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ABSTRACT

An approximation method based on the use of theta functions is shown to be
efficient and useful in numerical evaluation of complete elliptic integrals of the first
and second kinds, K(k) and E(k), respectively. The integrals are expressed in terms

2
of power series of the form ^2anqn , 0 < q < 1, where q is the nome determined 
uniquely from a given value of the argument k. The series converge very rapidly, 
except for small domains near \k\ = 1, where they either converge slowly or fail to 
converge. When applied on Cray 2 computers for 0 < A:2 < 0.9955, the procedure is 
found to be more efficient than both the Chebyshev approximations of the Hastings 
form and the standard Gauss arithmetic-geometric mean process. Numerical results 
that demonstrate the accuracy and efficiency of the approximation method are 
presented.
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The complete elliptic integrals of the first and second kinds are defined, respec­
tively, by [1-3]
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where 2*1 (a, 6; c; 2) is the Gauss hypergeometric series.
The functions K(k) and E(k) are useful in the calculation and analysis of various 

types of problems in many branches of physics. An example involving both K(k) 
and E(k) is the problem of calculating the magnetic field B and vector potential A 
due to a circular current loop. Their expressions in the cylindrical coordinates are 
given by [4,5]
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(8)(a + p)2 + z2

and I and a are the current and radius of the loop, respectively.
A useful numerical method for evaluating the complete elliptic integrals K(k) 

and E(k) is the method of the arithmetic-geometric mean described in Ref. [1]. This 
method has the following advantages: (1) the numerical accuracy of the calculation 
can easily be specified by a single parameter, and (2) the algorithm is so simple that 
it is quite portable. This procedure involves evaluation of a square root (geometric 
mean) in each loop of an iteration process which continues until the specified accu­
racy is attained. On the other hand, the method of Chebyshev approximations of 
the Hastings form is based on the truncated modified Legendre form [1,2,6]:

N’ , , N’

K(k) = J2«»!?"+m -) E m" .
n=0 W/ n=o

(9)

N' N'

E(k) = Tc„^ + \nl-)Td„n-‘ , 
n=0 n=l

(10)

where

•q = 1 — k2 = k'2

is the complementary parameter. A useful discussion and extensive compilation of 
numerical values of an, bn, c„, and dn for 2 < IV' < 10 can be found in Ref. [2].

It is often necessary to evaluate, with high precision, the difference between 
K(k) and E(k):

D(k) = K(k) — E(k) . (11)

For example, near the axis of the circular current loop (p = 0), both Bp and 
become proportional to D(k). Since 1V(0) = -£7(0) = tt/2, accurate calculation 
of D(k) for small |fc| cannot rely on Eqs. (9) and (10). One can either use the 
method of the arithmetic-geometric mean or the power series expansion obtained 
from Eqs. (1) and (2),

D(k) = l (12)

Unfortunately, neither of these procedures is very efficient.
An alternative approach for computing K(k), D(k), and E(k) near & = 0 is to 

express them in terms of the nome q given by [1,7,8]
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q = e-x.-p[—TrK(<k,)/K{k)]

(13)

The derivation of such expressions is based on the relationships between the com­
plete elliptic integrals and two of the theta functions, defined by [7]

9z(z, <7) = 1 + 2 qn cos 2nz ,
n— 1 

00

04(2, <7) = 1 + 2 —l)"#" cos2n2; .

The results given in Refs. [7,8] are
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The g-series of #3(0, g), 04(0, g), and 04(0, g) converge extremely fast except near
2

g = 1, since they contain powers only of the form qn . Therefore, the main problem 
is to find g for a given k. The series given by Eq. (13) can be used, but it converges 
slowly unless |&| <C 1. A more convenient method is to express q in terms of

A
1 1- (1-P)
2 1 + (1 — k2)

1/4

171 (18)

by using the relation [7]
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71 = 1 n—Q

(19)
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It can be shown that the solution of Eq. (19) for q in terms of A has the form

Note that the domain of 0 < A: < 1 corresponds to 0 < A < 1/2 and 0 < g < 1. By 
substituting Eq. (20) into Eq. (19) and equating coefficients of the same powers of 
A, one can obtain values of ctm, but this process becomes extremely complicated as 
m becomes large. More useful procedures are not known at the present time. The 
numerical values of Q!m are given in Ref. [8] for 1 < m < 4, and an extension to 
m = 12 appears in Table I.

It may be remarked that X(k) and q(k) are highly nonlinear functions of k, 
and the power series in terms of 5 or A in Eqs. (16), (17), and (20) are useful not 
only for |A:| <C 1, but also for a much wider domain that excludes only very small 
portions near |fc| = 1. Table II lists numerical values of A, A4, q, q9, q16, g25, q36, 
K(k), and E(k) for many values of k. In the table, it is seen that, if A: = 0.9995, 
for example, then A = 0.3490 and q = 0.3607, while A: = 1 gives A = A and <7 = 1. 
Tables III and IV show absolute values of relative errors, \K(k) — K*(k)\/K(k) and 
\E(k) — E*(k)\/E(k), respectively, where

A'*(*) = 2* (i + ,

E*(k) = K*(k) + 7i’2 Etit-ir^vr

= A ^1 + .

(21)

(22)

(23)

These tables give results of double-precision computations performed on a Cray 2 
with N = 6 for M = 1, 2, • • •, 12. Entries of ** indicate errors of less than 
2 x 10-28, which is approximately the limit of accuracy of the calculation. Errors 
obtained with N = 7 are identical (at least to three significant figures) to those 
in Tables III and IV; results based on iV = 5 differ so little from those based on 
N = 6 that for actual applications for 0 < A;2 < 0.9999, iV = 5 is sufficient. Since 
the values of N and M required for a specified accuracy of computation depend on 
the value of k, an efficient program must treat N and M as functions of k. Such 
relationships are listed in Tables V and VI for machine precisions of 7.11 x 10~14
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The g-series of #3(0,5), #4(0,5), and #4(0,5) converge extremely fast except near
2

5 = 1, since they contain powers only of the form 5” . Therefore, the main problem 
is to find 5 for a given k. The series given by Eq. (13) can be used, but it converges 
slowly unless |A:| <C 1. A more convenient method is to express 5 in terms of
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It can be shown that the solution of Eq. (19) for q in terms of A has the form

Note that the domain of 0 < A: < 1 corresponds to 0 < A < 1/2 and 0 < 5 < 1. By 
substituting Eq. (20) into Eq. (19) and equating coefficients of the same powers of 
A, one can obtain values of am, but this process becomes extremely complicated as 
m becomes large. More useful procedures are not known at the present time. The 
numerical values of Q!m are given in Ref. [8] for 1 < m < 4, and an extension to 
m — 12 appears in Table I.

It may be remarked that A(fc) and q(k) are highly nonlinear functions of k, 
and the power series in terms of <7 or A in Eqs. (16), (17), and (20) are useful not 
only for |A:| <C 1, but also for a much wider domain that excludes only very small 
portions near |A:| = 1. Table II lists numerical values of A, A4, q, q9, q16, q25, q36, 
K(k), and E(k) for many values of k. In the table, it is seen that, if A: = 0.9995, 
for example, then A = 0.3490 and q = 0.3607, while A: = 1 gives A = A and q — 1. 
Tables III and IV show absolute values of relative errors, \K(k) — K*(k)\/K(k) and 
\E(k) — E*(k)\/E(k), respectively, where

E*(k) = K*(k) +

Bo-* •
n=l /

(21)

£"i(-i)n"Vr2

5 + Ei!Li(-i)n(9*)na ’

(22)

/ M \

f 1 + £ amX4m\ . (23)

These tables give results of double-precision computations performed on a Cray 2 
with N = 6 for M = 1, 2, • • •, 12. Entries of ** indicate errors of less than 
2 x 10-28, which is approximately the limit of accuracy of the calculation. Errors 
obtained with N = 7 are identical (at least to three significant figures) to those 
in Tables III and IV; results based on iV = 5 differ so little from those based on 
N = 6 that for actual applications for 0 < A:2 < 0.9999, iV = 5 is sufficient. Since 
the values of N and M required for a specified accuracy of computation depend on 
the value of k, an efficient program must treat N and M as functions of k. Such 
relationships are listed in Tables V and VI for machine precisions of 7.11 x 10-14
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Table I

Numerical Values of atm

m

1 2

2 15

3 150

4 1,707

5 20,910

6 268,616

7 3,567,400

8 48,555,069

9 673,458,874

10 9,481,557,398

11 135,119,529,972

12 1,944,997,539,623
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Table II
Numerical Values of A, A4, q, q9, q16, g25, g36, K(k), and E(k)

k2 1*1 A A4 q q* ?16 925 g36 K E

0.1000 0.31623 0.0066 1.88E-09 0.0066 2.33E-20 1.25E-35 2.91E-55 2.93E-79 1.6124 1.5308
0.2000 0.44721 0.0139 3.78E-08 0.0139 1.99E-17 2.04E-30 4.06E-47 1.57E-67 1.6596 1.4890
0.3000 0.54772 0.0223 2.46E-07 0.0223 1.35E-15 3.68E-27 4.97E-42 3.34E-60 1.7139 1.4454
0.4000 0.63246 0.0319 1.03E-06 0.0319 3.40E-14 1.14E-24 3.88E-38 1.34E-54 1.7775 1.3994
0.5000 0.70711 0.0432 3.49E-06 0.0432 5.26E-13 1.48E-22 7.77E-35 7.63E-50 1.8541 1.3506
0.6000 0.77460 0.0570 1.06E-05 0.0570 6.37E-12 1.25E-20 7.96E-32 1.65E-45 1.9496 1.2984
0.7000 0.83666 0.0747 3.11E-05 0.0747 7.23E-11 9.38E-19 6.79E-29 2.74E-41 2.0754 1.2417
0.8000 0.89443 0.0993 9.71E-05 0.0993 9.36E-10 8.90E-17 8.33E-26 7.69E-37 2.2572 1.1785
0.9000 0.94868 0.1401 3.85E-04 0.1402 2.09E-08 2.22E-14 4.64E-22 1.91E-31 2.5781 1.1048
0.9500 0.97468 0.1789 1.03E-03 0.1793 1.92E1-07 1.14E-12 2.19E-19 1.35E-27 2.9083 1.0605
0.9800 0.98995 0.2267 2.64E-03 0.2279 1.66E1-06 5.31E-11 8.82E-17 7.61E-24 3.3541 1.0286
0.9900 0.99499 0.2597 4.55E-03 0.2622 5.86E-06 4.99E-10 2.92E-15 1.18E-21 3.6956 1.0160
0.9950 0.99750 0.2899 7.07E-03 0.2943 1.65E-05 3.16E-09 5.23E-14 7.50E-20 4.0393 1.0089
0.9980 0.99900 0.3254 1.12E-02 0.3334 5.09E1-05 2.33E-08 1.19E-12 6.74E-18 4.4953 1.0040
0.9990 0.99950 0.3490 1.48 El-02 0.3607 1.03E-04 8.22E-08 8.51E-12 1.15E-16 4.8411 1.0022
0.9995 0.99975 0.3699 1.87E-02 0.3862 1.91E-04 2.45E-07 4.67E-11 1.33E-15 5.1873 1.0012
0.9998 0.99990 0.3937 2.40&02 0.4172 3.83E-04 8.42E-07 3.22E-10 2.15E-14 5.6451 1.0005
0.9999 0.99995 0.4091 2.80E-02 0.4388 6.03E-04 1.89E-06 1.14E-09 1.33E-13 5.9916 1.0003



Table III
Absolute Values of the Relative Error of the Approximation Form K*(k) Given by Eqs. (21) and (23)

k2\M 1 2 3 4 5 6 7 8 9 10 11 12

0.1000 1.38E-18 2.59E-26 *** *** *** *** *** *** *** ***
0.2000 1.16E-15 4.39E-22 2.43E-28 *** *** *** *** *** *** ***
0.3000 7.76E-14 1.91E-19 5.36E-25 ** + *** *** *** *** *** *** ***
0.4000 1.92E-12 1.98E-17 2.33E-22 3.05E-27 *** *** *** *** *** *** *** ***
0.5000 2.90E-11 1.01E-15 4.02E-20 1.72E-24 *** *** *** *** *** *** ***
0.6000 3.43E-10 3.63E-14 4.37E-18 5.65E-22 7.69E-26 *** *** *** *** *** *** ***
0.7000 3.78E-09 1.18E-12 4.17E-16 1.59E-19 6.35E-23 2.64E-26 *** *** *** *** ***
0.8000 4.70E-08 4.56E-11 5.04E-14 5.99E-17 7.47E-20 9.63E-23 1.27E-25 2.24E-28 *** *** ***
0.9000 9.86E-07 3.80E-09 1.66E-11 7.85E-14 3.88E-16 1.98E-18 1.04E-20 5.55E-23 3.01E-25 1.74E-27 *** ***
0.9500 8.58E-06 8.81E-08 1.03E-09 1.29E-11 1.70E-13 2.32E-15 3.24E-17 4.61E-19 6.65E-21 9.73E-23 1.44E-24 2.14E-26
0.9800 6.99E-05 1.85E-06 5.59E-08 1.81E-09 6.15E-11 2.16E-12 7.77E-14 2.85E-15 1.06E-16 3.99E-18 1.52E-19 5.83E-21
0.9900 2.37E-04 1.08E-05 5.64E-07 3.15E-08 1.85E-09 1.12E-10 6.94E-12 4.39E-13 2.81E-14 1.83E-15 1.20E-16 7.92E-18
0.9950 6.43E-04 4.59E-05 3.72E-06 3.23E-07 2.95E-08 2.77E-09 2.67E-10 2.62E-11 2.61E-12 2.63E-13 2.68 E-14 2.75E-15
0.9980 1.88E-03 2.15E-04 2.78E-05 3.84E-06 5.57E-07 8.33E-08 1.28E-08 1.99E-09 3.15E-10 5.05E-11 8.16E-12 1.33E-12
0.9990 3.68E-03 5.60E-04 9.60E-05 1.76E-05 3.39E-06 6.71E-07 1.36E-07 2.81E-08 5.90E-09 1.25E-09 2.68E-10 5.78E-11
0.9995 6.53E-03 1.26E-03 2.75E-04 6.39E-05 1.55E-05 3.89E-06 9.98E-07 2.61E-07 6.90E-08 1.85E-08 4.99E-09 1.36E-09
0.9998 1.24E-02 3.12E-03 8.77E-04 2.63E-04 8.24E-05 2.66E-05 8.77E-06 2.94E-06 1.00E-06 3.45E-07 1.20E-07 4.19E-08
0.9999 1.87E-02 5.54E-03 1.83E-03 6.43E-04 2.35E-04 8.88E-05 3.42E-05 1.34E-05 5.33E-06 2.14E-06 8.67E-07 3.54E-07

Indicates error < 2 x 10 28



Table IV
Absolute Values of the Relative Error of the Approximation Form E*(k) Given by Eqs. (21)-(23)

k2\M 1 2 3 4 5 6 7 8 9 10 11 12

0.1000 1.34E-18 2.52E-26 *** *** *** *** *** *** *** *** ***
0.2000 1.10E-15 4.14E-22 *** *** *** *** + + * *** *** ***
0.3000 7.04E-14 1.73E-19 4.86E-25 *** *** *** *** *** *** *** *** + * +
0.4000 1.66E-12 1.72E-17 2.02E-22 2.56E-27 *** + * + *** ** + * + * * + *
0.5000 2.37E-11 8.26E-16 3.28E-20 1.40E-24 *** *** + ** + ** *** *** *** ***
0.6000 2.59E-10 2.74E-14 3.29E-18 4.26E-22 5.78E-26 *** *** + ** *** *** *** ***
0.7000 2.55E-09 7.94E-13 2.81E-16 1.07E-19 4.29E-23 1.77E-26 *** *** *** *** * + +
0.8000 2.67E-08 2.59E-11 2.87E-14 3.41E-17 4.25E-20 5.47E-23 7.22E-26 *** *** *** * + *
0.9000 4.00E-07 1.54E-09 6.75E-12 3.19E-14 1.58E-16 8.05E-19 4.22E-21 2.25E-23 1.22E-25 5.48E-28 2.28E-28 ***
0.9500 2.37E-06 2.44E-08 2.85E-10 3.58E-12 4.72E-14 6.43E-16 8.97E-18 1.28E-19 1.84E-21 2.69E-23 3.97E-25 5.90E-27
0.9800 1.10E-05 2.92E-07 8.81E-09 2.86E-10 9.70E-12 3.41E-13 1.23E-14 4.50E-16 1.67E-17 6.30E-19 2.40E-20 9.19E-22
0.9900 2.36E-05 1.08E-06 5.61E-08 3.14E-09 1.84E-10 1.11E-11 6.91E-13 4.37E-14 2.80E-15 1.82E-16 1.19E-17 7.88E-19
0.9950 3.95E-05 2.82E-06 2.28E-07 1.98E-08 1.81E-09 1.70E-10 1.64E-11 1.61E-12 1.60E-13 1.62E-14 1.65E-15 1.69E-16
0.9980 5.96E-05 6.76E-06 8.72E-07 1.21E-07 1.75E-08 2.62E-09 4.01E-10 6.25E-11 9.90E-12 1.59E-12 2.56E-13 4.18E-14
0.9990 6.95E-05 1.04E-05 1.79E-06 3.28E-07 6.30E-08 1.25E-08 2.53E-09 5.23E-10 1.10E-10 2.32E-11 4.98E-12 1.07E-12
0.9995 7.31E-05 1.38E-05 2.99E-06 6.94E-07 1.69E-07 4.23E-08 1.08E-08 2.83E-09 7.49E-10 2.01E-10 5.42E-11 1.48E-11
0.9998 6.92E-05 1.66E-05 4.62E-06 1.38E-06 4.32E-07 1.39E-07 4.60E-08 1.54E-08 5.25E-09 1.81E-09 6.28E-10 2.20E-10
0.9999 6.18E-05 1.71E-05 5.53E-06 1.93E-06 7.05E-07 2.66E-07 1.02E-07 4.01E-08 1.59E-08 6.40E-09 2.59E-09 1.06E-09

-28Indicates error < 2 x 10



Table V
Maximum Values of k2 for Which the 

Relative Errors of K*(k) and E*(k) Do Not Exceed the 
Machine Precision (7.11 x 10-15) of Cray 1 
and Cray 2 for Given Values of M and N

M N Jfe2'''max

1 2 0.2217
2 3 0.5533
3 3 0.7600
4 4 0.8698
5 4 0.9262
6 4 0.95606
7 4 0.97255
8 5 0.98214
9 5 0.98794

10 5 0.99160
11 5 0.993984
12 5 0.995586

Table VI
Maximum Values of Jfe2 for Which the 

Relative Errors of K*(k) and E*(k) Do Not Exceed 
the Machine Precision (1.19 X 10-7) of VAX 8600 

and VAX 8700 for Given Values of M and N

M N k2"'max

1 2 0.8071
2 3 0.9538
3 3 0.98378
4 4 0.99315
5 4 0.99667
6 4 0.998207

9



(Cray 1 and Cray 2) and 1.19 x 10-7 (VAX 8600 and VAX 8700), respectively. The 
approximations (21)-(23) for k2 < fc^ax with values of N and M given in the tables 
will yield the relative errors of both K*(k) and E*(k) within the machine precision.

Tables VII and VIII show CPU times (in seconds) required to compute 106 
values of both K(k) and E(k), using FORTRAN programs of three approximation 
procedures: Chebyshev approximations of the Hastings form given by Eqs. (9) and 
(10) (method A), the standard Gauss arithmetic-geometric mean process (method 
B), and the 8 function expansions given by Eqs. (21)-(23) (method C). The timing 
results given in Table VII were obtained by running the programs (in non-vectorized 
modes) on five Cray computers: Cray 1A (serial 6), Cray IS (serial 33), Cray X- 
MP/22 (serial 119), Cray 2/64 (serial 2001), and Cray 2/128 (serial 2018). The 
table shows that the two compilers CFT77 and CIVIC give quite different CPU 
times. The results from the Cray 1A and the Cray IS are practically the same and 
hence are listed under the single heading of Cray 1. The times given in Table VIII 
are results obtained from running the programs on a VAX 8600 and a VAX 8700.

The evaluation of the fourth root for the complementary parameter in Eq. (18) 
was carried out by taking square roots twice and consumed a considerable portion of 
the total computing time. The efficiency of method C, therefore, can be improved 
greatly if a better method of determining the fourth root becomes available. A 
slight further improvement is possible if the method of Chebyshev approximation 
is applied, as in the case of Eqs. (9) and (10), to the series of q/X in powers of A4 in 
Eq. (20). A rather interesting conclusion that can be made from Tables VII and VIII 
concerning the relative speeds of the three approximation schemes is that on Cray 2’s 
method C is most efficient and method A is least efficient, whereas on VAX 8600 
and VAX 8700 method A is most efficient and method B is least efficient. The 
advantages of the new method based on the 8 functions are (1) accurate and efficient 
evaluation of D(k) for small \k\, (2) efficiency on Cray 2 computers, (3) portability, 
(4) potential room for improvement, and (5) relatively low additional cost for higher 
accuracies. The obvious major defect is that the small regions near |A:| = 1 must be 
excluded.
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Table VII
Cray CPU Times (sec) Required to Compute 10® Values of K(k) and E(k) Each for 0 < A2 < 0.9955

CFT77 CIVIC

Approximation Method Precision Cray
2/128

Cray
2/64

Cray
X-MP/22 Cray 1

Cray
2/128

Cray
2/64

Cray
X-MP/22 Cray 1

Chebyshev; Eqs. (9) and (10), N1 = 8 5.56 x 10~15 5.25 5.49 3.24 5.18 6.96 9.42 6.55 8.71
Gauss arithmetic-geometric mean 7.11 x 10"15 3.42 3.52 7.98 10.42 5.66 6.36 9.68 12.09
^-series; Eqs. (21)-(23), Table V 7.11 x 10~15 2.86 2.90 5.23 7.33 3.89 4.28 5.92 8.10



Table VIII
VAX CPU Times (sec) Required to Compute 106 
Values of K(k) and E(k) Each for 0 < Jb2 < 0.9982

Approximation Method Precision VAX 8600 VAX 8700

Chebyshev; Eqs. (9) and (10), N' = 4 1.57 x 10"8 23.6 24.9

Gauss arithmetic-geometric mean 1.19 X IQ”7 56.7 43.8

g-series; Eqs. (21)-(23), Table VI 1.19 X lO-7 40.8 32.3
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