UCRL--99893

DE89 010223

Partitioning a Finite Difference C?de
for a Local Memory Multiprocessor

Bryan Lawver

The 4th Conference on HyperCube
Concurrent Computers and Applications
Monterey, CA.

March 6-8, 1989

March 6, 1989

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

W\S‘:W\

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



Partitioning a Finite Difference Code
for a Local Memory Multiprocessor*

Bryan Lawver, A.J. DeGroot
March 6, 1989

Abstract

The TSAR code, a 3d finite difference EM model, was par-
titioned into parallel modules where each processor com-
puted a subset of the 3d mesh., The multiprocessor was
arranged in a square mesh of processors with the full range
of one dimension in each processor and sub ranges in the
other dimensions. Finding the range and checking for in-
dependence of array elements over those sub ranges is the
main problem of partitioning. In addition with local mem-
ory multiprocessors, the array elements are distributed
over the processors’ local memory and a communications
structure must be available which allows non-local ele-
ments to be accessed. Element communication must be
fast enough or few encugh to allow good utilization of the
processor compute power. Automated partitioning was
not available but recent work provides some hope in this
area.

TSAR stands for Time-Domain Scatiering and Re-
sponse software that has been used for many years to
model electric and magnetic waves in a three dimensional
box. This code was partitioned to run on the SPRINT pro-
cessor. SPRINT is a Systolic Processor with a Reconfig-
urable Interconnection Network of Transputers. It incor-
porates 64 floating point transputers. Results of this par-
titioning resulted in performance neatly equal to a CRAY
XMP for identical problems.

The Multiprocessor Partitioning
Problem

The problem is does a compiler do it? One can hope to
drop the old code in one end and have a nicely partitioned
multiprocessor drop out the other. For multiprocessors
the answer is still mostly no. A multiprocessor allows each
processor to operate independently of the other processors
until synchronization is specified. To minimize communi-
cation and synchronization between processors, partition-
ing should divide the code into large pieces of independent
code to be distributed among processors. In many scien-
tific codes and especially the TSAR finite difference code,

*This work wes performed under the suspices of the U.S. De-
partment of Energy by the Lawrence Livermore Laboratory under
contract W.7405-Eng-48. UCRL-99893

TLawrence Livermore National Labs PO 808 , L-156 Livermore,
Ca. 94550 415-422-6234

the large pieces of parallel code are found in loops which
iterate over the subscripts of the 3d arrays. The finite
difference code npdates each element of the mesh to find
a new estimate for the six state variables of the model at
each time step. By assighing a group of elements to each
processor of an N processor multiprocessor, we can hope
for an N times speed-up. Finding which part of the loop
to partition among processors remains the main challenge
of the partitioning problem. Some automated work is now
being reported [4,1].

Global memory multiprocessors allow the problem to be
distributed to individual processors with a single global
copy of the data arrays. As long as two processors don’t
try to update the same array element then N times speed
up is usually possible. Memory capacity, connectivity and
performance limit the number of processor a global mem-
ory multiprocessor can have. Local memory multiproce-
sors require the data to be localized to a particular proces-
sor with nonlocal accesses handled by a communications
system. A communications system does not automatically
improve connectivity or performance, but when matched
with the appropriate code can be used to connect many
more processors. The problem becomes can we find large
enough blocks of parallel code that minimizes communi-
cations. Secondly can we deterministically move the data
such that one processor sends the data when it generates
it and the other processor reads the data when it needs
it and neither waits unless it hasn’t yet received all of its
new data. The architecture of the Transputer supports
this second part very well.

Partitioning Loops

The DoAll one to N loop can be partitioned into N dif-
ferent blocks of code to run on N or some factor of N
processors as long as all references within the loop are in-
dependent. A procedure call within the loop obscures the

process of determining reference independence within the
block (figure 1).

This example can not be partitioned until the assign-
ments and references in Sub are examined. The method
of in-line expansion can sometimes solve this problem, but
recursion will defeat this method. The method expands
each procedure call in-line so a single block can be checked
for data dependency. Another method developed by Li
and Yew (4] to examine procedure calls within loops is




Do i=1, N
Array(s) = ...

CallSub(A, )

endDo

Figure 1: Loop with procedure call

3
EX
EZ
{i,j.k) E

x

Figure 2: Positions of Field components ahout a unit Cell.

called subscript propagation. It attempts to extract out
of procedures the range of referrences based on loop vari-
ables. With this information a partitioning of the loop can
be found if the referrences are independent. Some pre-
liminary work on a compiler has been done at the Center

for Supercomputing Research and Development using this
method.

Partitioning TSAR

A non sutomated form of subscript propagation was used
to develop a partitioning of the TSAR code. For most of
the loops it was easy to observe that the loop indices were
used as subscripts in the field arrays. Two loops were not
but they were sufficiently separate from the other loops
that parallelization and partitioning were easy.

The code updates electric fields (E) from surrounding
magnetic fields (H) in all three dimensions.{3] For each cell
the edges of a face represent field components which con-
tribute to a field emanating from the center of the face see
figure 2. The H cells are offset by 1/2 cell in each direction
so that the E fields emanate from the center of these cells
also. Numbering of edges drops the 1/2 cell offset from
the indices. This yields three equations for E fields one
for each direction and three more for the H fields. Addi-

tional equations estimate field values along the boundaries
of the mesk. These equations only compute the E fields
and there are 6 face estimates and 12 edge estimates for
each of the three E field directions. This produces 60 equa-
tions to estimate all of the field equations., There was also
another 8 equations to estimate the source conditions.

When disiributing cells to processors, most cells are
completely contained in just one processor The 68 equa-
tions that might apply to the cell are unmodified. But if
the partitioning of field values to processors divides a cell
in half in either of the two dimensions which processors
divide three space then some or all of the equations have
to be modified. Rather than rewriting all of the equations
it was decide to extend the local memory in the x and
y dimensions by one cell so that the partitioned cell ex-
ists in both processors, One processor always has enough
information to update the field while the neighbor which
needs the field value also has a copy. The overlap was
identified by examining the 60 equations and by moving
planes or vectors of data from one processor to another.
Each precessor could be a beginning edge, a middle part
or the end edge. These three cases times the 68 equations
produced approximately 160 different cases to examine.
This yielded 6 planes of data to move for overlap between
the processor computing the field value to the neighbor
which needs the data to compute its field values, Also 40
vectors of data were identified for moving at the boundary
to estimate field values. The planes were move between all
processors except when there was no processor in that di-
rection whereas the vectors of data were used to estimate
boundary conditions so if the processor has only internal
cells with no outside boundary then no vector data moves.

SPRINT System

The SPRINT system (2] includes 64 Transputers arranged
in a square mesh. TSAR is a three dimensional finite dif-
ference code. Two dimensions of the TSAR code were
distributed across the mesh of Transputers. Each Trans-
puter was connected to nearest neighbors in two dimen-
sions. Each index spans a row or column of processors.
At the hardware level a Transputer connects to each of
four neighbors except those which are on the edge of the
mesh, The connection allows data to pass over a physical
link. Each link is supporzted by an on chip protocol which
verifies the data is read before a new datum is sent.

‘We were able to start with a modular well written code
with approximately 50 routines. Of the routines, 10 were
pre- and post-processing routines which remained unmed-
ified on the host. New routines were provided for the
host to broadcasi the initialized common blocks and to
distribute initial state data to the individual processors.
The remaining routines were used to build the partitioned
code with very minor parameterization changes made to
the start and stop indices of loops. A couple of new rou-
tines interface with the host’s broadcast and distribution
routines. Two new routines were created 1o move the 6
planes of overlap data and 40 vectors. One routine moves




2701

265 1

260 1

2551

2501

Execulion time, milliseconds

245 1

240 .

T ¥ T T T T 1

0 10 20 J0 40 50 60 70
Number of processors

Figure 3: Performance N processors each with a 16x16x6
mesh.

E field overlap after the update to E fields and one moves
H field overlap afier the H fields update.

Performance

The original SPRINT system had 64 processors with
enough memory for each processor to contain a 16 by 16
by 6 mesh of cells. Figure 3 shows the SPRINT need-
ing 250 ms to complete one update of the mesh where 64
processors update 128 by 128 by 6 cells. The equivalent
size mesh when updated on a Cray XMP requires 218 ms.
This produces an equivalent performance of 87% for the
64 processor SPRINT. At this sizse problem one in eight
points are part of the overlap cells which move each step.

Figure 3 also shows a nearly linear speed-up. Some of
the smaller configurations are faster because of less com-
munications, but they also compute fewer cells because
not all of the boundary equations were in place in this
version. For larger configurations than 64 Transputers we
predict linear speed-up.

More memory is planned for the SPRINT so that larger
and more interesting size problems can be run on the
SPRINT. In addition all of the boundary and input op-
tions of the code require more memory to hold the pro-
gram. Shortly we expect to run problems which are 100
by 100 by 60 in size with the proportionally longer time
required.

Conclusion

Propagation of subscripts was independently developed
for this partitioning of TSAR. The Parafrase work of Li
and Yew generated tables to resolve the data dependence
problem. We used hand generated tables and used a
spread sheet for storage and analysis. The code has been

run on the 64 Transputer system and the performance was
measured to be 87% of a Cray XMP.

References

[1] Micheal Burke and etal. Automatic discovery of paral-
lelism. In ACM/SIGPLAN PPEALS Conference Pro-
ceedings, New Haven, Ct., July 1988.

[2] AJ. De Groot, E.M. Johansson, and S.R. Parker.
Sprint- the systolic processor with a reconfigurable in-
terconnection network of transputers. In IEEE Fifth
conferrence on Real-Time Computer Applications in
Nuclear Particle and Plasma Physics, San Francisco,
Ca., May 1987.

[3] Mur G. Absorbing boundary conditions for the
finite-difference approximation of the time-domain
electromagnetic-field equations. IEEE Transactions
on Electromagnetic Compaiibility, EMC-23(4):377-
382, November 1981.

(4] Zhiyuan Li and Pen-Chung Yew. Efficient interproce-
dural analysis for program parallelization and restruc-
turing. In ACM/SIGPLAN PPEALS (Parallel Pro-
gramming: Ezperience with Applications, Languages
and Sysiems) Conference Proceedings, New Haven,
Ct., July 1988.




