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ABSTRACT

This paper describes an arbitrary Lagrangian-Eulerian method for
analyzing fluid-structure interactions in fast-reactor containment with
complex internal structures. The fluid transient can be calculated either
implicitly or explicitly, using a finite-difference mesh with vertices that
may be moved with the fluid (Lagrangian), held fixed (Eulerian), or moved in
any other prescribed manner (hybrid Lagrangian Eulerian). The structural
response is computed explicitly by two ncnlinear, elastic-plastic finite-
element modules formulated in corotational coordinates. Interaction between
fluid and structure is accounted for by enforcing the interface boundary
conditions. The method has convincing advantages in treating complicated
phenomena such as flow through perforated structures, large material
distortions, flow around corners and irregularities, and highly contorted
fluid boundaries. Several sample problems are given to illustrate the

effectiveness of this arbitrary Lagrangian-Eulerian method.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibilitv for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.



INTRODUCTION

Dynamic fluid-structure interaction analysis is very complex since it
involves calculations of fluid transients and structural response. In the
safety analysis of a typical Liquid Metal Fast Breeder Reactor (LMFBR), shown
in Fig. 1, the problem of fluid-structure interaction is further complicated
by the fact that (1) the structural components usually have both geometrical
and material nonlinearities, (2) geometrical discontinuities like sharp
corners and irreqularities normally exist in the fluid region, (3) a wide
spectrum of phenomena such as flow through perforated structures, large
material distortions, milti-dimensional sliding interfaces, and flow around
corners could occur during a Hypothetical Core Disruptive Accident {HCDA), and
(4) the presence of the Upper Internal Structure (UIS), perforated dip plate,
and other internals imposes difficulties on many numerical techniques.

In the past fifteen years substantial research effort has been devoted to
the development of numerical methods and computer codes for performing the
analysis of fluid-structure interaction. Most codes currently in use employ
either a purely Lagrangian or a purely Eulerian approach for analyzing the
fluid transient in conjunction with a Lagrangian method for calculating the
structural response.

It is well known that, in the Lagrangian approach the mesh used for
computing the coolant motion moves with the coolant. Difficulties arise when
the physical situation involves large material distortions, flow around
corners and irregularities, and outflow boundary conditions. In the Eulerian
approach, on the other hand, the mesh used for the description of the coolant
motion is fixed in space. Although such a mesh is ideal for treating
excessive material distortions and outflow boundary conditions, difficulties

also arise when the problem involves large structural displacement. Quite



often, considerable programming effort and cell-blending scheme are nceded to
deal with the irregular cells generated by the movement of the structures as
they displace across the fixed Eulerian coordinates.

To eliminate the disadvantages and still maintain the advantages of both
the Lagrangian and Eulerian methods, a two-dimensional arbitrary Lagrangian-
Eulerian method [1] has been developed at Argonne National Laboratory (ANL).
Based on this method, a computer code ALICE [2] has been written to analyze
the fluid-structure transient in the LMFBR containment. The technique used
for calculating the coolant motion is based on the ICED-ALE technique
suggested by Hirt et al. [3]. In the ALICE analysis, the grid for computing
fluid motions is a hybrid of Lagrangian and Eulerian discretizations. Thus,
in the region where the coolant is expected to move extensively, the vertices
of the fluid mesh can be made to move in an optimum manner. So that excessive
mesh distortions can be completely eliminated by using a continuous rezoning
process. Also, at the fluid-structure interface, the vertices of the fluid
mesh can be made to move with the structure nodal points to simplify the
computational procedure and to aveid irregular cell calculations.

Recently, the arbitrary Lagrangian-Eulerian method has been greatly
extended. First, a three-dimensional pipe element [4,5] has been adopted 6]
to simulate the motion of the support columns of the UIS. Secondly,
capabilities have been developed to treat the internal thin shell, perforated
dip plate, curved reactor bottom, and highly distorted core-gas bubble. Thus,
the extended multi-dimensional arbitrary Lagrangian-Eulerian method has
significait advantages in treating both complex excursion phenomena and
compiicated structural response, The resulting new version of the computer
program, ALICE-II, is therefore, capable of performing an integrated, dynamic

fluid-structure interaction analysis of LMFBR with complex internals.



Numerical calculations for the hydrodynamic solutions are separated into
three phases. The first phase consists of an explicit Lagrangian
calculation. The second phase, which is optional, contains an implicit
iteration. The third phase, which is also optimal, rezones the mesh vertices
to prescribed positions. The structural response is computed by two
nonlinear, elastic-plastic, finite-element modules formulated in corotational
coordinates. The first employs two-dimensional thin shell and quadrilateral
continuum elements to model the reactor vessel and axisymmetric elastic-
plastic solids. The second module utilizes a three-dimensional pipe element
to calculate the buckling of the support columns that connect the upper
internal structure to the reactor cover. All elements are capable of treating
both material and geometric nonlinearities. Thus, the solution of a problem
can be obtained in six different ways by the appropriate choice of the
implicit or explicit time integration ccheme, and the appropriate choice of
the Lagrangian, Eulerian, or the arbitrary Lagrangian-Eulerian solution.

In this paper the equations used for the hydrodynamic and structural
calculations are briefly described. Several problems dealing with dynamic

fluid-structure interactions are given to illustrate the applications of this

arbitrary Lagrangian-Eulerian method.

HYDRODYNAMICS

The basic differential equations used in the code are the conservation
equations of continuum mechanics. Only nonturbulent flow is considered, and
no external energy source is assumed to exist inside the flow region. Thus,

the mass, momentum, and energy equations for the non-heat-conducting fluid

are:
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In Eqs. (1-4) p is the density; t the time; u; the velocity component; g; the

component of gravitational accelerations; E the specific total energy; I is

the specific internal energy; %j is the stress tensor which is a function of

the scalar pressure p and a deviatoric stress tensor Gij’ i.e.
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where Gij is Kronecker delta.

The deviatoric stress tensor can be written as
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in which u and A are the viscosity coefficients.



In the finite-difference technique, it is convenient to integrate Egs.
{1-3) over a control volume, V, and then convert the volume integrals to
surface integrals over the control surfaces. Thus, in the integral form the

mass, momentum, and the energy equations are:
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In these equations u; and U; are the velocity components of the fluid and the
bounding surface, respectively; n; is the outward normal to the surface S; g;
is the gravitational acceleration. Note that when u; = U;, the convective
terms in Eqs. (7-9) are vanished, and the equations are Lagrangian; when U; =
0, the equations are Eulerian; and when U; # ug and Uf # 0 the equations are
hybrid Lagrangian-Eulerian.

At each time step, the fluid dynamic calculations are separated into
three phases [3]. The first phase consists of an explicit Lagrangian
calculation. Velocities are advanced by the pressure gradients, inertia, and
viscous forces. The energy change due to inertia and viscous forces are also
calculated in this phase. The energy change due to the pressure work will be

performed after the second phase to permit the advanced-time pressure work to

coincide with the advanced-time velocities.



The second phase performs an implicit calculation. The basic task of

this calculation is to eliminate the Courant stability condition which 1imits

the pressure waves to travel over one cell per time step. A Newton-Raphson

iteration method is used to obtain advanced-time pressures which, in turn, are

calculated by the discrepancies of the transport equations. Following the

pressure changes at each iteration, densities, specific internal energies, and

velocities are also adjusted. The converged pressures are used for the

calculation of the pressure work to update the energy changes.

If, at this point of calculation, the mesh vertices are moved with the
fluid, the result is Lagrangian. It is well known that the Lagrangian
solutions are not accurate when the computing mesh is severely distorted. To
avoid large mesh distortions and maintain an optimum mesh, the third phase
performs a rezone calculation which allows the computing mesh to move in a

prescribed manner. Convective fluxes due to the relative motions between the

computing mesh and fluid are calculated to assure the conservations of mass,

energy, and momentum.

TWO-DIMENSIONAL STRUCTURAL ANALYSIS

Most contairment structures such as the radial shield, core barrel, core-
support structure, and the primary vessel respond axisymmetrically. They are
analyzed by a modified version of the finite-element program, WHAMS [7]. This
program uses a corotational coordinate scheme in the numerical analysis and is
best suited for large displacement, small strain, elastic-plastic dynamic
problems.

In this scheme, Lagrangian coordinates of the element rotate but do not
deform with the elements. The strain is linearly related to the displacement

of the element relative to the Lagrangian coordinates. Similarly, the nodal



forces are linearly related to the element stresses. The original program,
WHAMS, has the conical-shell element and axisymmetric triangle element which
can be used to model complicated structural components.

The displacement field of the shell element consists of cubic transverse
displacements and linear axial displacements. Resultant forces are computed
by five-point numerical integrations across the depth of the element. The
triangle continuum element uses linear displacement fields. It can be used to
simulate fluid or elastic-plastic solids. Recently, a quadrilateral fluid

element and a quadrilateral elastic-plastic element have been added to the

program [2].

THREE-DIMENSIONAL STRUCTURAL ANALYSIS

A three-dimensional general purpose pipe element, which is developed
using a corotational coordinate formulation [5], was used to model the
buckling of the UIS support columns subjected to the upward force transmitted
from the assembly portion of the UIS. Each element has eight degrees of
freedom per nod>. Six degrees of freedom, three displacements, and three
rotations, describe the flexural motion in three-dimensional space. The
remaining two degrees of freedom describe the axisymmetric breathing mode in
terms of hoop displacement and wall bending rotation generated by the pressure
wave transmitted from the fluid inside the pipe. In the calculation of the
UIS column motion, these two degrees of freedom can be ignored, reducing the
problem to the case where no fluid is inside the pipe.

Three types of coordinate systems are used to describe the pipe system:
a fixed global system of coordinates (X, Y, and Z); a nodal body coordinate
system (X, ¥, and Z) associated with each node, their initial orientation

coinciding with the principal directions of the nodal mass moment of inertia



tensor and rotating with the nodes; and an element (corotational) coordinate
system (x, y, and z) associated with each element. The unit vectors
Bl’ EZ’ and 63 are associated with the nodal body coordinates X, ¥, and Z,
respectively. Similarly, the unit vectors él- éz, and é3 are associated with
the element coordinates x, y, and z, respectively.

A generic pipe element with nodes I and J at its ends is shown in Fig.
2a. The x-axis always joins the two nodes I and J, so that it rotates with
the element but does not deform with the element. The y and z axes are in the

plane of cross-section of the pipe and are considered to rotate with the

element such that their rotation is the average of the rotation of the two

nodes, I and J, about the x-axis.

Equations of Motion

The translational equation of motion in global coordinates for each node

is

o, ug= FEXE _ gINE (10)
where i = 1, 2, and 3 for the global X, Y, and Z direction; Pj is the
translational mass of the node in the i-direction; Ji is the translational
acceleration of the node in the i-direction; F$Xt is the sum of all external
forces applied to the node in the i-direction; and Fint is the sum of internal
nodal forces due to deformation of all elements connected to the node.

The rotational equations of motion are expressed in the nodal (body)

coordinate system of each node and are given by
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where Iii’ I--, and IEZ are the principal mass moments of inertia of the

Yy
node; &i, w=, and &E are the angular accelerations of the rode about the X-,

Y
y-, and Z-axes; WEs Wy and wy are the angular velocities of the node about
the X-, y-, and Z-axes; N§Xt, N§Xt, and MEXt are the sum of all external
moments applied to the node about the X-, j-, and Z-axes; M;"t, M}"t, and
M;"t are the sum of internal moments about the X-, y-, and Z-axes due to

deformation of all elements connected to the node.

Deformation Displacements

Because the deformation displacements are computed in the corotational
coordinate system, the deformations become independent of the rigid body
rotation of the element. This element, therefore, is suitable for problems
involving large rotations of the centerline. Within the corotational

coordinate system, the deformation displacements are defined as

L (12)

= G815, yeqgs Yy Y210 Yya» Yl o

where S1y is the elongation in the pipe axis; v,y s the torsional rotation

of the pipe midline; and YyIs YzI» Yygs and y,; are the bending rotations of

the pipe midline,
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Strain-Displacement Relations

The axial strain at a layer in the pipe shell is given by

z C(13)

where e, is the strain of the pipe centerline; and Vy and v, are the

corotational components of the displacements of the pipe midline, as shown in

Fig. 2 (b-c).

The shear strain is given by

a
x (14)

where Yy is the rotation about the x-axis.

Since the x-axis connects nodes I and I at all times, the transverse
displacement of the pipe midline can be expressed completely in terms of the

nodal bending rotations. Thus
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(18)
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The negative sign in Eq. (16) results from the fact that, for a right
handed system of coordinates, a positive rotation about the y-axis causes a

negative displacement in the z-direction.

Force-Stress Relations

The nodal internal force vector conjugate to the nodal displacement

vector of Eq. (12) is

int.T _
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Using the principle of virtual work, we obtain
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Substituting Eqs. (12) and (19) in the left hand side of Eq. {20), and Egs.
(13-18) in the right hand side of Eq. (20), then equating the coefficients of
Ems YxIJ» YyIs YzIs = « s Yyd» YzIs = « - etc., yields the nodal internal

forces in terms of the stresses as
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where K = I, J.

Equilibrium of the element gives the remaining nodal internal forces

Ma® Mg » fx1° g
M I + MyJ
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M M
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The integrals for the nodal force, Eq. (21), are evaluated numerically
using Gaussian quadrature. The pipe forces are then transformed to the global
coordinate system, while the pipe moments are transformed to the body
coordinate system before their assembly into the internal force matrix to be
used in the equations of motion.

Application of the equations of motions as described above results in the
new acceleration. These equations of motion are integrated in time by the

Newmark g-method, with 8 = 0. This method is almost identical to the central

difference method.

FLUID STRUCTURE INTERACTION

As mentioned earlier, the hydrodynamic equations are integrated with
either an implicit or explicit scheme, whereas the governing equations for the
structural analysis are integrated with only an explicit scheme. Thus, both
implicit-explicit or explicit-explicit coupling calculations can be performed
by the arbitrary Lagrangian-Eulerian method. The coupling calculations are
implemented in two separate steps. The fluid supplies the structure with a

pressure loading, which causes the structure to move. In return, the
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structure gives the fluid a moving boundary condition at the fluid-structure
interface. The optimum choice of the mesh movement for fluid-structure
interaction problems is to move the vertices of the fluid cells adjacent to a
structure along with those of the structure. Thus, the movement of the
structure nodes relative to fixed vertices will not create any irregular cells
for the fluid calculation.

The boundary conditions at the fluid-structure interface require that the
fluid can slide freely along the structure surfaca, but must move together
with the structure in the normal direction. Figure 3 shows the structural
segments with nodal points 1, 2, and 3 located on the side of the fluid cells

A and B with corresponding fluid nodes 17, 27, and 3°. We assume that the

normal direction at point 2 is determined by the line connecting points 1 and

3. Thus, the boundary conditions, requiring that the fluid velocities to be

changed from U, and Vo to ué, and vé,, are

- 2 . 2 .
uz. = u, sin“o - v, sin0 cos0 + u,. cos"0 + v,. sind coso , (23)

and

5+ = = Uy sing coso + v, c0520 * Uy sin0 coso + Voo sin20 . (24)

where

2 J
Nxg - x)%+ lyg - y))
and up and v, are the radial and axial velocity components at structural nodal

point 2.
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Since the vertices of the fluid cell adjacent to the structure have been
moved with different velocities from the structural nodal points, a rezone
calculation is required in the third phase to compute the convective flux due
to the relative motion between the fluid and the computing mesh as the fluid

vertices move back to coincide with the structural nodal points.

NUMERICAL STABILITY AND SUB-CYCLING

In order to ensure numerical stability, limitation of time steps for both
hydrodynamic and structural calculations must be given. The time step dty,
chosen for the hydrodynamic analysis, must satisfy the modified "Courant
Condition". The restriction is that fluid must not be permitted to flcw

across more than one computational cell in one time step; that is

ot <

h R

! v X (25)
ju” dS [min

where V is the control volume for either the mass or the momentum calculation,
and uf is the relative velocity between the computing mesh and the fluid in
the normal direction of the surface dS.

In the axisymmetric structural-dynamics analysis the time step tg,

employed for the explicit numerical integration must satisfy the following

requirement

2
st < Min| L, B : (26)

Elo 6/Eh/120

where 8 is a reduction factor usually between 0.5 and 0.8; ¢ is the element
length; E is Young's modulus of elasticit;; h is the element thickness; and p

is the density of the solid material.
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For the problem involving caiculation of the UIS movement, the classical
Fourier theories of numerical stability are not applicable in the three-
dimensional analysis of the UIS support columns, because of the gquadratic
combination of velocities in Eq. (11}, Therefore, stability limits
corresponding to the linearized analysis can only be served as a guideline for
the stable time step. The destabilizing effects of nonlinearities can usually
be overcome by further reducing the time step obtained from the linearized
analysis.

When the element has both axial and flexural stiffness such as the pipe

element used for simulating the UIS support columns the time step &tg can be

estimated from

BL g2l \
st; < Min -, R (27)
YE/p 6rg/E7p

where rg is the radius of gyration of the pipe cross section.

Because the hydrodynamic program usually uses an implicit integration
scheme while the structural-dynamics program utilizes an explicit integration
procedure, St is usually larger than ot (or atg). Thus, within each time
step, several structural dynamics calculations must be performed in order to
- match one hydrodynamic calculation. For instance, the number of structural

steps N (known as sub-cycles) used in the axisymmetric structural analysis can

be determined by

N = I(Gth/GtS) +1, (29)

where 1 denotes the integer part of the ratio.

)
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If the analysis involves calculations of motions of the UIS support

columns, the number of sub-cycles N” used in the three-dimensional structural

analysis can be estimated from Eq. (29) by simply replacing 6ty by Stg.

EXAMPLES

Three problems are presented to illustrate this arbitrary Lagrangian-
Eulerian method. The first one deals with a transient fluid-structure
interaction problem selected by the APRICOT (Analysis of PRImary COntainment
Iyansient) project. This project, initiated by the U.S. Department of Energy,
involves several reactor safety analysis groups around the world. Each is
invited to perform independent calculations of identical problems in order to
verify capabilities of large computer codes used for the LMFBR safety
analysis. Presently, the APRICOT project is at the Phase 3 stage, aiming at
validation of structural and fluid-structural-coupling capabilities, using
some simple and well defined problems. Here, we select problem 2B to
demonstrate the flexibility of the arbitrary Lagrangian-Eulerian method.

Figure 4 shows the configuration of this problem in which an annulus of
fluid is subjected to a prescribed pressure history of the inner surface,
while the outer surface is restrained by a thin cylindrical shell. The
applied pressure was constant at 8 MPa. The fluid properties were desc-ibed
by a simple equation of state with a pressure cut-off at 0, i.e., Ppi, =
0.0. The thickness of the thin shell is 0.01693 cm.

As we mention in the introductory section that the solution of the fluid
transient can be obtained in six different ways, by the appropriate choice of
the implicit or explicit scheme, and the appropriate choice of the Lagrangian,
Eulerian, or hybrid Lagrangian-Eulerian solution. Because of the space

limitation, we will present results obtained from two representative
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calculations, using the explicit hybrid Lagrangian-Eulerian and implicit
Eulerian schemes, respectively. In the hybrid analysis the prescribed radial
velocity of each interior node is proportional to the shell velocity,
depending on the ratio of its radial coordinate to the shell radial
coordinate. However, in the Eulerian calculation only nodes adjacent to the
thin shell are assumed to move with the structure, while other nodes are kept
stationary. Since no experimental data is available for this problem,
solutions obtained from the ICECO-CEL code [7] are given for the purpose of
comparison,

Figure 5 presents a comparison of predicted fluid pressures on the shell
as a function of time. Each pressure profile is comprised of four major
peaks. The first one is generated by the incident wave, whereas the other
three are caused by successive reflections between the shell and the source.
It can be seen that the agreement among these three pressure curves is quite
good - not only the peak values but also the wave arrival times. Also, as we
expected, the explicit hybrid Eulerian-Lagrangian calculation exhibits more
wave phenomena in its pressure profile, and appears to be more oscillatory.
On the other hand, the implicit Eulerian calculation of the arbitrary
Lagrangian-Eulerian technique provides a relatively smooth solution and almost
duplicates the result of the ICECO-CEL code. Figure & shows the shell
velocity as a function of time. Again, except for the detailed wave
phenomena, the agreement among these three solutions is very good.

The second problem deals with a study of the effects of a perforated
plate on the slug impact load and containment response. The mathematical
model used in the ALICE analysis is shown in Fig., 7. The reactor
configuration consists of a primary vessel, a core barrel, a perforated dip

plate, and a movable reactor cover with holddown bolts. Marker particles are
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used to represent coolant. Two calculations have been performed with the
ALICE code: one with and the other without the perforated dip plate.

Figure 8 presents reactor configurations at thrce different times for the
case with the perforated1 plate. These configurations show how the core-gas

bubble expands and how the core barrel and primary vessel deform during the

excursion. In addition, Fig. 8 indicates significant flow blockage near the

bottom of the perforated plate.

Reactor configurations for the case without the perforated plate are
shown in Fig. 9. By comparing the configurations for the two cases given in
Figs. 8 and 9, it is evident that the perforated plate has the effect of (1)
confining the HCDA bubble expansicn, (2) slowing down the upward movement of
the coolant slug, (3) changing the smooth coolant free surface to a relatively
turbulent one, and (4) reducing the slug-impact loads and the upper vessel
wall deformation. However, the increase in core barrel deformation cwing to
the slower core-gas-bubble expansion, which results from the suppression
effect of the perforated plate, is quite small.

From this second study, it can be concluded that the perforated plate
does play an important role in the overall containment response; in
particular, it has a mitigating effect on the slug impact and upper vessel
deformation.

The third problem investigates the response of a typical LMFBR during an
HCDA. Figure 10 shows the mathematical model used in the analysis. It
consists of a primary vessel with a curved bottom, a movable Upper Internal
Structure (UIS), a segmented steel radial shield, a core barrel, and a core-
support structure (CSS). Marker particles are used to represent the coolant,

Note that the support columns that connect the UIS with the reactor cover

are not shown in the mathematical model. However, the deformations of the
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support columns can be perceived from the movement of the UIS. These
deformations, generated by the buckling of the support columns, are calculated
by the three-dimensional pipe element. The source pressure in tre core-gas
bubble is computed from the pressure-volume relationships rather than the
pressure-time histories, since the latter are not known a priori during an
HCDA. The initial core pressure was taken to be about 26.3 Ma.

Figure 11 shows reactor configurations at three different times. These
configurations illustrate: (1) how the coolant disturbance occurs in the
bottom portion of the reactor from pressure waves propagating downward through
the opening of the CSS, (2) how the core-gas bubble 2xpands and is distorted
as it encounters the sharp corners of various internal structures, (3) how the
UIS is displaced upward and how it interacts with the core-gas bubble, as well
as with the surrounding fluid, (4) how the fluid moves and how the free
surface impinges on the reactor cover, and (5) how the radial shield, core
barrel and the primary vessel are deformed during the course of the

excursion. These deformations can be seen from the movements of cell vertices

adjacent to these structures.

Figure 12 gives the time history of the upward force acting on the UIS.
Figure 13 presents the displacement of the UIS as a function of time. Such

displacement is caused by the buckling of the support columns.

SUMMARY AND CONCLUSION

It has been demonstrated that the arbitrary Lagrangian-Eulerian method
described above is very effective for analyzing dynamic fluid-structure
interactions in fast reactor containment. The method is extremely versatile
and includes options of Lagrangian, Eulerian, or hybrid Lagrangian-Eulerian

computational schemes, with time integration performed either implicitly or



explicitly. Using the arbitrary Lagrangian-Eulerian hydrodynamic technique
not only eliminates the mesh distortion problem associated with a purely
Lagrangian technique, but also alleviates the difficulty of treating the
fluid-structure interface encountered by the purely Eu]erian‘method.
Furthermore, utilization of the co-rotational finite-element formulation in
the structural analysis enables the modeling of complex structures subject to
large displacements in two- and three-space dimensions.

The arbitrary Lagrangian-Eulerian method has other important features:
(1) it employs the complete hydrodynamic equations in the formulation,
including both the nonlinear convective and viscous-dissipation terms. (2) It
is highly user-oriented, and can provide a stable solution throughout the
entire excursion without using only complementary mechanism such as artificial
viscosities, damping coefficients, rezonings, and mesh stabi]izations.' This
is a decided advantage for applying the method to both parametric studies and
production runs. (3) It has the capability of treating flow through coolant
passageways of the UIS and perforated structures, which is of significance in
the safety analysis of LMFBRs.

In the first sample problem, the analytical predictions have been
compared with ICECO-CEL results. More importantly, the arbitrary Lagrangian-
Eulerian method and the ALICE code system have also been validated against
many experimental data [see Refs. 1, 2]. Good agreement with experiments and
established analytical methods demonstrates that the ALICE code system can

predict accurately the response of primary containment systems generated by

dynamic fluid-structure interactions.
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Fig. 3. Fluid-structure Coupling Calculation.
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