequence.

The obtained reduction by restructuring the tree depends strongly on 
characteristics of the original tree. Methods which perform well for one 
tree might not be of any value for another. No general classification of 
trees is attempted, however a general qualification of the methods is given.

3.2. Compressing Cascading Gates

Cascading gate events of the same type or gates with one child only can 
be compressed without changing the logic of the tree: This method is
demonstrated on the tree of Figure 3-1 resulting in Figure 3-2 fault tree. 
This method by itself generally does not reduce the tree, the number of 
levels under the top or the depth of the tree is reduced at the expense of 
increasing its width. However this procedure facilitates the identification 
of sibling events and of first order inputs to 'AND' gates.

3.3. Creating Pseudo-gates of Sibling Events

Creating pseudo-gates of sibling events as is shown in Figure 3-3 is 
generally the most powerful of the presented reduction techniques, see in 
[2]. Three pseudo-'OR'gates, each comprising two basic events, combined in 
a cut set expand to eight cut sets. Especially when the resolution of the 
system representation in the tree is large, many pseudo-gates can be 
identified. Pseudo-gates can contain: basic events, independent gates, and 
previously identified pseudo-gates.
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The detection of pseudo-gates requires a reverse reference list for 
each potential candidate. To avoid comparing the reverse references of a 
large number of events, the sum of the assigned event numbers of the reverse 
referenced event is stored in a list and ranked. Only those candidates with 
the identical reverse reference number are further analyzed on pseudo-gate 
characteristics. Obviously only those sibling events qualify which are 
combined in the same logic, either all in 'AND' or in 'OR' gates.

3.4. Naming Identical Gates the Same

This method requires no further explanation. Identical gate events are 
found which are either specified in the input or formed in the restructuring 
process. Detecting similar gates is performed analog to the sibling events 
while using the sum of assigned events numbers of the gate input events 
instead.

3.5. Removing First Order Inputs to 'AND7 Gates

Either the user-defined fault tree or the restructured tree can possess 
'AND7 gates with one or more children which are first order event(s) for 
that gate. The procedure addressed here will introduce an intermediate 'OR' 
gate with these first order event(s) and the modified 'AND' gate as inputs, 
see basic event H in Figure 3-4. A special case is when only one or more 
first order cut sets to the 'AND' gate remain in which case the modified 
'AND' gate is deleted. Events C and D in Figure 3-4 qualify for this 
condition since modifying the 'AND' gate by removing events C and D results 
in an 'empty' 'OR' gate and consequently in an 'empty' set for the 'AND' 
gate.

An appropriate renaming of the modified 'OR' gates is performed by this 
program module since 'OR' gates could be used at other branches in the tree 
which do not qualify for this reduction. An interesting result of this 
'promoting' first order inputs to 'AND' gates is that first order events for 
the top event will boil up to under the top of the tree assuming that the 
option for compressing cascading events is selected.
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Although it is acknowledged that an analog procedure could be followed 
for 'AND' gates under an 'OR' gate with identical input, see Figure 3-5, 
presently this situation is left unchanged.

3.6. Removing First Order Subsuming Events

If the child event of a particular gate also occurs as input to a gate 
in the same branch further from the top event, this latter input of the 
child event can be changed, based on rules regarding the tree logic. If the 
concerned gate or basic event is a child of an 'AND' gate, the input of this 
event to other 'AND' gates downward in the branch can be removed, while the 
'OR' gates with this event as input can be deleted completely as shown in 
Figure 3-6. If the concerned event is a child of an 'OR' gate then 
analogously the inputs of this event to 'OR' gates can be removed and 'AND' 
gates can be deleted completely. Since the affected gates, see Figure 3-6, 
can also be used in other branches of the tree which do not qualify for this 
reduction, only those gates are modified which in all cases qualify for this 
reduction. Although a fairly complex renaming for the affected gates could 
be used to apply this method also for partial modifications of the tree, 
presently this is not implemented since it requires additional criteria for 
large fault trees in order to prevent exceeding the maximum number of 
events.

The previously established bitmaps of the domains of the gate events 
and its reverse references are used to construct an efficient algorithm. 
After finishing this option, another pass is made through the four simpler 
methods.

3.7. Identifying all the Independent Gates

Independent gate events are subtrees which do not have events in common 
with the rest of the tree and can for this reason be evaluated separately. 
Existing independent gate events allow the division of the problem into a 
number of smaller sized subproblems with more attractive properties. Either 
straight inserting the subtree's cut sets in the final result or simply 
assigning the failure frequency of the independent subtree to the 
independent gate in the final cut set list will yield responsibility. The
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minimal cut set list expressed in the original events, or the top event's 
failure frequency. The separate treatment of all the independent gate event 
relieves the program from all the events in those independent subtree which 
otherwise should have been processed until the end.

The applied fault tree construction techniques, or the 'school' of the 
analysts, contribute greatly to the inclusion of independent subtrees, and 
of the previously discussed pseudo-gate events. Especially the choice 
between using large fault trees and small event sequences, or small fault 
trees and large event sequences influence the characteristics of the fault 
tree. The latter method will most likely treat larger independent subtrees 
separately as events in the event sequences.

Not every independent subtree is as easily recognized. Although the 
applied method requires more time than those previously described, it recog­
nizes all the independent subtrees, which can considerably save execution 
time in the final cut set cancellation process. First bitmaps for all the 
gate events are generated representing the occurrence of all the gate and 
basic events in the inputs of the concerned gate and of its children, 
grandchildren, etc., including the gate itself. A specific gate event is 
independent if the reverse references of all its bitmap events are equal to 
or a subset from that particular gate bitmap, see Figure 3-7. This method 
identifies also higher order sub-subtrees.

4. DETERMINING THE MINIMAL CUT SETS

4.1. Handling Cut Set Data

Since the memory of microcomputers is limited and the number of cut 
sets can be quite large, the cut sets are stored on disk (floppy, hard-, or 
memory 'RAM' disks) by using a Direct Access file. The cut set lists with 
variable order cut sets are stored on this file. Apart from this the cut 
sets are expressed in terms of the non-expanded events, such as independent 
gates and pseudo-gates which saves a considerable amount of space.
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Only selective searches for specific cut sets are required as opposed 
to scanning a complete cut set list. To enhance the efficiency of this 
process unnecessary searches are prevented at an as early as practical stage 
and the data structure of the cut set list facilitates a fast search 
procedure. This is accomplished by using bitmaps for presenting the 
occurrence of events in lists and by using a binary data structure for the 
cut set list organization, see annex A.

The cut set determination is a so-called bottom-up process, i.e., the 
top event cut sets are obtained by starting at the end of the branches and 
working consecutively to the top of the tree. To be able to substitute the 
subtree probabilities into the final tree, the independent subtrees are 
processed first.

In the author's opinion the applied methods are better elucidated with 
characteristic examples for the 'OR' and 'AND' logic than with an elaborated 
mathematical description. To this end lists with selected cut sets are 
logically combined showing examples of all the discussed techniques. The 
selected cut sets are supposed to be originated from processing lower region 
gates which are not discussed.

The next presentation of the 'OR' and 'AND' gate logic closely follows 
the program algorithms, which reduce the combination of more than two cut 
set lists to multiple combinations of two cut set lists. The simpler 'OR' 
gate logic is presented first in section 4.2. The 'AND' gate logic is given 
in section 4.3 and addresses especially the creation of large lists with 
non-minimal or subsuming cut sets. Section 4.4 describes the treatment of 
mutually exclusive events, which uses similar techniques as the 'AND' and 
'OR' logic combinations. Finally, the elaborate presentation of the cut 
sets is presented in section 4.5.

4.2. Processing 'OR' Gates

The 'OR' gate logic requires less steps than the 'AND' gate logic and 
is therefor described first. As mentioned above any combination of more 
than two lists can be reduced to multiple combinations of two lists. Basic 
events will be treated as a cut set list with only one first order cut set. 
Table IV-1 shows two cut set lists A and B that will be combined in an 'OR'
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logic and that are obtained by processing gates 1 and 2. These lists 
consist of selected cut sets which can illustrate all the characteristics of 
this process. These lists originate from processing lower region gates in 
the tree starting with gates with basic events as input only. A basic event 
in this concept is treated analog as a gate event with an elaborate cut set 
list containing one cut set of order one, viz. the concerned basic event.
The precise creation of lists A and B is not relevant for the discussion in 
this section.

If list A and B do not have common events, then the lists are simply 
added, otherwise the cut sets are processed separately and added to the 
final list if they qualify. First each cut set of list A is processed and 
second the remaining cut sets of list B. Table IV-1 shows two lists with 
specially selected cut sets for illustrating the described mechanisms.

Each cut set of list A is compared with list B with respect to 
consecutively:

1) its intersection of the cut set with the events in the domain of 
list B,

2) the existence of an identical cut set in list B, and
3) the existence of any subset of the cut set considered in List B.

Based on the results of the above mentioned comparisons the following 
actions are taken, respectively:

1) if no intersection exists this cut set is placed in the final 
list,

2) if an identical cut set exists in list B this cut set is placed in 
the final list and the identical cut set in list B is temporarily 
incapacitated,

3) if a subset of this cut set exists in list B, then this cut set is 
not added to the final list, and

4) finally if no identical cut set or subset is found, this cut set 
is added to the final list.
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Table IV-1 shows examples of the above mentioned procedures.
Processing list B is essentially the same as processing list A, except for 
the search of identical cut sets since they are incapacitated already. The 
final list will be referenced by the concerned gate and the incapacitation 
in list B should be made ineffective since list B might later be compared 
with another cut set list. Table IV-2 shows the process for list B.

4.3. Processing 7AND7 Gates

Processing the 'AND' logic requires more stages than the 'OR' logic.
Any problem for the 'AND' combination is reduced to combining two cut set 
lists. The algorithm especially prevents the creation of too many 
non-minimal cut sets since processing those cut sets is a time consuming 
effort. Table IV-3 gives two cut set lists A and B, obtained by processing, 
the input to gate 1 and 2. The selected cut sets will demonstrate all the 
mechanisms in this process.

In case lists A and B do not have common events (intersection is zero) 
the lists are simply combined without giving attention to subsuming events. 
If the lists do possess common events then first list A will be processed, 
second list B, and finally an intermediate list. The cut sets which qualify 
for the final list need no further processing, the cut sets in the 
intermediate list need to be compared with the intermediate list and with 
the final list for the existence of subsuming cut sets.

Each cut set of list A is compared with list B with respect to 
consecutively:

1) its intersection of the cut set with the events in the domain of 
list B,

2) the existence of an identical cut set in list B, and
3) the existence of any subset of the cut set considered in List B.
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Based on the results of the above mentioned comparisons the following 
actions are taken, see Table IV-3, respectively:

1) if its intersection is empty, this cut set is not processed,
2) if an identical cut set exists in list B then this cut set is

placed in the final list and the identical cut sets in list A and B
are temporarily incapacitated, and

3) if a subset of this cut set exists in list B then this cut set of
list A is placed in the final list and the cut set in list A is
temporarily incapacitated.

While processing the cut sets of list B, essentially the same 
comparisons are performed except for the search for identical cut sets. 
However, the actions are different, see also Table IV-4, viz.:

1) if a subset of this cut set exists in list A, this cut set is 
placed in the final list, and

2) if this subset does not qualify for direct transfer to the final 
list, all the combinations of this cut set with the cut sets of 
list A are placed in an intermediate list.

Finally the intermediate list is compared with itself, and with the 
final list for occurrence of subsets. If no subsets occur, the cut sets are 
transferred to the final list. Identical cut sets 'collide' in the same 
branch position in the binary tree of the final list and don't have to be 
searched for.

Finally, the incapacitations in list A and B should be made ineffective 
at the end of the 'AND' gate processing, since lists A and B might later be 
compared with other cut set lists.

4.4. Processing Mutually Exclusive Events

Mutually exclusive events can be specified by the user and will be 
deleted from the final cut set list. The final cut sets and its subsets 
will be searched for in the list of mutually exclusive events. If a match 
is found that particular cut set is eliminated from the final list.
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4.5. Presenting the Minimal Cut Sets

Since the number of cut sets expressed in basic events can be prohibi­
tively large, the normally presented cut sets are expressed in independent 
subtree gates and pseudo-gates which usually comprises a much smaller number 
of cut sets, while the cut sets of the independent subtree gates and 
pseudo-gates are presented separately. A list of the cut sets expressed in 
basic events with the specified cut-off criteria applied can be selected as 
a program option.

The statistics of the cut sets are concisely presented in Table IV-5.
The format of the table is chosen such that 'outlier' cut sets can be 
identified easily and that the information regarding top event and cut-off 
criteria are all included.

The cut sets are classified per order and per probability or frequency. 
The number of cut sets, their summarized frequency, and their fraction of 
the total frequency are given per order. Within each order the cut sets are 
distributed according to their value into 9 linear, 9 logarithmic, and 2 
special bins. The bin boundaries are relative to a rounded value of the cut 
sets' maximum probability or frequency, as is explained in the notes of the 
table. The two special bins contain cut sets with extremely small, but 
non-zero values and cut sets with value zero, most likely caused by 
definition (probability = 0).

The applied cut-off criteria are shown in the table and the number of 
times the criteria were applied are given. The precise number should be 
interpreted cautiously, it does not indicate the number of discarded cut 
sets for the top events since that number could be larger through possible 
later combinations of the discarded cut sets with other events; and on the 
other hand could that number be smaller or zero as well since the discarded 
cut sets might otherwise have been subjected to reduction by subsuming 
events. However if a limit is never encountered, attempting to obtain more 
cut sets by merely changing that limit (increasing for order and decreasing 
for probability) has no effect. The probability cut-off value multiplied 
with the number of times the criterion is applied gives an upperbound of the
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discarded cut sets. A more accurate approximation of this upperbound will 
be evaluated in the last update of the program. The cumulative 
probabilities of the discarded cut sets by the cut set order and by the cut 
set probability cut off criteria will be calculated and shown separately.

A discrepancy exists between the method of deriving the frequency per 
order and the more accurate method of obtaining the total frequency. Since 
the method per order is a straight rare event approximation, it can become 
larger than 1.0 while the method for obtaining the total frequency applies 
the inclusion-exclusion principle in a limited manner ensuring that its 
total never exceeds 1.0 . The algorithm for calculating the consecutive 
frequency uses the formula:
P =P +U-P ) * pcut setj cut setj_j ' cut setj^' cut set^

in which i refers to the particular cut set frequency, and 
I indicates the sum of the frequencies of cut set1 

through cut set..

5. STRUCTURE OF THE COMPUTER PROGRAM

The computer program consists of approximately 6000 Lines of Code (6 
KLOCs) of FORTRAN 77. The choice for this language is its superior 
portability to other machines and the authors familiarity with it. The 
realization of fancy screens and of elaborate interactive control is not 
supported by this language. The advantage is that no complicated menu 
sequences need to be learned. System and compiler dependent routines are 
used for obtaining the time and the date, for setting and reading bits in 
2-byte integers and for writing two 2-byte integers into one 4-byte integer 
and vice versa.

A minimum of special knowledge is required for using the program; word 
processor skills are adequate to write the input fault tree logic and 
failure data. Knowledge of system analysis and reliability theory to define 
the problem and to interpret its results is obviously required.

Memory efficiency is given a great deal of attention by using 2-byte 
integers whenever possible, and by storing cut sets and other administrative 
data on disk. Time efficiency is addressed by applying the described

16



methods, by using available fast algorithms for sorting and searching, and 
by reducing the disk read operations through a large cache memory.
Structured programming techniques are inevitable for this medium-sized code.

A to be published user's manual will contain example inputs and a list 
with the error messages.

6. DISCUSSION OF THE RESULTS

The described computer program MIRAP is capable of handling large fault 
trees on microcomputers since it addresses the speed and memory limitations 
of these machines adequately and incorporates special techniques as 
described in this paper regarding fault tree restructuring. The results of 
this program have been compared favorably with other programs during the 
course of its development. However, these results are not reported here 
since a more elaborate effort is required to appropriately compare the 
various existing programs. A comparison of the characteristics of other 
programs such are outlined in [3] and [4] is clearly beyond the scope of 
this paper. After extensive error checking, a user's manual will be 
published that will include an analysis of a problem which has similar 
characteristics as the benchmark fault tree of [4] and will facilitate 
mutual comparisons. Due to proprietary aspects dissemination of that fault 
tree and its data is not possible.
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Table IV-1: Processing the first cut set list in an 'OR' gate (list A)

Each cut set of list A will be processed and if its characteristics meet 
the criteria it will be transferred to the final list.

List A 
Gate 1

List B 
Gate 2

List C 
Final lis Remark

a,b,c a,b,c* a,b,c Cut set found in list B and placed in 
the final list. This cut set in list B 
is temporarily incapacitated.

a,b,d a,d A subset of this cut set matches a cut 
set in list B and this cut set is for 
that reason not placed in the final list

a,e a,b,e a,e Although cut set 'a.^e' of List B is 
not a minimal cut set, at this point 
only cut sets and its subsets of List A 
are searched in List B.

x,y x,y No events in common with list B, this 
cut set is placed in the final list.

Note: 1) This cut >et is temporarily incapacitated.

Table IV-2: Processing the second cut set list in an 'OR' gate (list B)

Each cut set of list B will be processed and if its characteristics meet 
the criteria it will be transferred to the final list.

List B 
Gate 2

List A 
Gate 1

List C 
Final lis Remark

a,b,c^ a,b,c - This cut set is incapacitated.

a,d a,b,d a,d Cut set 'a.bjd' of List A didn't qualify 
in the first step for inclusion in the 
final list. Cut set 'a,d' is added.

a,b,e a,e

x,y

A subset of this cut set matches a cut 
set in list A and the cut set is for 
this reason not placed in the final list

Note: 1) This cut >et is temporarily incapacitated.
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Table IV-3: Processing the first cut set list in an 'AND7 gate (list A)

List A 
Gate 1

List B 
Gate 2

List C 
Int.list

List D 
Final lis Remark

a,b,c* a.b.c1 a,b,c Identical cut set found in 
list B. Place this cut set in 
the final list and incapaci­
tate both these cut sets.

a, b,d^
2x,a

b, d,c

x,y

a,d a,b,d A subset of this cut set is 
found in list B. This cut set 
as such will be placed in the 
final list, incapacitated, and 
not combined since 'a.b.d' 
will be minimal.
No events in common with list
B, not processed in this stage

Note: 1) 
2)

This cut set is temporarily incapacitated.
These cut sets are added to show effects in the 
second processing stage.

Table IV-4: Processing the second cut set list in an 'AND' gate (list B)

List B 
Gate 2

List A 
Gate 1

List C 
Int.list

List D 
Final lis ; Remark

a,b,c^

x,y
x,a
M,c
a.bjC1 a,b,c This cut set is incapacitated.

a,d a,b,d^ a,d,x,y3
a,d,e
a,d,x
a,b,c,dJ

No subset of this cut set are 
found in list A. This cut set 
will be combined with the re­
maining cut sets of list A.
Its result is placed in inter­
mediate list C.

a,b,e^ a,e a,b,e A subset of this cut set is 
found in list A. This cut set 
as such will be placed in the 
final list.

Note: 1) 
2)

3)

This cut set is temporarily incapacitated.
Since this cut set is no more addressed, incapacitation is 
not required.
These cut sets will be deleted in the final process step
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Table IV-5: Concise presentation of the cut set statistics

***★*******★*•*★*****★★*★**★*****★★★★***★★****★★★**★★**★★★★*★*******★*★*★********

** CUT SET STATISTICS FOR TOPEVENT: NO_FEEDWATER_TO_SG ** 
**____________ __ _____________________________ __ ____ ____ _________________ **

**CUT-NUMBER | FRACTION | TOTAL | CUT SET CLASSIFICATION -see (1)
**SET| OF | OF TOTAL jFREQUENCY j LINEAR BINS | LOGARITMIC BINS |ZE-**
**ORD| CUTS j---------------------------- ---------------------- ------------ j........ ................. ........... j RO **
** ----------------- 2.0E-3 1.2E-3 4.0E-4 6.3E-6 6.3E-8 NIL**
** | 1.8E-3 1.0E-3 2.0E-4 2.0E-6 2.0E-8 **
** j 1.6E-3 8.0E-4 6.3E-5 6.3E-7 6.3E-9 **
** 1.4E-3 6.0E-4 2.0E-5 2.0E-7 O.OE-1*

|—+-+-+-+-+-+•

ic 2 5 .43616 1.2800E-03 1
It 3 34 .55635 1.6328E-03 1
■k 4 35 .00684 2.0087E-05
ir 5 28 .00065 1.9091E-06
* 9 CUT SETS LARGER THAN ORDER 8 ARE ELIMINATED
* — TOTAL ----------------------------------------- 1—+-+-+-+-+.+.

* 102 1.00000 2.9348E-03 -see(3) 1 1

•+-+-|------  **

1
2 1 1 |PROB. *

1 1 1 310 2 19 5jCUT- *
| 45377 9jOFF *
j 2 6 713 j-X-X- *

ORDER CUT-OFF*
+-+-1 -+-+-+-+-+-+-+-+-^------*

1 3 1 314 7 5152427|-X-X- *
if it

** FREQ. ABOVE IS RARE EVENT APPROX|.CUT-OFF|PROB. 1.00E-08 9598 TIMES APPLIED ** see (2) 
** FREQ. BELOW IS MORE ACCURATE jLIMITS joRDER 8 LIMIT IS NEVER HIT **
** TOTAL FREQUENCY 2.9316E-03 jcUT-OFF NOT APPLIED TO 1-ST ORDER CUT SETS**
Tt*******************************************************************************

** ELAPSED TIME 3634 SECONDS(TOTAL: 1 HRS, 9 MINS,36 S)** see (4)
• ** ^ ^ _ _ .. .. _______________ **
** TIME IS 12:19: 4 ON APR 26 1988

Notes:
(1) 'Outlier' cut sets are more easily recognized by this classification. The 102 cut sets are clas­

sified in 9 linear, 9 logaritmic, and 2 special bins per order. The bin boundaries are deter­
mined relative to a rounded value of the cut sets maximum probability or frequency. The 9 linear 
boundaries are 100%, 90%, 80%, etc. until 10% of Pmax, the 9 logaritmic boundaries are:
Pmax * 10 *, Pmax * 10 Pmax * 10 etc. until Pmax * 10 and the two special
bins summarize the cut sets with respectively an extremely small but non-zero probability and
those with zero (NIL) probability. A more elaborate form of this table is produced seperately.

(2) This table also shows whether the used order and probability cut-off values are actually applied 
in the cut set determination process. Merely increasing the order cut-off would not change the 
results in this case since that limit is never encountered, while decreasing the probability 
cut-off might yield more cut sets.

(3) The discrepancy between the two presented frequencies is caused by a different numerical sum­
mation. The row total frequency is a straight rare event addition of all the cut set frequencies 
while the frequency in the table's bottom line is obtained by applying the inclusion-exclusion
principle in a limited manner, viz. P = P ij + (1 - P ij) * P * This is morenew old old cut set
accurate and does not give probabilities larger than 1, but not exact.

(4) The elapsed time refers to the time past since the previous time message (in this case the time 
required for the cut set determination), while the TOTAL (time) is relative to the start of the 
program.
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top a
'OR'

1
= = >

top ac1,3'
’OR' ==> fig. 3-3
1

1 1
A ’OR'

1 1 1 
'* 'AND' ‘AND’ 'AND'

1 1 1 
A* B* E 1 2 3) 1 1'AND' ’AND’ 'AND'

rh
B E

i—J=—i i—+--------- 1 rh
'AND'* 'OR’ 'OR’ 'OR' ’OR’ C D ’OR'

—4—i i—+---------1 rh
'OR' 'OR' 'OR' ’OR' 'OR' C D

rh Hn rh rrhn
'OR' 'OR' CDFEHFHABGH

rh rh
C D E C D 

Note:
The gate logic is written in these concise 
fault trees and when opportune the gates are 
labelled. Events marked with an '*' will be 
changed in the next permutation.

r+i rh rh rh rh r^hn
CDECDCDFEHFHA*B*GH

Notes:
1) Compressed 'OR' gate.
2) Compressed 'AND' gate.
3) Subscript denotes compressed 

event.

Fig. 3-1 Original fault tree Fig. 3-2 Compressing cascading gates 
from fig. 3-1.

top ac 
'OR'

I
TT)1 1A.’^E ’AND'C* ’AND”’

'OR' ’OR' ’OR'

’AND'

rh2)
'OR' C D*

rhn rh,,rhn rh rh rhn
c d2)e c d2)c d2)f e h f h a_^g h

Notes:
1) Events A.B form a pseudo-gate.
2) Events C,D do not qualify for pseudo­

gate due to different gate logic.
3) Subscript denotes pseudo-gate.

top ac 
’OR’

II I l I 1
A E ’OR' ’OR’ ’AND’

P pL, ,1,
I)?)c and c d

’OR’3)'0R’3)•or-3)

APG
+ + rH
E F

Notes:
1) Events C,D in an ’OR’ combination remain 

from the 'AND' gate.
2) Event H is the common input to 'AND' gate.
3) These gates might appear unchanged in 

other parts of the tree.

Fig. 3-3 Creating pseudo-gates of sibling 
events from fig. 3-2.

Fig. 3-4 Removing first order inputs 
to 'AND' gates from fig. 3-3.

top b 
'AND'

- - |- - - - - - - - - - - - - J
’AND' 'AND’ 'AND' A1^ 'OR'

rh rh rh i—+----------- 1
ABCAEFAG G ’AND’ 'AND'

rh rh
b c E F

Notes:
1) Event A is the common input to ’OR' gate.

Fig. 3-5 Removing first order inputs 
to 'OR' gates (not applied!)
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Rules for removing subsuming eventstop d 
'OR'GO

1) Events which are also inputs to ancestors 
will be removed if the gate logics are 
simular in the corresponding cases,

2) The concerned gate of an event will be 
removed if that event is also input to an 
ancestor with a different gate logic, and

3) Only those modifications are carried out 
which apply to all the branches of the tree.

Notes:
1) 'AND' gate G4 can be removed because one of its inputs gate G1 also appears 

under the top ’OR' gate, see rule 2.
2) Event A can be removed from this 'OR' gate because event A also appears 

under the top 'OR' gate, see rule 1.
3) Event E could be removed from ’AND’ gate G5 in branch G0-G7-G8-G5 because this 

event also appears in 'AND' gate G7, see rule 1, however because this gate in 
branch G0-G2-G3-G5 does not qualify, see rule 3, this gate is not modified, rule 3.

Fig. 3-6 Removing first order subsuming events

A 'AND’Gl

rh i—
8 E 'OR’G3

’AND'G2l
'OR'G6

__I
D1) * '2r 1'AND’G4i;'AND'G5 A^B C

Hrn
Gl c D

'AND'G7

I—lH=-----1
E 'OR'G8 ’OR’

i—^i rh
H 'AND'GS G H

1 I.
E'3' F

'AND'

rh
I ’OR’

rhn
etc..

top c 
'OR'GO

1
1 l GO

’AND’Gl 'AND'G2 Gl

Hit-1D1 '0R'G3
—| G2

'OR'G4 'OR'GS G3
1

1 1 rh r-h G4
'AND'GS 'AND'G7 D E F 'AND'G3 G5

rh rh G6
A B AC G7

Notes:

Bitmaps gates jbasic 
-Events-01234567|ABCDEF

1. . 

llllljllllll 

lljlll...

Him. .1 
..111.... 
..Il.l...

Example 
-Analyze the gates in 
a bottom-up manner:

-Start with gate G6, its 
bitmap, incl. G6 itself:. 

-Add the RRs^ of A and 8 
-Conclusion for gate G6 see 
-Proceed with gate G3, 
its bitmap incl. G3 is: 

-Add the RRs of A, B, C,
G6, and G7:

-Conclusion for gate G3 see

0..34.,7|A.CD.F

then gate event Gl is a second order independent 
named the same as gate Gl.

1) If this events would be ’F', 
subtree, assuming gate G5 is

2) RR stands for reverse reference.
3) Since two gate events(G6 and G7) are referenced process is continued.
4) Since the determined bitmap references events outside the domain of gate G6, 

this gate does not qualify for independent subtree.
5) Gate G3 is independent since its bitmap equals the determined bitmap, except 

for its own reference.

.l.|U....

.U|ll....

I
•llllll...

.llllll...

.11)111...

Fig. 3-7 Identifying all the independent gates
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Data input Data output

Problem specification file 
containing:
- fault tree logic,
- fault tree data,
- cut-off criteria, and
- mutually exclusive events.

Program control through key­
board commands concerning:
- names of problem specifi­

cation and extended out­
put files,

- selection of program options
from a menu, and

- optionally selecting the top
event and interactively 
controlling the program flow.

Extended output file reporting 
all the main permutations and 
steps during program execution.

I

M I R A P

Screen display showing data 
written on the extended output 
file and data concerning the 
program’s progress.

Concise output file containing 
the final cut set list and its 
statistics.

Direct access file to alleviate 
the programs memory needs, to be 
purged at normal end of program.

A temporary file to store the 
data for the output file until 
a file name is specified and the 
file is appropriately opened.

Fig. 5-1 Program structure of M1RAP
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APPENDIX A. Binary data structure of the cut set list

A.1. Implemented Binary Data Structure

To facilitate an efficient search procedure the cut set list is organized in 
a binary data structure, which is stored on disk. The cut sets are ranked 
according to (1) their order, and (2) the numbers of the contained events.

A pointer to a higher and a lower ranked cut set is stored together with a 
backward referencing pointer as is shown below. This pointer structure supports 
a cut set retrieval procedure in either a ranked or a 'binary' fashion, with 
only the pointer to the previous cut set as input. The 'binary' cut set 
retrieval procedure obtains the cut sets in the same manner as the binary data 
structure was created initially. This prevents the destruction of the binary 
structure of a new cut set list, since retrieving the cut sets in a ranked 
fashion and creating a new list with them makes the new data structure 
sequential with unfavorable search properties.

The used record structure is :

cut set address address address event 1 event 2 event n
order 'parent' lower higher of of of

cut set ranked 
cut set

ranked 
cut set

cut set cut set cut set

2 bytes 4 bytes 4 bytes 4 bytes 2 bytes 2 bytes 2 bytes

Used rules: - Negative back reference indicates the root of the list,
(Conventions) - Referencing itself in the higher or lower ranked exit

indicates the end of that branch, and
Negative order incapacitates this cut set definitively and 
an order larger than 1500 incapacitates this cut set 
temporarily. Eliminating a cut set from a binary tree 
requires a complicated recreation of a part of the tree 
pointers and is not performed.

A.2. Example of a binary data structure

Word lengths are assumed equal for simplicity.

(address 281)

(address 255) (address 260)

(address 274)

(address 242)

(address 267)

(address 248)

(root, address 235)
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A.3. Contents of the data file

addresses last digit
..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9

First 23. 3 -12 242 248 2
two 24. ”5 "7 "2 235 255 242 7 9 3 235
digits 25. 260 267 3 6 7 1 242 255 255 11

26. 3 248 260 260 2 5 8 -3 248 274
27. 281 4 5 7 3 267 274 274 4 5
28. 7 4 267 etc.
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