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ABSTRACT

This paper describes an arbitrary Lagrangian-Euierian method for

analyzing fluid-structure interactions in fast-reactor containment with

complex internal structures. The f lu id transient can be calculated either

implicit ly or expl ic i t ly , using a finite-difference mesh with vertices that

may be moved with the f lu id (Lagrangian), held fixed (Eulerian), or moved in

any other prescribed manner (hybrid Lagrangian Eulerian). The structural

response is computed expl ici t ly by two nonlinear, elastic-plastic f in i te -

element modules formulated in corotational coordinates. Interaction between

f lu id and structure is accounted for by enforcing the interface boundary

conditions. The method has convincing advantages in treating complicated

phenomena such as flow through perforated structures, large material

distortions, flow around corners and irregulari t ies, and highly contorted

f lu id boundaries. Several sample problems are given to i l lustrate the

effectiveness of this arbitrary Lagrangian-Eulerian method.
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INTRODUCTION

Dynamic fluid-structure interaction analysis is very complex since it

involves calculations of fluid transients and structural response. In the

safety analysis of a typical Liquid fetal Fast Breeder Reactor (LMFBR), shown

in Fig. 1, the problem of fluid-structure interaction is further complicated

by the fact that (1) the structural components usually have both geometrical

and material nonlinearities, (2) geometrical discontinuities like sharp

corners and irregularities normally exist in the fluid region, (3) a wide

spectrum of phenomena such as flow through perforated structures, large

material distortions, multi-dimensional sliding interfaces, and flow around

corners could occur during a Hypothetical Core Disruptive Accident (HCDA), and

(4) the presence of the Upper Internal Structure (UIS), perforated dip plate,

and other internals imposes difficulties on many numerical techniques.

In the past fifteen years substantial research effort has been devoted to

the development of numerical methods and computer codes for performing the

analysis of fluid-structure interaction. Most codes currently in use employ

either a purely Lagrangian or a purely Eulerian approach for analyzing the

fluid transient in conjunction with a Lagrangian method for calculating the

structural response.

It is well known that, in the Lagrangian approach the mesh used for

computing the coolant motion moves with the coolant. Difficulties arise when

the physical situation involves large material distortions, flow around

corners and irregularities, and outflow boundary conditions. In the Eulerian

approach, on the other hand, the mesh used for the description of the coolant

motion is fixed in space. Although such a mesh is ideal for treating

excessive material distortions and outflow boundary conditions, difficulties

also arise when the problem involves large structural displacement. Quite



often, considerable programming effort and cell-blending scheme are needed to

deal with the irregular cells generated by the movement of the structures as

they displace across the fixed Eulerian coordinates.

To eliminate the disadvantages and s t i l l maintain the advantages of both

the Lagrangian and Eulerian methods, a two-dimensional arbitrary Lagrangian-

Eulerian method [1] has been developed at Argonne National Laboratory (AND.

Based on this method, a computer code ALICE [2] has been written to analyze

the fluid-structure transient in the LMFBR containment. The technique used

for calculating the coolant motion is based on the ICED-ALE technique

suggested by Hirt et a l . [ 3 ] . In the ALICE analysis, the grid for computing

f lu id motions is a hybrid of Lagrangian and Eulerian discretizations. Thus,

in the region where the coolant is expected to move extensively, the vertices

of the f lu id mesh can be made to move in an optimum manner. So that excessive

mesh distortions can be completely eliminated by using a continuous rezoning

process. Also, at the fluid-structure interface, the vertices of the f lu id

mesh can be made to move with the structure nodal points to simplify the

computational procedure and to avoid irregular cell calculations.

Recently, the arbitrary Lagrangian-Eulerian method has been greatly

extended. First , a three-dimensional pipe element [4,5] has been adopted [6]

to simulate the motion of the support columns of the UIS. Secondly,

capabilities have been developed to treat the internal thin shell, perforated

dip plate, curved reactor bottom, and highly distorted core-gas bubble. Thus,

the extended multi-dimensional arbitrary Lagrangian-Eulerian method has

significai.t advantages in treating both complex excursion phenomena and

complicated structural response. The resulting new version of the computer

program, ALICE-II, is therefore, capable of performing an integrated, dynamic

fluid-structure interaction analysis of LNFBR with complex internals.



Numerical calculations for the hydrodynamic solutions are separated into

three phases. The f i r s t phase consists of an explicit Lagrangian

calculation. The second phase, which is optional, contains an implicit

i terat ion. The third phase, which is also optimal, rezones the mesh vertices

to prescribed positions. The structural response is computed by two

nonlinear, elastic-plastic, finite-element modules formulated in corotational

coordinates. The f i r s t employs two-dimensional thin shell and quadrilateral

continuum elements to model the reactor vessel and axisymmetric elastic-

plastic solids. The second module uti l izes a three-dimensional pipe element

to calculate the buckling of the support columns that connect the upper

internal structure to the reactor cover. All elements are capable of treating

both material and geometric nonlinearities. Thus, the solution of a problem

can be obtained in six different ways by the appropriate choice of the

impl ici t or expl ici t time integration scheme, and the appropriate choice of

the Lagrangian, Eulerian, or the arbitrary Lagrangian-Eulerian solution.

In this paper the equations used for the hydrodynamic and structural

calculations are briefly described. Several problems dealing with dynamic

fluid-structure interactions are given to i l lustrate the applications of this

arbitrary Lagrangian-Eulerian method.

HYDRODYNAMICS

The basic d i f f e r e n t i a l equations used in the code are the conservation

equations of continuum mechanics. Only nonturbulent flow is considered, and

no external energy source i s assumed to ex is t inside the flow region. Thus,

the mass, momentum, and energy equations fo r the non-heat-conducting f l u i d

are:
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+ P g . , (2)
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in which

E = I +V2U f ui . (4)

In Eqs. (1-4) p is the density; t the time; u^ the velocity component; ĝ  the

component of gravitational accelerations; E the specific total energy; I is

the specific internal energy; o ^ is the stress tensor which is a function of

the scalar pressure p and a deviatoric stress tensor ô ,-, i.e.

where 6̂ j is Kronecker delta.

The deviatoric stress tensor can be written as

(6)

and

3u. 8u.
i. + L

ax. 3x,
• J

in which v and x are the viscosity coefficients.



In the finite-difference technique, it is convenient to integrate Eqs.

(1-3) over a control volume, V, and then convert the volume integrals to

surface integrals over the control surfaces. Thus, in the integral form the

mass, momentum, and the energy equations are:

+ foiUj - V ni dS = 0 , (7)
V S

J P u . dV' + J [ p i i j (Uj - U.) - o..'] ri j dS ' - f P g . d V = 0 , (8)d_
dt

V S' V*

and

d f r r r
% r / P E d V + / p E ( u . - U . ) n . d S - j o . , u . n . d S - / p g . u . d V = 0 . ( 9 )
ox J J i i 1 v / i J J i . / l I

V S S V

In these equations u^ and L̂  are the velocity components of the fluid and the

bounding surface, respectively; n^ is the outward normal to the surface S; gn-

is the gravitational acceleration. Note that when u.,- = U^, the convective

terms in Eqs. (7-9) are vanished, and the equations are Lagrangian; when U.,- =

0, the equations are Eulerian; and when U^ * u.,- and U:- * 0 the equations are

hybrid Lagrangian-Eulerian.

At each time step, the fluid dynamic calculations are separated into

three phases [3]. The first phase consists of an explicit Lagrangian

calculation. Velocities are advanced by the pressure gradients, inertia, and

viscous forces. The energy change due to inertia and viscous forces are also

calculated in this phase. The energy change due to the pressure work will be

performed after the second phase to permit the advanced-time pressure work to

coincide with the advanced-time velocities.



The second phase performs an implicit calculation. The basic task of

this calculation is to eliminate the Courant stability condition which limits

the pressure waves to travel over one cell per time step. A Newton-Raphson

iteration method is used to obtain advanced-time pressures which, in turn, are

calculated by the discrepancies of the transport equations. Following the

pressure changes at each iteration, densities, specific internal energies, and

velocities are also adjusted. The converged pressures are used for the

calculation of the pressure work to update the energy changes.

If, at this point of calculation, the mesh vertices are moved with the

fluid, the result is Lagrangian. It is well known that the Lagrangian

solutions are not accurate when the computing mesh is severely distorted. To

avoid large mesh distortions and maintain an optimum mesh, the third phase

performs a rezone calculation which allows the computing mesh to move in a

prescribed manner. Convective fluxes due to the relative motions between the

computing mesh and fluid are calculated to assure the conservations of mass,

energy, and momentum.

TWO-DIMENSIONAL STRUCTURAL ANALYSIS

Most containment structures such as the radial shield, core barrel, core-

support structure, and the primary vessel respond axisymmetrically. They are

analyzed by a modified version of the finite-element program, WHAMS [7]. This

program uses a corotational coordinate scheme in the numerical analysis and is

best suited for large displacement, small strain, elastic-plastic dynamic

problems.

In this scheme, Lagrangian coordinates of the element rotate but do not

de.form with the elements. The strain is linearly related to the displacement

of the element relative to the Lagrangian coordinates. Similarly, the nodal



forces are linearly related to the element stresses. The original program,

WHAMS, has the conical-shell element and axisymmetric triangle element which

can be used to model complicated structural components.

The displacement field of the shell element consists of cubic transverse

displacements and linear axial displacements. Resultant forces are computed

by five-point numerical integrations across the depth of the element. The

triangle continuum element uses linear displacement fields. It can be used to

simulate fluid or elastic-plastic solids. Recently, a quadrilateral fluid

element and a quadrilateral elastic-plastic element have been added to the

program [2].

THREE-DIMENSIONAL STRUCTURAL ANALYSIS

A three-dimensional general purpose pipe element, which is developed

using a corotational coordinate formulation [5], was used to model the

buckling of the UIS support columns subjected to the upward force transmitted

from the assembly portion of the UIS. Each element has eight degrees of

freedom per noo>. Six degrees of freedom, three displacements, and three

rotations, describe the flexural motion in three-dimensional space. The

remaining two degrees of freedom describe the axisymmetric breathing mode in

terms of hoop displacement and wall bending rotation generated by the pressure

wave transmitted from the fluid inside the pipe. In the calculation of the

UIS column motion, these two degrees of freedom can be ignored, reducing the

problem to the case where no fluid is inside the pipe.

Three types of coordinate systems are used to describe the pipe system:

a fixed global system of coordinates (X, Y, and Z); a nodal body coordinate

system (x, y, and z) associated with each node, their initial orientation

coinciding with the principal directions of the nodal mass moment of inertia
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tensor and rotating with the nodes; and an element (corotational) coordinate

system (x, y, and z) associated with each element. The unit vectors

b., t>2, and b, are associated with the nodal body coordinates x, y, and z,

respectively. Similarly, the unit vectors e^, e2, and 63 are associated with

the element coordinates x, y, and z, respectively.

A generic pipe element with nodes I and J at its ends is shown in Fig.

2a. The x-axis always joins the two nodes I and J, so that it rotates with

the element but does not deform with the element. The y and z axes are in the

plane of cross-section of the pipe and are considered to rotate with the

element such that their rotation is the average of the rotation of the two

nodes, I and J, about the x-axis.

Equations of Motion

The translational equation of motion in global coordinates for each node

is

- F ! n t

where i = 1, 2, and 3 for the global X, Y, and Z direction; p̂  is the

translational mass of the node in the i-direction; u-j is the translational

acceleration of the node in the i-direction; F|x t is the sum of al l external

forces applied to the node in the i-direction; and F i n t is the sum of internal

nodal forces due to deformation of al l elements connected to the node.

The rotational equations of motion are expressed in the nodal (body)

coordinate system of each node and are given by
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where I - - , I - - , and I - - are the principal mass moments of inertia of thex x yy z z

node; w-, u-, and u- are the angular accelerations of the node about the x-,x y z

y- , and z-axes; u^, w ,̂ and u^ a r e t n e angular velocities of the node about

the x-, y- , and z-axes; M?xt, ^ x t , and M-Xt are the sum of all external
x y z

moments applied to the node about the x-, y-, and z-axes; Mj[ , vik % and

M|nt are the sum of internal moments about the x-, y-, and z-axes due to

deformation of all elements connected to the node.

Deformation Displacements

Because the deformation displacements are computed in the corotational

coordinate system, the deformations become independent of the rigid body

rotation of the element. This element, therefore, is suitable for problems

involving large rotations of the centerlino. Within the corotational

coordinate system, the deformation displacements are defined as

{d}T = {6IJ> YxIJ' Yyl' Yzl'

where 6JJ is the elongation in the pipe axis; Y XJJ is the torsional rotation

of the pipe midline; and Yyj, Y 2J, Yyj, and YZJ are the bending rotations of

the pipe midline.
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Strain-Displacement Relations

The axial strain at a layer in the pipe shell is given by

a2v a2v2 /

X m 3X2 3X2

where em is the strain of the pipe center!ine; and v and vz are the

corotational components of the displacements of the pipe midline, as shown in

Fig. 2 (b-c).

The shear strain is given by

where Y X is the rotation about the x-axis.

Since the x-axis connects nodes I and <1 at all times, the transverse

displacement of the pipe midline can be expressed completely in terms of the

nodal bending rotations. Thus

vy =

vz

= 3I Yxl

where

(18)

= 1 - 5 , B, = 5 , and £ = x/£ .
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The negative sign in Eq. (16) results from the fact that, for a right

handed system of coordinates, a positive rotation about the y-axis causes a

negative displacement in the z-direction.

Force-Stress Relations

The nodal internal force vector conjugate to the nodal displacement

vector of Eq. (12) is

= {FxI> Mxl' V Mzl' V

Using the principle of virtual work, we obtain

{d} T { F i n t } = / ( s x a x + £ 9 o e + e x e axQ) dV . (20)

Substi tut ing Eqs. (12) and (19) in the l e f t hand side of Eq. (20), and Eqs.

(13-18) in the r igh t hand side of Eq. (20), then equating the coeff ic ients of

em» ^x IJ ' Yyl» Yzl» • • •> YyJ» Yzl> • • • e t c * y i e 1 d s t n e n o d a l internal

forces in terms of the stresses as

°x QV

V (21)

M K = / r c o s 8 (j>K o dV

V

Mx.K = / r 6K,x °xe d v '
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where K = I, J.

Equilibrium of the element gives the remaining nodal internal forces

Mxl

yJ

FzJ

- - i

M

M ,

>T "»
.1

i

, +

2

F x l

M j

. 1

.0 and

i *

F z l = "FzJ •

The integrals for the nodal force, Eq. (21), are evaluated numerically

using Gaussian quadrature. The pipe forces are then transformed to the global

coordinate system, while the pipe moments are transformed to the body

coordinate system before their assembly into the internal force matrix to be

used in the equations of motion.

Application of the equations of motions as described above results in the

new acceleration. These equations of motion are integrated in time by the

Newmark B-method, with S = 0. This method is almost identical to the central

difference method.

FLUID STRUCTURE INTERACTION

As mentioned earlier, the hydrodynamic equations are integrated with

either an implicit or explicit scheme, whereas the governing equations for the

structural analysis are integrated with only an explicit scheme. Thus, both

implicit-explicit or explicit-explicit coupling calculations can be performed

by the arbitrary Lagrangian-Eulerian method. The coupling calculations are

implemented in two separate steps. The fluid supplies the structure with a

pressure loading, which causes the structure to move. In return, the
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structure gives the f lu id a moving boundary condition at the fluid-structure

interface. The optimum choice of the mesh movement for fluid-structure

interaction problems is to move the vertices of the f lu id cells adjacent to a

structure along with those of the structure. Thus, the movement of the

structure nodes relative to fixed vertices wi l l not create any irregular cells

for the fluid, calculation.

The boundary conditions at the fluid-structure interface require that the

f lu id can slide freely along the structure surface, but must move together

with the structure in the normal direction. Figure 3 shows the structural

segments with nodal points 1, 2, and 3 located on the side of the f lu id cells

A and B with corresponding f lu id nodes 1 ' , 2 ' , and 3 ' . We assume that the

normal direction at point 2 is determined by the line connecting points 1 and

3. Thus, the boundary conditions, requiring that the f lu id velocities to be

changed from u^ and v~^ to uX. and vX>, are

2 2
uX* = Up sin e - v2 sino coso + u~^ cos o + v~^ sino coso , (23)

and

2 2
= " U2 sine cosG + V2 Cos ° + U 2 ' s1'n0 cos9 + V 2 ' s1'n 0 '

where

e = cos"

/ ( x 3 - x 1 )
Z
+ ( y 3 - y 1 )

2

and Ug and V£ are the radial and axial velocity components at structural nodal

point 2.
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Since the vertices of the fluid cell adjacent to the structure have been

moved with different velocities from the structural nodal points, a rezone

calculation is required in the third phase to compute the convective flux due

to the relative motion between the fluid and the computing mesh as the fluid

vertices move back to coincide with the structural nodal points.

NUMERICAL STABILITY AND SUB-CYCLING

In order to ensure numerical stability, limitation of time steps for both

hydrodynamic and structural calculations must be given. The time step 6t^,

chosen for the hydrodynamic analysis, must satisfy the modified "Courant

Condition". The restriction is that fluid must not be permitted to flew

across more than one computational cell in one time step; that is

uR dS
(25)

mt'n

where V is the control volume for either the mass or the momentum calculation,

and uR is the relative velocity between the computing mesh and the fluid in

the normal direction of the surface dS.

In the axisymmetric structural-dynamics analysis the time step 6ts,

employed for the explicit numerical integration must satisfy the following

requirement

6t <MinMi- , ^ V (26)
S - \ /F7— /—sj /

where 3 is a reduction factor usually between 0.5 and 0.8; I is the element

length; E is Young's modulus of elasticit;,; h is the element thickness; and p

is the density of the solid material.
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For the problem involving calculation of the UIS movement, the classical

Fourier theories of numerical stability are not applicable in the three-

dimensional analysis of the UIS support columns, because of the quadratic

combination of velocities in Eq. (11*. Therefore, stability limits

corresponding to the linearized analysis can only be served as a guideline for

the stable time step. The destabilizing effects of nonlinearities can usually

be overcome by further reducing the time step obtained from the linearized

analysis.

When the element has both axial and flexural stiffness such as the pipe

element used for simulating the UIS support columns the time step st^ can be

estimated from

5t-< MinM*-- , -*£—). (27)
s "

where r~ is the radius of gyration of the pipe cross section.

Because the hydrodynamic program usually uses an implicit integration

scheme while the structural-dynamics program uti l izes an expl ici t integration

procedure, 6tn is usually larger than <5ts (or 5t j ) . Thus, within each time

step, several structural dynamics calculations must be performed in order to

match one hydrodynamic calculation. For instance, the number of structural

steps N (known as sub-cycles) used in the axisymmetric structural analysis can

be determined by

N = I(6th /6ts) + 1 , (29)

where I denotes the integer part of the rat io.
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I f the analysis involves calculations of motions of the UIS support

columns, the number of sub-cycles N* used in the three-dimensional structural

analysis can be estimated from Eq. (29) by simply replacing 6ts by Stg.

EXAM>LES

Three problems are presented to i l l u s t r a t e th is arbi t rary Lagrangian-

Eulerian method. The f i r s t one deals with a transient f lu id-s t ructure

interact ion problem selected by the APRICOT ^Analysis of PRImary containment

Jransient) project. This project, i n i t i a ted by the U.S. Department of Energy,

involves several reactor safety analysis groups around the world. Each i s

inv i ted to perform independent calculations of identical problems in order to

ver i fy capabi l i t ies of large computer codes used for the LMFBR safety

analysis. Presently, the APRICOT project is at the Phase 3 stage, aiming at

val idat ion of structural and f lu id-s t ructura l -coupl ing capab i l i t ies , using

some simple and well defined problems. Here, we select problem 2B to

demonstrate the f l e x i b i l i t y of the arbi t rary Lagrangian-Eulerian method.

Figure 4 shows the configuration of th is problem in which an annulus of

f l u i d is subjected to a prescribed pressure history of the inner surface,

while the outer surface is restrained by a th in cy l indr ica l she l l . The

applied pressure was constant at 8 M>a. The f l u i d properties were described

by a simple equation of state with a pressure cut -of f at 0, i . e . , Pmi-n =

0.0. The thickness of the th in shell i s 0.01693 cm.

As we mention in the introductory section that the solution of the f l u i d

transient can be obtained in six d i f ferent ways, by the appropriate choice of

the imp l i c i t or exp l i c i t scheme, and the appropriate choice of the Lagrangian,

Enlerian, or hybrid Lagrangian-Eulerian solut ion. Because of the space

l i m i t a t i o n , we w i l l present results obtained from two representative
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calculations, using the explicit hybrid Lagrangian-Eulerian and implicit

Eulerian schemes, respectively. In the hybrid analysis the prescribed radial

velocity of each interior node is proportional to the shell velocity,

depending on the ratio of its radial coordinate to the shell radial

coordinate. However, in the Eulerian calculation only nodes adjacent to the

thin shell are assumed to move with the structure, while other nodes are kept

stationary. Since no experimental data is available for this problem,

solutions obtained from the ICECO-CEL code [7] are given for the purpose of

comparison.

Figure 5 presents a comparison of predicted fluid pressures on the shell

as a function of time. Each pressure profile is comprised of four major

peaks. The first one is generated by the incident wave, whereas the other

three are caused by successive reflections between the shell and the source.

It can be seen that the agreement among these three pressure curves is quite

good - not only the peak values but also the wave arrival times. Also, as we

expected, the explicit hybrid Eulerian-Lagrangian calculation exhibits more

wave phenomena in its pressure profile, and appears to be more oscillatory.

On the other hand, the implicit Eulerian calculation of the arbitrary

Lagrangian-Eulerian technique provides a relatively smooth solution and almost

duplicates the result of the ICECO-CEL code. Figure 6 shows the shell

velocity as a function of time. Again, except for the detailed wave

phenomena, the agreement among these three solutions is very good.

The second problem deals with a study of the effects of a perforated

plate on the slug impact load and containment response. The mathematical

model used in the ALICE analysis is shown in Fig. 7. The reactor

configuration consists of a primary vessel, a core barrel, a perforated dip

plate, and a movable reactor cover with holddown bolts. Marker particles are



18

used to represent coolant. Two calculations have been performed with the

ALICE code: one with and the other without the perforated dip plate.

Figure 8 presents reactor configurations at three different times for the

case with the perforated plate. These configurations show how the core-gas

bubble expands and how the core barrel and primary vessel deform during the

excursion. In addition, Fig. 8 indicates significant flow blockage near the

bottom of the perforated plate.

Reactor configurations for the case without the perforated plate are

shown in Fig. 9. By comparing the configurations for the two cases given in

Figs. 8 and 9, it is evident that the perforated plate has the effect of (1)

confining the HCDA bubble expansion, (2) slowing down the upward movement of

the coolant slug, (3) changing the smooth coolant free surface to a relatively

turbulent one, and (4) reducing the slug-impact loads and the upper vessel

wall deformation. However, the increase in core barrel deformation owing to

the slower core-gas-bubble expansion, which results from the suppression

effect of the perforated plate, is quite small.

From this second study, it can be concluded that the perforated plate

does play an important role in the overall containment response; in

particular, it has a mitigating effect on the slug impact and upper vessel

deformation.

The third problem investigates the response of a typical UFBR during an

HCDA. Figure 10 shows the mathematical model used in the analysis. It

consists of a primary vessel with a curved bottom, a movable Upper Internal

Structure (UIS), a segmented steel radial shield, a core barrel, and a core-

support structure (CSS). Marker particles are used to represent the coolant.

Note that the support columns that connect the UIS with the reactor cover

are not shown in the mathematical model. However, the deformations of the
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support columns can be perceived from the movement of the UIS. These

deformations, generated by the buckling of the support columns, are calculated

by the three-dimensional pipe element. The source pressure in Vr° core-gas

bubble i s computed from the pressure-volume relat ionships rather than the

pressure-time h i s to r i es , since the l a t t e r are not known a p r i o r i during an

HCDA. The i n i t i a l core pressure was taken to be about 26.3 M>a.

Figure 11 shows reactor conf igurat ions at three d i f fe ren t t imes. These

conf igurat ions i l l u s t r a t e : (1) how the coolant disturbance occurs in the

bottom port ion of the reactor from pressure waves propagating downward through

the opening of the CSS, (2) how the core-gas bubble axpands and is d is to r ted

as i t encounters the sharp corners of various internal s t ructures, (3) how the

UIS i s displaced upward and how i t in terac ts wi th the core-gas bubble, as well

as wi th the surrounding f l u i d , (4) how the f l u i d moves and how the free

surface impinges on the reactor cover, and (5) how the radial sh ie ld , core

barrel and the primary vessel are deformed during the course of the

excursion. These deformations can be seen from the movements of ce l l ver t ices

adjacent to these st ructures.

Figure 12 gives the time h is tory of the upward force act ing on the UIS.

Figure 13 presents the displacement of the UIS as a funct ion of t ime. Such

displacement i s caused by the buckling of the support columns.

SUMMARY AND CONCLUSION

I t has been demonstrated that the a rb i t ra ry Lagrangian-Eulerian method

described above is very e f fec t i ve for analyzing dynamic f l u i d - s t ruc tu re

in terac t ions in fas t reactor containment. The method i s extremely ve rsa t i l e

arid includes options of Lagrangian, Euler ian, or hybrid Lagrangian-Eulerian

computational schemes, wi th time in tegra t ion performed e i ther i m p l i c i t l y or
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expl ic i t ly . Using the arbitrary Lagrangian-Eulerian hydrodynamic technique

not only eliminates the mesh distortion problem associated with a purely

Lagrangian technique, but also alleviates the di f f icul ty of treating the

fluid-structure interface encountered by the purely Eulerian method.

Furthermore, ut i l izat ion of the co-rotational finite-element formulation in

the structural analysis enables the modeling of complex structures subject to

large displacements in two- and three-space dimensions.

The arbitrary Lagrangian-Eulerian method has other important features:

(1) i t employs the complete hydrodynamic equations in the formulation,

including both the nonlinear convective and viscous-dissipation terms. (2) I t

is highly user-oriented, and can provide a stable solution throughout the

entire excursion without using only complementary mechanism such as a r t i f i c ia l

viscosities, damping coefficients, rezonings, and mesh stabilizations. This

is a decided advantage for applying the method to both parametric studies and

production runs. (3) I t has the capability of treating flow through coolant

passageways of the UIS and perforated structures, which is of significance in

the safety analysis of LMFBRs.

In the f i r s t sample problem, the analytical predictions have been

compared with ICECO-CEL results. More importantly, the arbitrary Lagrangian-

Eulerian method and the ALICE code system have also been validated against

many experimental data [see Refs. 1, 2] . Good agreement with experiments and

established analytical methods demonstrates that the ALICE code system can

predict accurately the response of primary containment systems generated by

dynamic fluid-structure interactions.
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