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EFFECTS OF ALTERNATE FUELS REPORT NO. 7: ANALYSIS OF FAIURE OF A
MULLITE-BASED REFRACTORY BRICK IN AN INDUSTRIAL OIL-FIRED BURNER

J. I. Federer and V. J. Tennery
ABSTRACT

Industrial conversion from nautral gas to alternate fuels,
such as residual oils and coal, often results in accelerated
degradation of refractory materials due to chemical reactions
with the metal impurities in the alternate fuels. Understand-
ing how these fuel impurities affect refractory degradation
reactions will improve the basis for selecting the proper
refractory for industrial heating systems using alternate
fuels. This report describes the cause of failure of a
refractory brick used in an industrial burner firing an alter-
nate fuel. The burner, which was used to calcine CaSO4, in a
lime-type kiln, was fired with No. 6 residuval oil. The
refractory lining in the burner was constructed of aluminosi-
licate brick, castable, and mortar in contact with one
another. The lining deteriorated after about 1000 h, during
which the maximum hot-face temperature was about 1750°C.

We subjected the degraded refractories to chemical analy-
ses, ceramography, x-ray diffraction, scanning electron
microscopy, and electron microprobe analysis. The original
brick was mullite based, containing about 73% Al)03 equivalent.
The original castable and mortar contained only about 51 and
38% Al1,03, respectively. The maximum allowable service tem-—
perature of the brick was about 1790°C (about 40°C above the
estimated actual service temperature). However, the maximum
allowable service temperature of both the castable and mortar
was only about 1550°C. 1Liquid phases that formed in the
castable and mortar during operation of the burner at tem-
peratures above about 1600°C reacted with the brick, resulting
in decomposition of mullite. The degraded brick specimens
subsequently contained about 12% CaO equivalent due to process
carry-over from the kiln product and about 3% V,05 equivalent
and other metallic impurities from the fuel oil. Contamina-
tion of the original refractory with Ca0 and V705 resulted in
formation of anorthite (Ca0°®Al03°2Si0j) and aluminum vanadate
(A1V0,) when the contaminated refractory was cooled. Both of
these compounds are less refractory than the original castable
and mortar. '

We conclude that failure was initiated by melting in the
castable and mortar. The liquid phases attacked the adjacent
brick. Contamination of the degraded brick with CaO, V,0s5,
and other impurities caused formation of compositions with
much lower solidus temperatures. Consequently, large con-
centrations of aggressive oxide liquid were in the burner



lining at the service temperature. The liquid phase even-
tually advanced into the refractory from the hot face to the
extent that the brick grossly deteriorated. Therefore, rapid
degradation of the refractory system was due to a combination
of excess temperature and fluxing by process carry-over and
impurities from the fuel oil.

INTRODUCTTION

Natural gas shortages in U.S. industry during the winter months
of 1977 emphasizedAthe precariousness of industrial reliance on this
important fuel source. In recent years a variety of industrial pro-
cesses have been converted partially or completely to operate with fuels
other than natural gas. These alternate fuels include distillate and
residual fuel oils and coal. These fuels and the equipment required for
burning them generally represent an increased cost for energy compared
to that for using natural gas. The various factors involved in
industrial evaluation ot the converslon to alternate fuels have been
discussed by Wei and Tennery.1 Important industrial considerations are
continuing availability of fuel and uninterrupted production.

Though generally less expensive than distillate oils per unit
amount of energy produced, residual oils contain significantly higher
concentrations of metallic impurities. These impﬁrities, which are
contained in the combustion producté of oil, can degrade refractories
and refractory insulations. Reports of degradation of refractories by
reaction with fuel oil combustion products have become commonplace in
the past 5 years. An important part of our work is analyzing
industrial field samples to identify how fuel impurities affect the
degradation of various refractory systems. Examination of such degraded
refractories and analysis of the reaction degradation mechanisms has
been the subject of six previous reports;2—7 ours is the seventh 'in this
series.

Of interest in our report is an aluminosilicate refractory brick

used in construction of the lining of an industrial lime kiln burner

fired with No. 6 residual oil. The principal crystalline phase in this



refractory is mullite (3A1703°2Si0Op). Mullite-based refractories have
numerous applications in industrial furnace equipment, including
electric arc steel furnaces, copper reverberatory furnaces, rotary
cement kilns, bottom pour ladles for molten metals, and molten steel
transfer cars. Our analysis strongly suggests that the refractory
failure in this case was caused in part by other, less refractory
materials used in construction of the burner lining, by a process con-

taminant, and by some of the fuel impurities.
HISTORY OF THE REFRACTORY FAILURE

The refractory failed in the combustion chamber of an oil-fired
industrial burner being used to calcine CaSO4 in a lime kiln. The
burner, shown schematically in Fig. 1, heated the kiln for 8 h per day
for about 6 months. The estimated maximum hot-face temperature of the
refractories in the burner was about 1750°C. The fuel was a No. 6 resi-
dual oil, which was burned with about 15% excess air. Under these con-
ditions the refractory lining of thevcombustiOn chamber severely

degraded in about 1000 h of service.
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The burner lining, as shown in Fig. 1, consisted of three refrac-
tory materials: aluminosilicate castable located around the air nozzle,
high-alumina (mullite-based) brick around the cylindrical wall, and
aluminosilicate mortar for joining the bricks. The castable and some
adjacent bricks deteriorated during service to the extent that detached
pieces collected on the bottom of the burner. When the pieces were
recovered, the original identity ofAthe refractory from which they came
could not be determined by casual inspection. However, the pieces could
be separated by appearance into two groups, degraded brick and degraded
castable. No effort was made by the industrial firm at rhe time of the
failure to select or analyze identifiable samples of the refractory
materials. The burner was subsequently repaired by using materials
selected for greater refractoriness.

An example of the original brick is shown in Fig. 2, and pieces of
the degraded brick are shown in Fig. 3. Specimens were cut or broken
from pieces shown in Fig. 3 to provide samples for chemical analysis,
ceramography, scanning electron microscopy, electron microprobe, and
x-ray diffraction.

We investigated the degradation of the mullite-based brick, which
lined the cylindrical wall of the burner chamber. Neither the castable
nor the mortar were analyzed because in this case the maximum operating
temperature of the burner probably far exceeded the maximum design ser-
vice temperature of these materials. Therefore, their failure was pro-
bably caused by excessive service temperature (as will be discussed)
rather than by reactions with oil combustion products or contamination

by material fired in the kiln.



Fig. 2. Original Brick Used in Construction of the 0Oil Burner.
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RESULTS

Chemical Composition of the No. 6 Fuel 0il

The available chemical analysis of the No. 6 fuel oil used in the
burner showed about 1.8% sulfur, 0.0267% vanadium, and 0.087% ash. Since
no samples of the oil were retained by the industrial user after the
burner failed, a confirmation analysis of the fuel o0il could not be
obtained. The No. 6 oils always contain metallic impurities in amounts
that depend upon the source of the crude oil and the extent of
desulfurization used by the refinery. Typical metallic impurities
include Ca, Fe, Na, Ni, P, Pb, Si, Zn, and V.

Analysis of the Refractory Brick
Chemical analyses of the original refractories and the degraded
brick are shown in Table 1. The compositions are in oxide equivalents,

which is standard practice in refractory technology. The original

Table 1. Chemical Analyses of the Original Refractories and
the Degraded Brick

Concentration, wt 7%

Element Original Refractories

Degraded

"o Castablea Mortara Brick BrlCh

A1203 50.85 37.50 72.64 62.58
Ca0 3.14 0.14 0.13 12.04
pe203 1.25 0.89 115 255
KZO 0.39b 2.58 0.10 0.005
Mg0 0.18 0.10 0.64 2.75
Nazo 0.08 0.48
Nin 0.74
sio, 42.06 56.90 22,81 15.76
Sro0 0.20 0.10
TiO2 1.88 1.53 2.41 0.01
VZO5 0.005 2.97
w1 0.16 0.01

aNominal composition supplied by manufacturer.
bTotal alkali metal oxides.

cLoss—on—ignition.



castable and mortar were aluminosilicates containing about 51 and 38%
Al703, respectively. The maximum allowable service temperature for
these refractories is about 1550°C. The original brick was a
mullite-based refractory (3A1,03°2Si03) containing about 72% Alp03 and
28% 810p. The maximum allowable service temperature for a refractory
consisting mostly of mullite is about 1790°C. The composition of the
degraded brick was altered by impurities, principally calcium and vana-
dium and probably magnesium, sodium, and nickel also. Calcium could
have been derived from the CaSO, that was being fired in the kiln, while
vanadium and other impurities probably came from the fuel o0il.

Crystal lattice spacings were determined by x-ray diffraction using
Cu Ko radiation tor the purpose of identifying phases in the original
and degraded brick. The data are presented in the Appendix, and the

results are summarized in Table 2. The major phases in the original

Table 2. Major Crystalline Phases in the Refractory Brick

Original Brick Degraded Rrick
o~alumina, A1203 d-alumina, A1203
mullite, 3A1203'ZSiO2 mulliite,; 3 A1203-2SLO2
sillimanite, ;\1203'5102 gillimanite, 1&1?_03-5102
tridymite, SiO2 high cristobalite, SiO2

anorthite, CaO'A1203°ZSiO2

alumina vanadate, AlVO4

hercynite, Fe0°A1,,O3

brick, as determined by the diffraction line intensities, were Gt—alumina,
mullite, sillimanite, and tridymite. The microstructure of the original
brick, as shown in Fig. 4, consisted of porous grains in a glassy
matrix. Figure 4(b) shows that the grains are an aggregate of randomly
oriented mullite crystals, a—-alumina, glass, and porosity. Table 2

shows that the degraded brick contained o-alumina, mullite, sillimanite,
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Fig. 4. Microstructure of the Original Brick. (a) Typical area showing grains in a glassy matrix.
(b) Higher magnification showing that grains are an aggregate of crystals.
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anorthite, aluminum vanadate, and hercynite. Formation of anorthite
(Ca0°*A1703°28109) was likely to occur because of a greater than hundred-
fold increase in the CaO content of the refractory during service.
Similarly, formation of aluminum vanadate (AlVO,;) might be expected as a
result of the much increased concentration of vanadium.

The microstructure of the degraded brick is shown in Fig. 5.
Comparison of Fig. 5 with Fig. 4 (the microstructure of the original
brick) shows that the microconstiluenls are extensively redistributed.
The microstructure of the degraded brick, shown at a higher magnifica-
tion in Fig. 5(b), appears to consist of at least four phases: (1) a
light—gray phase having little or no substructure; (2) another light-gray
crystalline material containing porosity, possibly an aggregate of small
crystals; (3) a highly reflective phase; and (4) a glassy matrix. The
distribution of elements in the microstructure was determined with an
electron microprobe. Characteristic x-ray energy spectra of areas A, B,
and C in Fig. 5 are shown in Figs. 6, 7, and 8, respectively. The
electron microprobe could not detect elements below atomic number 11;
therefore, oxygeu, Llhiough present in abundance, is not indicated. The
information obtained with the microprobe permits determination of the
location of some of the phases shown to be present by x-ray diffraction.

Each arca A, B, and C contained Al, Ca, aud V. Silicon, however,
was found only in area C, the glassy matrix. The crystalline material
in area A contained Al, Ca, and V with a small amount of Fe, making
possible a mixture of a—alumina, aluminum vanadate, and possibly a
calcium aluminate, although no Ca0-Al703 phases were identified by x-ray
diffraction. Area B contained Al, Ca, Fe, Mg, Ni, and V and likely con-
sisted of a mixture of o—alumina, aluminum vanadate, hercynite, and
possibly unidentitied compounds containing Ca, Mg, and Ni. The glassy
matrix, area C, contained Al, Ca, Si, and a small amount of V. This
material probably consisted of amorphous glass, anorthite, and high
cristobalite. Silicon, which was not revealed by microprobe on a
polished section through the crystals, was shown by energy dispersive
x-ray analysis to be present in substantial amounts on the surface of

these crystals in a fracture section. We believe, therefore, that
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mullite occurred mainly as a relatively thin zone on the surface of
o~-alumina crystals. These phases could also be present as very small
crystals in the silicate glass matrix.

Mullite and sillimanite were major phases in the original brick.
Sillimanite, which is not stable at the high temperatures to which the
refractory was exposed, would (under equilibrium conditions) decompose
to mullite and cristobalite on heating.8 The fact that mullite, in par-
ticular, was not readily identified as a discrete crystalline phase in
the degraded brick suggests that this phase disassociated or dissolved
in the liquid, resulting from melting of the less refractory caétable and
mortar. Any compositional combination of éastable and/or mortar wiﬁh the
brick would, according to the Al,03-5i0, phase diagram9 shown in Fig. 9,
produce a composition that woﬁld form liquid at 1590°C under equilibrium
conditions. Thus, decomposition of mullite would be anticipated at the
operating temperature of the burner. The new phases present after soli-
dification of the melt would be determined by both the composition of

the melt and'the'approach to equilibrium during cooling.
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DISCUSSION

The original castable refractory and mortar, while not subjects of
this report, may have been largely responsible for failure of the
refractory brick in the burner lining. The original castable was an
aluminosilicate containing about 50% Al,03 (oxide equivalent). The ori-
ginal mortar, also an aluminosilicate, contained about 38% Al,03.
According to the Al,03-S10) phase diagram9 shown in Fig. 9, compositions
containing less than about 727% Aly0q form a liquid phaac when heated
above 1590°C. The industrial user of the failed oil burner estimated
that a maximum temperature of 1750°C was attained at the hot face during
service. At this temperature the castable and mortar would consist of
at least 50% 1iquid, which would be structurally unstable. The actual
amount of liquid generated would be determined by the amount of impurity
oxldes present and the extent to which equilibrium was approached. On

the other hand, the original brick, which contained about'73% Al,03,
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would have cbntained no liquid phase below about 1840°C. We believe,
therefore, that the refractory system failure was initiated by melting
of the castable and mortar components of the structure. This liquid
phase resulted in dissolution of the brick. At the same time the
mullite-based refractory was contaminated by calcium from the calcining
process and by impurities in the fuel oil used to fire the kiln.
Contamination with calcium and vanadium was particularly detrimental as
these impurities resulted in formation of compounds and melts even less
refractory than the original castable and mortar compositions.
Anorthite (Ca0°Al1703°25S107) melts at about 1550°C, and aluminum vandate
(AlVO4) melts at about 640°C.

The principal oxide equivalent components of the degraded brick
were Al;03, S107, and CaO. The normalized concentrations of these oxi-
des (neglecting otﬁer oxides) are 69% Aly03, 18% Si0j, and 13% CaO.

An. examination of the Al503-5i07~CaO phase diagram10 in Fig. 10 reveals
that this composition lies within a field consisting of alumina,
anorthite, and hibonite (Ca0:6A1703) at the temperatures of interest.

We cannot explain why hibonite was not found by x-ray diffraction
despite the fact that calcium was found in each of the three microstruc-—
tural areas analyzed with the electron microprobe. This may be due to
lack of attainment of phase equilibrium, or possibly the presence of
vanadium in relatively small amounts prevents the appearance of hibonite.

A possible scenario is one in which the oil-fired burner was heated
daily to a temperature that was marginally safe for the castable and
mortar or perhaps exceeded their maximum service temperatures. Liquid
phases, once formed, were contaminated with impurities from the kiln
contents and from fuel o1l impurities. This contamination resulted in a
lowering of the temperature at which significant amounts of liquid phase
were generated. During subsequent heating the liquid continued to react
with the more refractory mullite phase. The reaction zone progressed
further into the bulk refractory until the brickwork structure ﬁhysi-

cally collapsed.
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CONCLUSIONS

Results of our analyses permit the following conclusions regarding
failure of the refractory bricks from the lime kiln industrial burner
fired with No. 6 fuel oil.

1. The brick used in construction of the burner lining was a
mullite-based composition with a maximum allowable service temperature
of about 1790°C.

2. The castable refractory and refractory mortar also used in
construction of the burner lining were aluminosilicates with con-
siderably lower allowable service temperatures than the brick.

3. Significant portions of the castable and mortar melted when the
burner was operated at a maximum temperature of about 1750°C.

4, Formation of liquid phases iﬁ the castable and mortar, all of
which were in c¢ontact with the brick, contributed to dissolution of the"
brick.

5. The refractories were heavily contaminated by CaO from the kiln
product and by V50g and other impurities from the fuel oil.

6. Contamination of the refractory system with calcium and vana-
dium resulted in formation of calcium and vanadium compounds with even
lower solidus temperatures than the original refractories. This caused
significant quantities of liquid phase to be produced at relatively low
‘temperatures.

7. Reaction and dissolution of the mullite-based brick by these
liquids caused extensive degradation of the brick, finally resulting in

complete loss of its physical integrity.
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Lattice Spacings of Phases in Both the Original and Degraded Brick
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Table A-l. Phases in the Original Brick Determined
by X-Ray Diffraction

Lattice Spacing, nm

Original Mullite a~-Alumina Sillimanite Tridymite
Brick 3A1,03°258109 Al703 A1,703°5109 5109
0.53466 0.539 0.535
0.47125 -

0.45291 0.456

0.42442 : 0.4236
0. 40804 ) 0.4107
0. 37540 0.3774 0.373 0.3818
0. 34623 0.3479 0.3461
0.34140 0.3428 0.341 - 0.3396
0.33759 0.3390 0.336

0.31512 0.319 0.3171
0. 28792 0.2886 0.288
0.26873 © 0.2694 0.267
0. 25446 0.2542 0.2552 0.253 . 0.2540
0. 25081 ‘ 0.2500
0.24232 0.2428 0.242 0.2385
0.23751 0.2393 0.2379 0.237 0.2342
0.22897 0.2292 0.228 0.2294
0.22048 0.2206 0.220 0.2205
0. 21600 0.2165 0.2137
0.21179 0.2121 0.2117
0.21024 0.2106 0.210
0.20817 0.2085 0.209 0.2086
0.19609 0.1969 0.1964 0.1959
0.19225 0.1923 0.1943
0. 19058 0. 1905
0.18846 0.1887 - . 0.1868 0.1874
0.18399 0.1841 0.1829 0.1829

- 0.17949 - 0.17954 0.1783 0.1783
0.17365 0.1740
0.17127 0.17125 0.1715
0.16998 0.17001 0.1705
0. 16937 0.16940 0.1690 0.1695
0.16007 0.15999 0.1601 0.1595 0. 1600
0.15784 0.15786
0.15655 0.15644 0.1567
0.15465 0.15461 0.1546 0.1559 0.1546
0.15248 0.15242 : 0.1535 0.1530
0.15148 0.1514 0.1516 0.1517
0.15093 0.15067 0.1510 0. 1510
0.14894 0.1488
0. 14860 0.14811
0. 14598 0. 14605 0. 1467 0. 1467

. 0.14503 0.1450
0.14441 0.14421 0.1440 0.1443
0. 14347 A 0.1434
0. 14250 0.14240 0.1418 0.1413
0. 14035 0.14046 0.1404 0.1392 0. 1402

" 0.13725 0.1374
0.13472 - 0.1343

0.13355 0.1337 . 0.1337
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Table A-2. Phases in the Degraded Brick Determined by
X-Ray Diffraction
Lattice Spacing, nm
Degraded o-Alumina Mullite Sillimanite High Anorthite Alumloum . ovnite
Brick A1,0, 3A1,0,72510,  A1,0,:510, Cris;:gflite Ca0-A1,0,-2510, V“xgsgj Fe0-A1,0,
0.64917 0.652
0.48113 0.494
0.46952 0.486Y 0.469
0.46586
0.44950 0.433
0.41520 0.415 0.429
0.40311 0.404
0.39273 0.392
0.37792 n.3774 n.378 0.373
0.36158 0.362 0.359
0.34742 0.3479 0.348 0.346
0.34282 0.3428 0.346
0.34012 0.3390 0.341 0.340 0.340
0.33597. 0.336 0.338 0.338
0.32831 0.326
0,32619
0,372090 0.321 n.32n
0.32022 0.319
0.31865 0.319 0.318 0.317
0.31178 0.312 0.310
0.30789 0.307
0.30379 . 0.304 0,303
0:29308 0.293 0.292 0.2934 0:297
0.28847 0.2886 0.288 0.2893 0.2873 0.287
0.26595 0.2694 0.267 0.2655 0.2682
0.25470 0.2552 0.2542 0.253 0.253 0.2559 0.2527
0.24346 0.2428 0.242 0.2437 0.2460 0.245
0.23860 0.2379 0.2393 0.237 0.2384 0.2361
0.22378 0.2292 0.228 - 0.2239
0.22023 0.2206 0.220 0.217
0.21438 0.2165 0.2121 0.2143 0.2161
0.21146 0.2106 0.210 0.2118
0.20904 0.2085 0.209 0.207 0.2095 0.2076
Q.30070 n 1980 n.199 0 2ma 0.2017 0.202
0.19649 0.1964 0.1969 0.1959 0.1946
0.19263 0.1923. 0.1897
0.18813 0.1887
0.18682 0.1863 0.1868
0.18372 0.1841 0.1829 0.1835
0.17972 N.17954 0.1807 0.1785 0.1806
0.17649 0.1783
0.17414 0.1740
0.17181 0.17125 0.1705 0.1727
0.16819 0.16940 0.1679 0.169
0.16474 0.1641 0.1626 0.164
0.16035. 0.1601 0.15999 0.1595 0.1598
0.15550 0.15644 0.1559 0.156
0.15472 0.1546 0.154861
0.15371 _ . 0.1535
0.15126 0,1514 0.15242 0.1516 0.1510
0.15063 0.15067
0.14758 0.14811 0.1467
0.14560 0.14603 U. 1460
0.14463 0.14421 0.1450
0.14269 0.14240 . 0.1440 . . 0.143
0.14067 0.1404 0.14046 0.1418
0.13760 0.1374 0.1392 0.1380
n.11207 0.1337
0.12991
0.12777 0.1276 0.1266
0.12406 0.1239 0.123
0.12113 0.1210
©0.11907 0.11898
0.11662 0.11600 0.117
0.11503
0.11476 0.11470
0.11450 0.11382
0.11263 0.11255 0.1131
0.11002 0.10988
0.10855 0.10831 0.1090
0.10800 0.10781 0.108
0.10505 0.105
0.10451 0.10426
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