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ELECTROCHKMICAL RESPONSES INITIATED BY A The effectiveness of chs FQEF1) method for soXving

DISCONTINUOUS PERTURBATION stiff problems is demonstrated by the simulation of the
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Computer simulation is an invaluable teel when an and 0 (6). The compunatlolml "times" for the EFD and
analytic solution is unavailable. Commencing in the FQEFD methods are also shown in Table I (rz_ and rrom_
early '60s the application of explicit finite differ- are in arblcrary units and normalized for a simulation
ence (EFD) me_hods to the analysis of electrochemical to kilt - 103). For Cases #2 - #4, which are very sniff
problems parallelled the development and availability since, they Involve a dynamic range of lOs in operative
of fast, maln-frame, dl_ital computers. The appeal of rate constants, the FQEFD method is more than lOs faster

the EFD method has been its simplicity of principle and than the EFD method. Case #l corresponds to the classic
of application, EFD algorithm, however, are notorious- Alberts and Shaln ECE with no cross reaction (7).

ly inefficlen_ for solving certain types of "stiff"
problems (e.g., problems involving a wide dynamic range Table I
of time constants). Although phenomenal increases in

computational speed over the past 25 years have soft- # i ......................... ...........'

ened these limitations, ,any problems of interest still I k2_cA/ k_c,/ K_._ rtro rrom_remain our.slde the range of the EFD method, k,t k_t

In this presentation I will discuss the prlncl- 1 0 0 0/0 6.6 x i0e 9 6 x I0'
ples and some applications of a fast quasl-expllclt ........... ' , .

finite difference (FQEFD) method in which the compute- 2 I05 1 i0_ 1.0 x I0Iz 1.8 x lO6
tlonal speed is enhanced, by many orders of magnitude ......
in some cases, without compromising the "user frlendll- 3 i0_ I0s I 1.0 x..10_z 1.8 x I06
ness" which has popularized the EFD method. The method

4 1 i0_ I0-s 1.0 x I012 1.8 x I0+
is designed no treat electrochemical responses to a . :_
dlscontlnuous (e.g., chron0amperometrlc) perturbation
and utilizes the DuForn-Frankel algorithm (I) with
exponentially expanding space (2) and exponentially i E. C. DuFort and S. P. Frenkel, Math. Tables Aids
expanding time grids. (A previously published version Comput. 7, 135 (1953).
of the FQEFD method (3,4) was designed no treat elec- 2 S. W. Feldberg, J. Electroanal. Chem., 127, 1

trochemlcal responses to a connlnuous (e.g., cyclic (1981).
voltammetrlc) perturbation and utilizes the DuFort- 3 S. W. Feldberg, J. Electroanal. Chem., 290, 49

Frenkel (3) algorlt_ in conjunction with en exponen-- (1990).
nially expanding space grid and a uniform time grid. 4 S. A. Lerke, D. H. Evans and S. W. Feldberg, J.
The development of the basic FQEFD equatlot_s wa_ Electroanal. Chem., in press.
presented there.) The protocol for introducing the 5 S. W. Feldberg, J. Electroanal. Chem., _2_, 10l
expanding time grid is straightforward and will be (1987).
discussed. 6 M. D. Hawley and S. W. Feldberg, J. Phys, Chem., IQ,

Some specific examples will demonstrate the 3459 (1966).
versatility and power of the method, e.g., simulation 7 G. S. Alberns and I. Shain, Anal. Chem., 35, 1859
of the chronoamperometrlc response for classic (1963).
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for the (catalytic) EC mechanism,

A + e -" B ( a.r, o= 0 ) (2 ) ECE Mechanlmm
B - A (k_)

for the CE mechanism,

C ,. A (klt,k_) 2.0
Ase - B (ax,0=O) (3)

and for the ECE mechanism, _

A + e - B (a_,0=O)
B - C (k_:)

C + e -' D (c,:.o=O) (4) 1.5
B + C " A + D (k2_,k_b)

l_e EC_ CE, and ECE mechanisms involve myriad rana
processes and, under certain conditions, can be
examples of very stiff problems. Criteria for stability
and accuracy are examined (e.g., parameters of spatial 1.0 .--..L.----.---J---.--.-.
and temporal grid expansion, computational precision) "_ --2 --1 0 1 _
along with the role of propagational adequacy (5).
Simulation results are compared with analTtic I_t _ oTr n lo_..[k..tl
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