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ABSTRACT

An approximation method based on the use of theta functions is shown to be
efficient and useful in numerical evaluation of complete elliptic integrals of the first
and second kinds, K (k) and E(k), respectively. The integrals are expressed in terms
of power series of the form Eanqnz, 0 < ¢ < 1, where ¢ is the nome determined
uniquely from a given value of the argument k. The series converge very rapidly,
except for small domains near |k| = 1, where they either converge slowly or fail to
converge. When applied on Cray 2 computers for 0 < k2 < 0.9955, the procedure is
found to be more efficient than both the Chebyshev approximations of the Hastings
form and the standard Gauss arithmetic-geometric mean process. Numerical results
that demonstrate the accuracy and efficiency of the approximation method are

presented.
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The complete elliptic integrals of the first and second kinds are defined, respec-

tively, by [1-3]

w2 d¢
K(k) =
(%) ./0 (1 — k2 sin’ ¢)1/2

_/1 dz
0 [(1-22)(1 - k2z2)]'/?

T 11
= §2F1 (§,§§1§k2) ; |kl <1,

n/2 1/2
E(k)=/ (1—-k2sin2 ¢) do
0
1 _ 2.2\ 1/2
- [ (55«
0 l1-=z
2 22

where 2 F} (a, b; ¢; ) is the Gauss hypergeometric series.

=fzn( 1lnwﬁ, k<1,

(1)

(2)

The functions K (k) and E(k) are useful in the calculation and analysis of various

types of problems in many branches of physics. An example involving both K (k)

and E(k) is the problem of calculating the magnetic field B and vector potential A

due to a circular current loop. Their expressions in the cylindrical coordinates are

given by [4,5]
B(p,z) = Bp’ﬁ+ Bz? R
pol z a® + p? + 22 i
B, = 2(; ) 1/2 [(a_52+22E(k)—I&(k) ,
p(a+p) +22]
_ pol 1 a? — p? — 22
B, = 2r [(a+p)2+22]1/2 |:(a_p)2+z2E(k)+I{(k) )
A(p,2) = Ag
pola 1 (2 — k)K(k) — 2E(k)
Ay = —— =
T [(a+p)?+ 2
where

(3)

(4)

(5)

(6)

(7)



B2 dap
(a+p)?+22"

and I and a are the current and radius of the loop, respectively.

(8)

A useful numerical method for evaluating the complete elliptic integrals K (k)
and E(k) is the method of the arithmetic-geometric mean described in Ref. {1]. This
method has the following advantages: (1) the numerical accuracy of the calculation
can easily be specified by a single parameter, and (2) the algorithm is so simple that
it is quite portable. This procedure involves evaluation of a square root (geometric
mean) in each loop of an iteration process which continues until the specified accu-
racy is attained. On the other hand, the method of Chebyshev approximations of
the Hastings form is based on the truncated modified Legendre form [1,2,6]:

Nl n 1 NI n
K(t) =3 aw® +1n (E) S ban™ (9)

n=0 n=0
N/ 1 Nl
E(k)=) can"+In (;) > dun™, (10)
n=0 n=1
where
n=1-k%=k"

is the complementary parameter. A useful discussion and extensive compilation of
numerical values of a,, by, ¢p, and d, for 2 < N’ < 10 can be found in Ref. [2].
It is often necessary to evaluate, with high precision, the difference between
K(k) and E(k):
D(k) = K(k)— E(k) . (11)

For example, near the axis of the circular current loop (p = 0), both B, and Ay
become proportional to D(k). Since K(0) = E(0) = /2, accurate calculation
of D(k) for small |k| cannot rely on Eqgs. (9) and (10). One can either use the

method of the arithmetic-geometric mean or the power series expansion obtained

from Eqgs. (1) and (2),
1, [(1\?3 ., [1-3\’5
§k +'<§) Zk +-(§TZ> gk G R (12)

Unfortunately, neither of these procedures is very efficient.

D(k) = 3

An alternative approach for computing K (%), D(k), and E(k) near k = 0 is to

express them in terms of the nome g given by [1,7,8]
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= exp[-7K(k')/K (k)]
=k—2+8(f—2)2+84(%>3+992(§)4+--- : (13)

The derivation of such expressions is based on the relationships between the com-

plete elliptic integrals and two of the theta functions, defined by [7]

05(z,q9) = 1+22q"2 cos2nz , (14)
n=1
> 2

0s(z,9) =1+ 22(—1)"q" cos2nz . (15)
n=1

The results given in Refs. [7,8] are

K (k) = 3 [6:(0,))

1 o 2 (16)
=27 <‘2' + nzz:l qn ) )
2 6/(0,q)
P = 3% 8,0, 4)
2 17
_ 7\'2 21010=1(__1)nn2qn ( )
K(k) 3+ 20, (=g’
where
d?64(z,
91(0,q) = L0(20)
z=0

The g-series of 63(0,q), 84(0,¢), and 6{(0,q) converge extremely fast except near
g = 1, since they contain powers only of the form q"z. Therefore, the main problem
is to find g for a given k. The series given by Eq. (13) can be used, but it converges

slowly unless |k| < 1. A more convenient method is to express ¢ in terms of

1/4
WS Gl (18)
214(1- k2)1/4
by using the relation [7]
A\ (1 12 Zq4n2> - Z g2 t1)” (19)
n=1 n=0
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It can be shown that the solution of Eq. (19) for ¢ in terms of A has the form

g=2A (1 + i am/\4m> . (20)

m=1

Note that the domain of 0 < k < 1 corresponds to 0 < A <1/2and 0 < ¢ <1. By
substituting Eq. (20) into Eq. (19) and equating coefficients of the same powers of
A, one can obtain values of a,,, but this process becomes extremely complicated as
m becomes large. More useful procedures are not known at the present time. The
numerical values of a,, are given in Ref. (8] for 1 < m < 4, and an extension to
m = 12 appears in Table L.

It may be remarked that A(k) and ¢(k) are highly nonlinear functions of %,
and the power series in terms of ¢ or A in Egs. (16), (17), and (20) are useful not
only for |k| < 1, but also for a much wider domain that excludes only very small
portions near |k| = 1. Table II lists numerical values of A, A\, ¢, ¢°, ¢'%, ¢*5, ¢%6,
K(k), and E(k) for many values of k. In the table, it is seen that, if £ = 0.9995,
for example, then A = 0.3490 and ¢ = 0.3607, while £k = 1 gives A = -;- and ¢ = 1.
Tables III and IV show absolute values of relative errors, |K (k) — K*(k)|/K(k) and
|E(k) — E*(k)|/E(k), respectively, where

1 & L)
K*(k)=2~n (5 + Z(q*)n > : (21)
n=1

s e (=D (g)™
RS SOFFS S e 2

M
=\ (1 + Y am/\4'"> : (23)
m=1

These tables give results of double-precision computations performed on a Cray 2
with N = 6 for M =1, 2, ---, 12. Entries of ** indicate errors of less than

2 x 10728 which is approximately the limit of accuracy of the calculation. Errors

obtained with N = 7 are identical (at least to three significant figures) to those
in Tables III and IV; results based on N = 5 differ so little from those based on
N = 6 that for actual applications for 0 < k% < 0.9999, N = 5 is sufficient. Since
the values of N and M required for a specified accuracy of computation depend on
the value of k, an efficient program must treat N and M as functions of k. Such

relationships are listed in Tables V and VI for machine precisions of 7.11 x 1014
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g = exp[—7K(k')/K(F)]
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P = 1% 9,(0,0)
o 2 (17)
—_ 772 Zn=l(—1)nn2qn
K(k) 3+ 2oz, (1)’
where
d*84(z,q
01(0,9) = 20
z=0

The g-series of 83(0,q), 64(0,q), and 64(0,¢) converge extremely fast except near
g = 1, since they contain powers only of the form q"z. Therefore, the main problem
is to find ¢ for a given k. The series given by Eq. (13) can be used, but it converges

slowly unless |k| < 1. A more convenient method is to express ¢ in terms of
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It can be shown that the solution of Eq. (19) for ¢ in terms of A has the form

g=A (1 + f: a,,,,\‘*'") : (20)

m=1

Note that the domain of 0 < k < 1 corresponds to 0 <A <1/2and 0 < ¢ < 1. By
substituting Eq. (20) into Eq. (19) and equating coefficients of the same powers of
A, one can obtain values of a,,, but this process becomes extremely complicated as
m becomes large. More useful procedures are not known at the present time. The
‘numerical values of a,, are given in Ref. [8] for 1 < m < 4, and an extension to
m = 12 appears in Table L.

It may be remarked that A(k) and g¢(k) are highly nonlinear functions of k,
and the power series in terms of ¢ or A in Egs. (16), (17), and (20) are useful not
only for |k| < 1, but also for a much wider domain that excludes only very small

portions near |k| = 1. Table II lists numerical values of A, A%, ¢, ¢°, ¢*%, ¢%°, ¢3S,

K(k), and E(k) for many values of k. In the table, it is seen that, if £ = 0.9995,
for example, then A = 0.3490 and ¢ = 0.3607, while £ = 1 gives A = % and ¢ = 1.
Tables III and IV show absolute values of relative errors, |K (k) — K*(k)|/K(k) and
|E(k) — E*(k)|/E(k), respectively, where

1 & 2\’
K*(k)y=2n <§ + Z(q*)n ) ’ (21)
n=1

- (=1 ()
FW=E0 2w D DM GV L U Lo 2

M
g =\ (1 + ) amA‘*m) , (23)
m=1

These tables give results of double-precision computations performed on a Cray 2
with N = 6 for M = 1, 2, ---, 12. Entries of ** indicate errors of less than

2 x 1072% which is approximately the limit of accuracy of the calculation. Errors

obtained with N = 7 are identical (at least to three significant figures) to those
in Tables III and IV; results based on N = § differ so little from those based on
N = 6 that for actual applications for 0 < k% < 0.9999, N = 5 is sufficient. Since
the values of N and M required for a specified accuracy of computation depend on
the value of k, an efficient program must treat N and M as functions of k. Such

relationships are listed in Tables V and VI for machine precisions of 7.11 x 10714
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Table I

Numerical Values of a,,

Qm

© 00 N O Ot oW N

I
N = O

2
15

150

1,707

20,910

268,616
3,567,400
48,555,069
673,458,874
9,481,557,398
135,119,529,972
1,944,997,539,623




Table II

Numerical Values of A, A, q, ¢°, ¢'%, ¢?%, ¢%%, K(k), and E(k)

k2

||

A

A4

q

q9

q16

q25

q36

K

E

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
0.9500
0.9800
0.9900
0.9950
0.9980
0.9990
0.9995
0.9998
0.9999

0.31623
0.44721
0.54772
0.63246
0.70711
0.77460
0.83666
0.89443
0.94868
0.97468
0.98995
0.99499
0.99750
0.99900
0.99950
0.99975
0.99990
0.99995

0.0066
0.0139
0.0223
0.0319
0.0432
0.0570
0.0747
0.0993
0.1401
0.1789
0.2267
0.2597
0.2899
0.3254
0.3490
0.3699
0.3937
0.4091

1.88E-09
3.78E-08
2.46E-07
1.03E-06
3.49E-06
1.06E-05
3.11E-05
9.71E-05
3.85E-04
1.03E-03
2.64E-03
4.55E-03
7.07E-03
1.12E-02
1.48E-02
1.87E-02
2.40E-02
2.80E-02

0.0066
0.0139
0.0223
0.0319
0.0432
0.0570
0.0747
0.0993
0.1402
0.1793
0.2279
0.2622
0.2943
0.3334
0.3607
0.3862
0.4172
0.4388

2.33E-20
1.99E-17
1.35E-15
3.40E-14
5.26E-13
6.37E-12
7.23E-11
9.36E-10
2.09E-08
1.92E-07
1.66E-06
5.86E-06
1.65E-05
5.09E-05
1.03E-04
1.91E-04
3.83E-04
6.03E-04

1.25E-35
2.04E-30
3.68E-27
1.14E-24
1.48E-22
1.25E-20
9.38E-19
8.90E-17
2.22E-14
1.14E-12
5.31E-11
4.99E-10
3.16E-09
2.33E-08
8.22E-08
2.45E-07
8.42E-07
1.89E-06

2.91E-55
4.06E-47
4.97E-42
3.88E-38
7.77E-35
7.96E-32
6.79E-29
8.33E-26
4.64E-22
2.19E-19
8.82E-17
2.92E-15
5.23E-14
1.19E-12
8.51E-12
4.67E-11
3.22E-10
1.14E-09

2.93E-79
1.57E-67
3.34E-60
1.34E-54
7.63E-50
1.65E-45
2.74E-41
7.69E-37
1.91E-31
1.35E-27
7.61E-24
1.18E-21
7.50E-20
6.74E-18
1.15E-16
1.33E-15
2.15E-14
1.33E-13

1.6124
1.6596
1.7139
1.7775
1.8541
1.9496
2.0754
2.2572
2.5781
2.9083
3.3541
3.6956
4.0393
4.4953
4.8411
5.1873
5.6451
5.9916

1.5308
1.4890
1.4454
1.3994
1.3506
1.2984
1.2417
1.1785
1.1048
1.0605
1.0286
1.0160
1.0089
1.0040
1.0022
1.0012
1.0005
1.0003




Table II1
Absolute Values of the Relative Error of the Approximation Form K*(k) Given by Egs. (21) and (23)

K2\ M

1

2

3

4

5

6

7

8

9

10

11

12

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
0.9500
0.9800
0.9900
0.9950
0.9980
0.9990
0.9995
0.9998
0.9999

1.38E-18
1.16E-15
7.76E-14
1.92E-12
2.90E-11
3.43E-10
3.78E-09
4.70E-08
9.86E-07
8.58E-06
6.99E-05
2.37E-04
6.43E-04
1.88E-03
3.68E-03
6.53E-03
1.24E-02
1.87E-02

2.59E-26
4.39E-22
1.91E-19
1.98E-17
1.01E-15
3.63E-14
1.18E-12
4.56E-11
3.80E-09
8.81E-08
1.85E-06
1.08E-05
4.59E-05
2.15E-04
5.60E-04
1.26E-03
3.12E-03
5.54E-03

*kx®
2.43E-28
5.36E-25
2.33E-22
4.02E-20
4.37E-18
4.17E-16
5.04E-14
1.66E-11
1.03E-09
5.59E-08
5.64E-07
3.72E-06
2.78E-05
9.60E-05
2.75E-04
8.77TE-04
1.83E-03

* % %

* %k
*okok
3.05E-27
1.72E-24
5.65E-22
1.59E-19
5.99E-17
7.85E-14
1.29E-11
1.81E-09
3.15E-08
3.23E-07
3.84E-06
1.76E-05
6.39E-05
2.63E-04
6.43E-04

*okk
K%k
*okk
* k%
*okk

7.69E-26

6.35E-23
7.47E-20
3.88E-16
1.70E-13
6.15E-11
1.85E-09
2.95E-08
5.57E-07
3.39E-06
1.55E-05
8.24E-05
2.35E-04

ok

Aok

*okk

* %ok

Hokok

* %k
2.64E-26
9.63E-23
1.98E-18
2.32E-15
2.16E-12
1.12E-10
2.77E-09
8.33E-08
6.71E-07
3.89E-06
2.66E-05
8.88E-05

kK
k%
Kk
ok
Kk
*kok
Kok
1.27E-25
1.04E-20
3.24E-17
7.77E-14
6.94E-12
2.67E-10
1.28E-08
1.36E-07
9.98E-07
8.77E-06
3.42E-05

%k
Ak
* Aok
¥k
%k
*Ak
*kk
2.24E-28
5.55E-23
4.61E-19
2.85E-15
4.39E-13
2.62E-11
1.99E-09
2.81E-08
2.61E-07
2.94E-06
1.34E-05

* kK
kK
*okk
* Kk
Kk
*kk
Kk
Ak

3.01E-25

6.65E-21
1.06E-16
2.81E-14
2.61E-12
3.15E-10
5.90E-09
6.90E-08
1.00E-06
5.33E-06

* %k
*Aok
* %ok
*k ok
*ok ok
*Aok
*okok
*kk
1.74E-27
9.73E-23
3.99E-18
1.83E-15
2.63E-13
5.05E-11
1.25E-09
1.85E-08
3.45E-07
2.14E-06

¥k k

Kok ok

* 4ok

Kok

¥k

* ok ok

K%k

* ¥k

*okk
1.44E-24
1.52E-19
1.20E-16
2.68E-14
8.16E-12
2.68E-10
4.99E-09
1.20E-07
8.67E-07

*okk
e
*kk
*kk
*k*
*ohok
*k ok
*kk
*kk

2.14E-26

5.83E-21
7.92E-18
2.75E-15
1.33E-12
5.78E-11
1.36E-09
4.19E-08
3.54E-07

4 Indicates error < 2 x 10728,



Table IV
Absolute Values of the Relative Error of the Approximation Form E*(k) Given by Egs. (21)—(23)

K\M

1

2

3

4

5

6

7

8

9

10

11

12

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
0.9500
0.9800
0.9900
0.9950
0.9980
0.9990
0.9995
0.9998
0.9999

1.34E-18
1.10E-15
7.04E-14
1.66E-12
2.37E-11
2.59E-10
2.55E-09
2.67E-08
4.00E-07
2.37E-06
1.10E-05
2.36E-05
3.95E-05
5.96E-05
6.95E-05
7.31E-05
6.92E-05
6.18E-05

2.62E-26
4.14E-22
1.73E-19
1.72E-17
8.26E-16
2.74E-14
7.94E-13
2.59E-11
1.54E-09
2.44E-08
2.92E-07
1.08E-06
2.82E-06
6.76E-06
1.04E-05
1.38E-05
1.66E-05
1.71E-05

*kk®
Kook
4.86E-25
2.02E-22
3.28E-20
3.29E-18
2.81E-16
2.87E-14
6.75E-12
2.85E-10
8.81E-09
5.61E-08
2.28E-07
8.72E-07
1.79E-06
2.99E-06
4.62E-06
5.53E-06

*kok

Kk ok

*okk
2.56E-27
1.40E-24
4.26E-22
1.07E-19
3.41E-17
3.19E-14
3.58E-12
2.86E-10
3.14E-09
1.98E-08
1.21E-07
3.28E-07
6.94E-07
1.38E-06
1.93E-06

kK
kK
*kk
*kk
*xk
5.78E-26
4.29E-23
4.25E-20
1.58E-16
4.72E-14
9.70E-12
1.84E-10
1.81E-09
1.75E-08
6.30E-08
1.69E-07
4.32E-07
7.05E-07

*okk
*okok
k%
ok
ok
kK

1.77E-26

5.47E-23
8.05E-19
6.43E-16
3.41E-13
1.11E-11
1.70E-10
2.62E-09
1.25E-08
4.23E-08
1.39E-07
2.66E-07

Ak
kK
*kk
*kk
*kk
*okok
k%

7.22E-26

4.22E-21
8.97E-18
1.23E-14
6.91E-13
1.64E-11
4.01E-10
2.53E-09
1.08E-08
4.60E-08
1.02E-07

Kok
*okok
KKk
Kk
Kk
*kk
k%
*kk

2.25E-23

1.28E-19
4.50E-16
4.37E-14
1.61E-12
6.25E-11
5.23E-10
2.83E-09
1.54E-08
4.01E-08

*okk

kK

* Kk

* kK

*kk

ok

* kK

* kK
1.22E-25
1.84E-21
1.67E-17
2.80E-15
1.60E-13
9.90E-12
1.10E-10
7.49E-10
5.25E-09
1.59E-08

* Kk
Aok
*kk
*okk
*kok
*okk
ok
*okk
5.48E-28
2.69E-23
6.30E-19
1.82E-16
1.62E-14
1.59E-12
2.32E-11
2.01E-10
1.81E-09
6.40E-09

kK
Kk
*kk
kK
kK
Kk
*kk
kK
2.28E-28
3.97E-25
2.40E-20
1.19E-17
1.65E-15
2.56E-13
4.98E-12
5.42E-11
6.28E-10
2.59E-09

*kk
ko
ok ok
*okok
*kk
ok
ok
*okok
*kk

5.90E-27

9.19E-22
7.88E-19
1.69E-16
4.18E-14
1.07E-12
1.48E-11
2.20E-10
1.06E-09

¢Indicates error < 2 x 10728,



Table V

Maximum Values of k? for Which the
Relative Errors of K*(k) and E*(k) Do Not Exceed the
Machine Precision (7.11 x 10~1%) of Cray 1
and Cray 2 for Given Values of M and N

M N R

1 2 0.2217

2 3 0.5533

3 3 0.7600

4 4 0.8698

5 4 0.9262

6 4 0.95606

7 4 0.97255

8 5 0.98214

9 5 0.98794
10 5 0.99160
11 5 0.993984
12 5 0.995586

Table VI

Maximum Values of k? for Which the
Relative Errors of K*(k) and E*(k) Do Not Exceed
the Machine Precision (1.19 x 10~7) of VAX 8600
and VAX 8700 for Given Values of M and N

M

Kanax

0.8071
0.9538
0.98378
0.99315
0.99667
0.998207

O T W N =
B s N | 2




(Cray 1 and Cray 2) and 1.19 x 10~ (VAX 8600 and VAX 8700), respectively. The
approximations (21)—(23) for k% < k2, with values of N and M given in the tables
will yield the relative errors of both K*(k) and E*(k) within the machine precision.
Tables VII and VIII show CPU times (in seconds) required to compute 10°
values of both K (k) and E(k), using FORTRAN programs of three approximation
procedures: Chebyshev approximations of the Hastings form given by Egs. (9) and
(10) (method A), the standard Gauss arithmetic-geometric mean process (method
B), and the 8 function expansions given by Egs. (21)-(23) (method C). The timing
results given in Table VII were obtained by running the programs (in non-vectorized
modes) on five Cray computers: Cray 1A (serial 6), Cray 1S (serial 33), Cray X-
MP/22 (serial 119), Cray 2/64 (serial 2001), and Cray 2/128 (serial 2018). The
table shows that the two compilers CFT77 and CIVIC give quite different CPU
times. The results from the Cray 1A and the Cray 1S are practically the same and
hence are listed under the single heading of Cray 1. The times given in Table VIII
are results obtained from running the programs on a VAX 8600 and a VAX 8700.
The evaluation of the fourth root for the complementary parameter in Eq. (18)
was carried out by taking square roots twice and consumed a considerable portion of
the total computing time. The efficiency of method C, therefore, can be improved
greatly if a better method of determining the fourth root becomes available. A
slight further improvement is possible if the method of Chebyshev approximation
is applied, as in the case of Eqgs. (9) and (10), to the series of ¢/ in powers of A? in
Eq. (20). A rather interesting conclusion that can be made from Tables VII and VIII
concerning the relative speeds of the three approximation schemes is that on Cray 2’s
method C is most efficient and method A is least efficient, whereas on VAX 8600
and VAX 8700 method A is most efficient and method B is least efficient. The
advantages of the new method based on the 8 functions are (1) accurate and efficient
evaluation of D(k) for small |k|, (2) efficiency on Cray 2 computers, (3) portability,
(4) potential room for improvement, and (5) relatively low additional cost for higher
accuracies. The obvious major defect is that the small regions near |k| = 1 must be

excluded.
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Table VII
Cray CPU Times (sec) Required to Compute 10® Values of K(k) and E(k) Each for 0 < k?* < 0.9955

CFT77 CIVIC
Approximation Method Precision Cray Cray Cray Cray Cray Cray
2/128 2/64 X-MP/22 Cray1 2/128 2/64 X-MP/22 Crayl
Chebyshev; Egs. (9) and (10), N' =8 5.56 x 1071°  5.25 5.49 3.24 5.18 6.96 9.42 6.55 8.71
Gauss arithmetic-geometric mean 711 x 1071 342  3.52 7.98 10.42 5.66 6.36 9.68 12.09

g-series; Eqgs. (21)—(23), Table V 7.11x 10715 286 2.90 5.23 733 3.89 4.28 5.92 8.10




Table VIII

VAX CPU Times (sec) Required to Compute 108
Values of K(k) and E(k) Each for 0 < k? < 0.9982

Approximation Method Precision = VAX 8600 VAX 8700
Chebyshev; Egs. (9) and (10), N' =4 1.57 x 108 23.6 24.9
Gauss arithmetic-geometric mean 1.19 x 1077 56.7 43.8
g-series; Eqs. (21)-(23), Table VI 1.19 x 107 40.8 32.3

12
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