
Y

UCRL—99893 

DE89 010223

Partitioning a Finite Difference Code 
for a Local Memory Multiprocessor^

Bryan Lawver

The 4th Conference on HyperCube 
Concurrent Computers and Applications 

Monterey, CA.
March 6-8, 1989

March 6, 1989

This is j preprint of a paper intended for publication in a journal or proceedings. Since 
changes may be made before publication, this preprint is made available with the 
understanding that it will not be cited or reproduced without the permission of the 
author.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



Paxtitioning a Finite Difference Code 
for a Local Memory Multiprocessor*

Bryan Lawver, A.J. DeGroot *

March 6, 1989

Abstract

The TSAR code, a 3d finite difference EM model, was par­
titioned into parallel modules where each processor com­
puted a subset of the 3d mesh. The multiprocessor was 
arranged in a square mesh of processors with the full range 
of one dimension in each processor and sub ranges in the 
other dimensions. Finding the range and checking for in­
dependence of array elements over those sub ranges is the 
main problem of partitioning. In addition with local mem­
ory multiprocessors, the array elements are distributed 
over the processors’ local memory and a communications 
structure must be available which allows non-local ele­
ments to be accessed. Element communication must be 
fast enough or few enough to allow good utilization of the 
processor compute power. Automated partitioning was 
not available but recent work provides some hope in this 
area.

TSAR stands for Time-Domain Scattering and Re­
sponse software that has been used for many years to 
model electric and magnetic waves in a three dimensional 
box. This code was partitioned to run on the SPRINT pro­
cessor. SPRINT is a Systolic Processor with a Reconfig- 
urable Interconnection Network of Transputers. It incor­
porates 64 floating point transputers. Results of this par­
titioning resulted in performance nearly equal to a CRAY 
XMP for identical problems.

The Multiprocessor Partitioning 
Problem

The problem is does a compiler do it? One can hope to 
drop the old code in one end and have a nicely partitioned 
multiprocessor drop out the other. For multiprocessors 
the answer is still mostly no. A multiprocessor allows each 
processor to operate independently of the other processors 
until synchronization is specified. To minimise communi­
cation and synchronization between processors, partition­
ing should divide the code into large pieces of independent 
code to be distributed among processors. In many scien­
tific codes and especially the TSAR finite difference code,

'This work i*m performed under the auspice* of the TJ.S. De­
partment of Energy by the Lawrence Livermore Laboratory under 
contract W-7405-Eng-48. UCRL-99893

tLawrence Livermore National Labs PO 808 , L-156 Livermore, 
Ca. 94550 415-422-6234

the large pieces of parallel code are found in loops which 
iterate over the subscripts of the 3d arrays. The finite 
difference code updates each element of the mesh to find 
a new estimate for the six state variables of the model at 
each time step. By assigning a group of elements to each 
processor of an N processor multiprocessor, we can hope 
for an N times speed-up. Finding which part of the loop 
to partition among processors remains the main challenge 
of the partitioning problem. Some automated work is now 
being reported [4,1].

Global memory multiprocessors allow the problem to be 
distributed to individual processors with a single global 
copy of the data arrays. As long as two processors don’t 
try to update the same array element then N times speed 
up is usually possible. Memory capacity, connectivity and 
performance limit the number of processor a global mem­
ory multiprocessor can have. Local memory multiproce- 
sors require the data to be localized to a particular proces­
sor with nonlocal accesses handled by a communications 
system. A communications system does not automatically 
improve connectivity or performance, but when matched 
with the appropriate code can be used to connect many 
more processors. The problem becomes can we find large 
enough blocks of parallel code that minimizes communi­
cations. Secondly can we deterministically move the data 
such that one processor sends the data when it generates 
it and the other processor reads the data when it needs 
it and neither waits unless it hasn’t yet received all of its 
new data. The architecture of the Transputer supports 
this second part very well.

Partitioning Loops

The DoAll one to N loop can be partitioned into N dif­
ferent blocks of code to run on N or some factor of N 
processors as long as all references within the loop are in­
dependent. A procedure call within the loop obscures the 
process of determining reference independence within the 
block (figure 1).

This example can not be partitioned until the assign­
ments and references in Sub are examined. The method 
of in-line expansion can sometimes solve this problem, but 
recursion will defeat this method. The method expands 
each procedure call in-line so a single block can be checked 
for data dependency. Another method developed by Li 
and Yew [4] to examine procedure calls within loops is



Do * = lyN
Arraj>(i) = ...

CallSnb{A,%)

endDo

Figure 1: Loop with procedure call

Figure 2: Positions of Field components about a unit Cell.

called subscript propagation. It attempts to extract out 
of procedures the range of referrences based on loop vari­
ables. With this information a partitioning of the loop can 
be found if the referrences are independent. Some pre­
liminary work on a compiler has been done at the Center 
for Supercomputing Research and Development using this 
method.

Partitioning TSAR

A non automated form of subscript propagation was used 
to develop a partitioning of the TSAR code. For most of 
the loops it was easy to observe that the loop indices were 
used as subscripts in the field arrays. Two loops were not 
but they were sufficiently separate from the other loops 
that parallelization and partitioning were easy.

The code updates electric fields (E) from surrounding 
magnetic fields (H) in all three dimensions.[3] For each cell 
the edges of a face represent field components which con­
tribute to a field emanating from the center of the face see 
figure 2. The H cells are offset by 1/2 cell in each direction 
so that the E fields emanate from the center of these cells 
also. Numbering of edges drops the 1/2 cell offset from 
the indices. This yields three equations for E fields one 
for each direction and three more for the H fields. Addi­

tional equations estimate field values along the boundaries 
of the mesh. These equations only compute the E fields 
and there are 6 face estimates and 12 edge estimates for 
each of the three E field directions. This produces 60 equa­
tions to estimate all of the field equations. There was also 
another S equations to estimate the source conditions.

When distributing cells to processors, most cells are 
completely contained in just one processor The 68 equa­
tions that might apply to the cell are unmodified. But if 
the partitioning of field values to processors divides a cell 
in half in either of the two dimensions which processors 
divide three space then some or all of the equations have 
to be modified. Rather than rewriting all of the equations 
it was decide to extend the local memory in the x and 
y dimensions by one cell so that the partitioned cell ex­
ists in both processors. One processor always has enough 
information to update the field while the neighbor which 
needs the field value also has a copy. The overlap was 
identified by examining the 60 equations and by moving 
planes or vectors of data from one processor to another. 
Each precessor could be a beginning edge, a middle part 
or the end edge. These three cases times the 68 equations 
produced approximately 160 different cases to examine. 
This yielded 6 planes of data to move for overlap between 
the processor computing the field value to the neighbor 
which needs the data to compute its field values. Also 40 
vectors of data were identified for moving at the boundary 
to estimate field values. The planes were move between all 
processors except when there was no processor in that di­
rection whereas the vectors of data were used to estimate 
boundary conditions so if the processor has only internal 
cells with no outside boundary then no vector data moves.

SPRINT System

The SPRINT system [2] includes 64 Transputers arranged 
in a square mesh. TSAR is a three dimensional finite dif­
ference code. Two dimensions of the TSAR code were 
distributed across the mesh of Transputers. Each Trans­
puter was connected to nearest neighbors in two dimen­
sions. Each index spans a row or column of processors. 
At the hardware level a Transputer connects to each of 
four neighbors except those which are on the edge of the 
mesh. The connection allows data to pass over a physical 
link. Each link is supported by an on chip protocol which 
verifies the data is read before a new datum is sent.

We were able to start with a modular well written code 
with approximately 50 routines. Of the routines, 10 were 
pre- and post-processing routines which remained unmod­
ified on the host. New routines were provided for the 
host to broadcast the initialized common blocks and to 
distribute initial state data to the individual processors. 
The remaining routines were used to build the partitioned 
code with very minor parameterization changes made to 
the start and stop indices of loops. A couple of new rou­
tines interface with the host’s broadcast and distribution 
routines. Two new routines were created to move the 6 
planes of overlap data and 40 vectors. One routine moves



lun on the 64 Transputer system and the performance was 
measured to be 87% of a Cray XMP.

270 T

c 265-

250-

uS 245 ]

Number of processors

Figure 3: Performance N processors each with a 16x16x6 
mesh.

E field overlap after the update to E fields and one moves 
H field overlap after the H fields update.

Performance

The original SPRINT system had 64 processors with 
enough memory for each processor to contain a 16 by 16 
by 6 mesh of cells. Figure 3 shows the SPRINT need­
ing 250 ms to complete one update of the mesh where 64 
processors update 128 by 128 by 6 cells. The equivalent 
size mesh when updated on a Cray XMP requires 218 ms. 
This produces an equivalent performance of 87% for the 
64 processor SPRINT. At this size problem one in eight 
points are part of the overlap cells which move each step.

Figure 3 also shows a nearly linear speed-up. Some of 
the smaller configurations are faster because of less com­
munications, but they also compute fewer cells because 
not all of the boundary equations were in place in this 
version. For larger configurations than 64 Transputers we 
predict linear speed-up.

More memory is planned for the SPRINT so that larger 
and more interesting size problems can be run on the 
SPRINT. In addition all of the boundary and input op­
tions of the code require more memory to hold the pro­
gram. Shortly we expect to run problems which are 100 
by 100 by 60 in size with the proportionally longer time 
required.

Conclusion

Propagation of subscripts was independently developed 
for this partitioning of TSAR. The Parafrase work of Li 
and Yew generated tables to resolve the data dependence 
problem. We used hand generated tables and used a 
spread sheet for storage and analysis. The code has been

References

[1] Micheal Burke and etal. Automatic discovery of paral­
lelism. In ACM/SIGPLAN PPEALS Conference Pro- 
ceedings, New Haven, Ct., July 1988.

[2] A.J. De Groot, E.M. Johansson, and S.R. Parker. 
Sprint- the systolic processor with a reconfigurable in­
terconnection network of transputers. In IEEE Fifth 
conferrence on Real-Time Computer Applications in 
Nuclear Particle and Plasma Physics, San Francisco, 
Ca., May 1987.

[3] Mur G. Absorbing boundary conditions for the 
finite-difference approximation of the time-domain 
electromagnetic-field equations. IEEE Transactions 
on Electromagnetic Compatibility, EMC-23(4):377- 
382, November 1981.

[4] Zhiyuan Li and Pen-Chung Yew. Efficient interproce­
dural analysis for program parallelization and restruc­
turing. In ACM/SIGPLAN PPEALS (Parallel Pro­
gramming: Experience with Applications, Languages 
and Systems) Conference Proceedings, New Haven, 
Ct., July 1988.


