LA-7983-PR
Progress Report

MASTER

DR. 84

Detection of Early Changes in Lung Cell Cytology by Flow-Systems Analysis Techniques January 1—June 30, 1979

University of California

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos, New Mexico 87545

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The four most recent reports in this series, unclassified, are LA-6602-PR, LA-6888-PR, LA-7247-PR, and LA-7680-PR.

This report was not edited by the Technical Information staff.

This project received support from the US Department of Energy and the US Environmental Protection Agency, LASL Project R-250, EPA Agreement EPA-IAG-D5-E681.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W-7408-ENG. 36

MASTER

LA-7983-PR **Progress Report**

UC-48

Issued: August 1979

Detection of Early Changes in Lung Cell Cytology by

Flow-Systems Analysis Techniques

Progress Report, January 1—June 30, 1979

J. A. Steinkamp

J. S. Wilson

Z. V. Svitra

- NOTICE -

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

by

J. A. Steinkamp, J. S. Wilson, and Z. V. Svitra

ABSTRACT

This report summarizes results of ongoing experiments designed to develop automated flow-analysis assay methods for discerning damage to exfoliated respiratory tract cells in model test animals exposed by inhalation to physical and chemical agents associated with the production of synthetic fuels from oil shale and coal, the specific goal being the determination of atypical changes in exposed alveolar macrophages and epithelial cells. Animals were exposed to oil shale particles (raw and spent), silica, and polystyrene latex spheres via intratracheal instillation. Respiratory tract cells were obtained by lavaging the lungs with normal saline, stained with mithramycin for DNA content, and analyzed using flow cytometric analysis methods. In addition to measuring ${\tt DNA}$ content, differential and total cell counts were made on all samples analyzed. DNA content frequency distribution histograms and cytology showed definite atypical changes resulting from exposure to shale and silica particulates when compared to the controls. To continue development of fluorescence staining methods for measuring intracellular enzymes in alveolar macrophages, studies were initiated for determining β -glucuronidase using naphthol AS-BI- β -dglucuronic acid as a fluorogenic substrate. As this new technology becomes adapted to analyzing pulmonary macrophages and epithelial cells, the measurement of physical and biochemical properties as a function of exposure to particulate and gaseous toxic agents related to the production of synthetic fuels will be increased. This analytical approach is designed to assist in the establishment of future guidelines for estimating the risks to exposed humans.

I. INTRODUCTION

The application of advanced flow cytometric instrumentation to measure cytological and biochemical properties of pulmonary macrophages and epithelial cells provides a new approach for assaying damage to lung epithelium exposed by inhalation to toxic environmental pollutants associated with the production of synthetic fuels from oil shale and coal. 1-3 This includes the development of automated cytological methods for determining atypical changes in exfoliated respiratory tract cells from experimental animals exposed to particulate and gaseous agents, the end objective being to assist in estimating the risks, evaluating the incipient damage, and establishing guidelines for determining exposure levels of various toxic agents to occupationally exposed workers and society-at-large. To develop analytical flowanalysis methods for quantitative assessment of cellular damage in animal models, automated

cell-analysis and sorting instrumentation 4-6 is presently being applied to study respiratory tract cells from hamsters exposed to particulates of oil shale and silica. This includes the exposure of experimental animals to physical and chemical toxicants; the acquisition of exfoliated lung cells by lavaging the respiratory tract with normal saline; and the utilization of fluorescence staining methods to measure cellular biochemical parameters using flow cytometric methods. Recent efforts have been directed toward (1) measurement of DNA content in respiratory tract cells exposed to raw and spent oil shale particulates, silica, and polystyrene latex spheres over a period ranging to 90 days; (2) correlation of cell counts and total numbers of macrophages, leukocytes, and epithelial cells as a function of time after exposure; (3) cytological observations of rosettes of macrophages formed around oil shale particulates and giant cell formation; and (4) the

preliminary evaluation of a derivative of naphthol AS-BI as a fluorogenic substrate for measuring $\beta\text{-glucuronidase}$ activity in lung cells.

II. MATERIALS AND METHODS

To continue studying cellular changes in animals exposed to particulates of oil shale and silica, 30 Syrian hamsters were injected intratracheally with 10 mg of ball-milled (2- to 7-µm diameter range) raw oil shale suspended in 0.2 ml of normal saline and 30 with the same amount and size of spent shale. Thirty hamsters were similarly instilled with 10 mg of silica (4-µm mean diameter) and 30 with 10 to 20 x 10⁶ polystyrene latex spheres (5.7-µm mean diameter) suspended in 0.2 ml of normal saline. Ten hamsters were instilled with 0.2 ml of normal saline alone, and 10 were used as controls. The raw and spent oil shale was obtained from Anvil Points, Colorado, and silica from the Pennsylvania Glass and Sand Corporation. Hamsters were anesthetized with "Brevital" (5 mg) prior to intratracheal instillation of particulates and saline via the oral cavity and then were returned to the colony. Animals exposed to particulates of oil shale, silica, and latex spheres were then sacrificed by pentobarbital injection in groups of three for each type of particulate exposure 4, 7, 21, 28, 35, 42, 49, 60, and 90 days later. The lungs were lavaged four times with saline to obtain exfoliated macrophages, leukocytes, and epithelial cells, which were fixed in 35% ethanol prior to staining for DNA content with mithramycin. 7,8 Cell samples were then excited at 457 nm wavelength (argon-ion laser) and analyzed for fluorescence on a cell-by-cell basis and displayed as frequency distribution histograms using a multichannel pulse-height analyzer. Cell counts (cells/ml) were made on all lavage samples using a hemocytometer. Cytology also was performed to determine the percentage of the different types of cells present, including giant cells and macrophage rosettes.

To begin development of using fluorogenic substrates to measure β -glucuronidase activity in alveolar macrophages and other cell types, 9 naphthol AS-BI- β -d-glucuronic acid (1 mg) was dissolved in 1 m ℓ of acetone and then diluted to 25 m ℓ with 0.2 M acetate buffer (pH 4.6). A

solution of 5 m ℓ was then added to the cells (pellet), which were analyzed by exciting in the uv (333, 351, and 363 nm wavelength) and measuring fluorescence. 1,6

III. RESULTS AND DISCUSSION

During this report period (January 1-June 30, 1979), major emphasis was placed on exposing respiratory tract cells of Syrian hamsters to oil shale particulates and silica and on beginning the development of methods for measuring hydrolytic enzyme activity (acid hydrolases) in alveolar macrophages using fluorogenic substrates.

DNA Measurements: Respiratory Tract Cells Exposed to Saline, Latex Spheres, Oil Shale Particulates, and Silica

Figure 1 shows a typical DNA content distribution of cells taken from lavaging the respiratory tract of a normal (control) hamster. Peak 1 represents cells having 2C DNA content and peak 2 binucleated cells and doublets. DNA content distributions of lung cells exposed to normal saline, polystyrene latex spheres, raw and spent oil shale particulates, and silica for 90 days maximum are shown below in Figs. 4-9. Cell counts in the lavage fluid from normal and exposed animals for the period 4 to 90 days after exposure are illustrated in Fig. 2. The mean cell count for the control hamsters was 1.66 x 10^6 cells/m£.

 $\label{thm:continuous} The \ total \ numbers \ of \ macrophages, \ leukocytes,$ and epithelial cells also were determined from

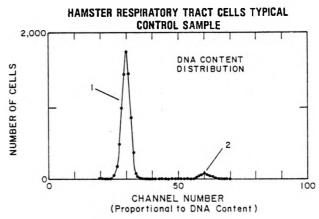


Fig. 1. Frequency distribution histogram (DNA content per cell) of normal hamster respiratory tract cells fixed in 35% ethanol and stained with mithramycin.

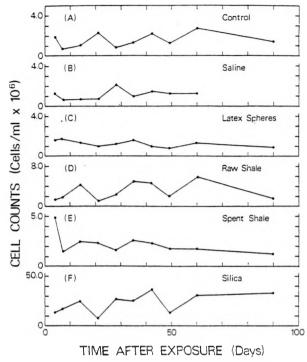
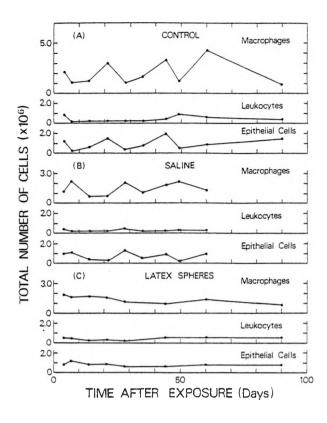
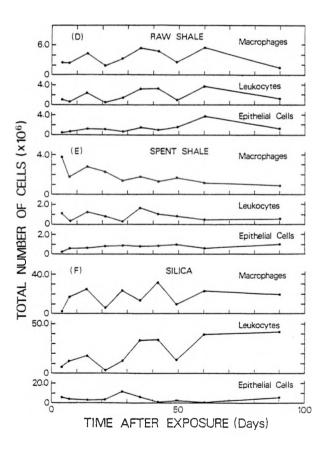
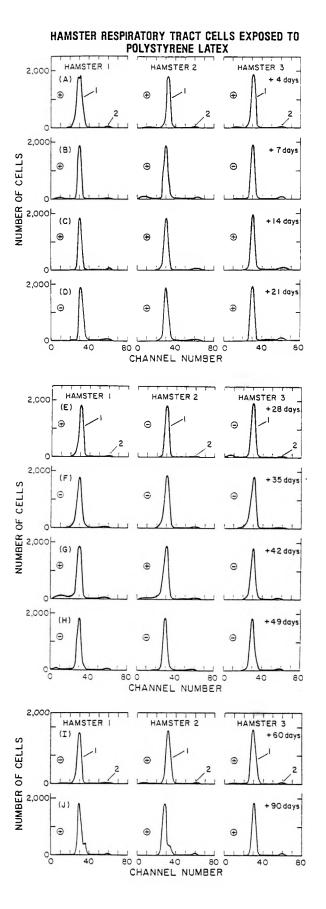




Fig. 2. Plots of cell counts vs time after exposure of hamster respiratory tract cells from controls and hamsters exposed to saline, latex spheres, raw shale, spent shale, and silica. Each data point for the control and saline-exposed hamsters represents one animal, whereas each point on the remaining plots represents the average cell count from three hamsters.

differential cell counts (see the appendix) and plotted as a function of time after exposure for control and exposed hamsters. These data are shown in Fig. 3. For control hamsters (Fig. 3A), the number of macrophages ranged from 0.9 x 10^6 to 4.4 x 10^6 , with a mean of 1.97 x 10^6 . The number of leukocytes and epithelial cells ranged from 0.1 x 10^6 to 0.8 x 10^6 and 0.8 x 10^6 to 2.0 x 10^6 , respectively, with means of 0.38 x 10^6 and 0.97 x 10^6 .

Fig. 3. Plots of total numbers of macrophages, leukocytes, and epithelial cells vs time after exposure of hamster respiratory tract cells from controls and hamsters exposed to saline, latex spheres, raw shale, spent shale, and silica. Each data point for the control and saline-exposed hamsters represents one animal, whereas each point on the remaining plots represents the average numbers of cells from three hamsters obtained by multiplying the percentages shown in the appendix times the individual animal cell counts.

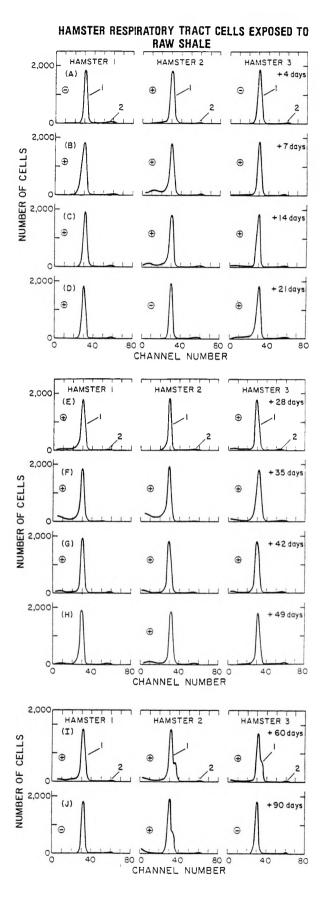


HAMSTER RESPIRATORY TRACT CELLS EXPOSED TO **NORMAL SALINE** 2,000 +21days + 42 days CELLS 000'r (8) (H) +7 days (E) +28 days +49 days NUMBER OF 2,000 (C) (F) (I) +60 days +14 days +35 days 80 0 80 0 40 CHANNEL NUMBER

Fig. 4. DNA content frequency distribution histograms of hamster respiratory tract cells exposed to saline (0.2 ml intratracheal injection at day 0) and sacrificed 4, 7, 14, 21, 28, 35, 42, 49, and 60 days later. Cell samples were obtained by lung lavage, fixed in 35% ethanol, stained with mithramycin, and analyzed for fluorescence.

The DNA content distributions of hamster respiratory tract cells exposed to normal saline are shown in Fig. 4. These distributions are similar to the controls (Fig. 1). Cell counts (Fig. 2B) and total numbers of cells (Fig. 3B) recorded on hamsters exposed to saline alone were nearly identical to the controls. Hamsters were next exposed to 5.7-µm diameter polystyrene latex spheres for comparison to oil shale particulates and silica. The DNA content distributions (Fig. 5) are nearly normal, with the exception that a region of cells to the left side of peak l is present. These are most likely dead cells and debris. The circled "+" and "-" symbols next to each distribution indicate a "positive" or "negative" exposure of the hamster, observed by locating particles in the lavaged cell sample x days after exposure.

Fig. 5. DNA content frequency distribution histograms of hamster respiratory tract cells exposed to 5.7-µm diameter polystyrene latex spheres (10 to 20 x 10⁶ spheres suspended in 0.2 ml saline) via intratracheal injection at day 0. The hamsters were sacrificed in groups of three 4, 7, 14, 21, 28, 35, 42, 49, 60, and 90 days later. Cell samples were obtained by lung lavage, fixed in 35% ethanol, stained with mithramycin, and analyzed for fluorescence.



Some of the DNA content distributions, which appear abnormal (e.g., see Figs. 5A and 5B), correlate well with positive or negative exposures. However, in other cases (e.g., Fig. 5C), this was not true. The shape of the DNA content distribution generally reflected a positive or negative exposure to latex particles. Cell counts from hamsters exposed to latex spheres (Fig. 2C) were slightly less (1.27 x 10⁶ cells/ml mean) compared to controls. The total numbers of macrophages and epithelial cells (Fig. 3C) remained at a nearly constant value throughout the exposure period. This phenomenon was not present in the control animals.

Figure 6 shows the DNA content distributions of lung cells from hamsters exposed to raw oil shale particulates. DNA content distributions (Figs. 6A through 6H) for the period 4 to 49 days postexposure appear normal with the exception that, in the majority of samples, there is a region of cells (or debris) to the left side of peak 1 and the distribution is skewed. The DNA distributions also are broadened in some cases. Peak 2 (binucleates and cell doublets) is present in all distributions. By 60 days after exposure (Fig. 61), the DNA content distributions began to show other changes. Peak 1 is split into two regions (bimodal distribution), thus indicating a change in DNA content, differences in stainability between cell types, or other factors. Cell counts from hamsters exposed to raw shale (Fig. 2D) showed a definite increase (3.21 x 10⁶ cells/ml mean) compared to controls and animals exposed to saline and latex spheres. Plots of total cell numbers (Fig. 3D) also reflect an increase in leukocytes and epithelial cells present in the lavaged samples. Macrophages increased, but at a smaller percentage.

DNA content distributions of hamsters exposed to spent oil shale particulates are shown in Fig. 7. The distributions recorded from animals 4 through 21 days postexposure (Figs. 7A through 7D) appear

Fig. 6. DNA content frequency distribution histograms of hamster respiratory tract cells exposed to 2- to 7-µm diameter range raw shale particulates (10 mg suspended in 0.2 ml saline) via intratracheal injection at day 0. The hamsters were sacrificed in groups of three 4, 7, 14, 21, 28, 35, 42, 49, 60, and 90 days later. Cell samples were obtained by lung lavage, fixed in 35% ethanol, stained with mithramycin, and analyzed for fluorescence.

HAMSTER RESPIRATORY TRACT CELL EXPOSED TO SPENT SHALE HAMSTER I HAMSTER 2 HAMSTER 3 2,000 + 4 days (A) \oplus **(** 2 2.000 (B) +7 days CELLS \oplus **⊕ (** P 2,000 (C) +14 days \oplus \oplus 2,000-(D) 21 days \oplus \oplus 80 0 80 0 40 CHANNEL NUMBER HAMSTER I HAMSTER 2 HAMSTER 3 2.000 (E) +28 days 2,000 (F) +35 days OF CELLS \oplus 2,000 (G) + 42 days \oplus Θ \oplus 2,000 (H) +49days \oplus 40 80 0 40 CHANNEL NUMBER 2.000 HAMSTER I HAMSTER 2 HAMSTER 3 (I) +60 days CELLS **(** 0F 2.0001 (J) + 90 days ⊕ 80 0 40 80 0 40 40 CHANNEL NUMBER

Fig. 7. DNA content frequency distribution histograms of hamster respiratory tract cells exposed to 2- to 7-µm diameter range spent shale particulates (10 mg suspended in 0.2 ml saline) via intratracheal injection at day 0. The hamsters were sacrificed in groups of three 4, 7, 14, 21, 28, 35, 42, 49, 60, and 90 days later. Cell samples were obtained by lung lavage, fixed in 35% ethanol, stained with mithramycin, and analyzed for fluorescence.

similar to those determined for hamsters exposed to raw shale (Fig. 6). There is a general broadening of peak 1 and a region of cells and/or debris to the left side of the peak. Peak 1 is skewed in some animals. During the period 28 to 90 days postexposure (Figs. 7E through 7J), peak 1 of many of the DNA content distributions split into two distinct peaks, similar to respiratory tract cells exposed to raw shale for 60 days (Fig. 6I). Cell counts (Fig. 2E) initially were elevated slightly when compared to controls (Fig. 2A) but then began to decrease with time. Total numbers of macrophages and leukocytes also were initially elevated (Fig. 3E), whereas epithelial cells remained nearly constant throughout the exposure period.

Figure 8 shows the DNA content frequency distribution histograms of hamster respiratory tract cells exposed to silica particles. The DNA content distributions recorded from lung cells exposed through the period up to 21 days (Figs. 8A through 8D) appear similar to hamsters exposed to raw and spent oil shale (Figs. 6 and 7). At 28 days postexposure, peak 1 of two of the DNA content distributions (Fig. 8E) split into two distinct peaks. The DNA distributions 35 and 42 days postexposure did not exhibit this phenomenon. However, at 49, 60, and 90 days after exposure, the DNA distributions again were abnormal. Cell counts performed on hamsters exposed to silica (Fig. 2F) were elevated by an order of magnitude (21.8 x 10⁶ cells/ml) compared to controls (Fig. 2A). The results of total cell number counts (Fig. 3F) showed that macrophages and leukocytes greatly increased, remaining high throughout the 90-day exposure period. Epithelial cells also increased in number during the initial 30 days after exposure and then decreased to nearly zero at 40 to 60 days.

HAMSTER RESPIRATORY TRACT CELLS EXPOSED TO **SILICA** HAMSTER I HAMSTER 2 HAMSTER 3 (A) ⊕ 2,000 (8) +7 days OF CELLS \oplus NUMBER C (C) +14 days Θ \oplus 2,000 (D) +21days Θ **(** CHANNEL NUMBER HAMSTER I HAMSTER 2 HAMSTER 3 2,000 + 28 days 2,000 (F) + 35 days OF CELLS \oplus NUMBER 0 (G) +.42 day Θ 2,000 (H) + 49 days ⊕ 40 80 0 40 80 0 40 CHANNEL NUMBER HAMSTER 2 HAMSTER I HAMSTER 3 NUMBER OF CELLS (I) +60 da (J) + 90 days ⊕ 80 0 80 0 40 40

CHANNEL NUMBER

Fig. 8. DNA content frequency distribution histograms of hamster respiratory tract cells exposed to 4-µm diameter silica particles (10 mg suspended in 0.2 ml saline) via intratracheal injection at day 0. The hamsters were sacrificed in groups of three 4, 7, 14, 21, 28, 35, 42, 49, 60, and 90 days later. Cell samples were obtained by lung lavage, fixed in 35% ethanol, stained with mithramycin, and analyzed for fluorescence.

These results demonstrate the potential of using flow cytometric analysis to study the effects of exposure and recovery to toxic agents. Future experiments will be designed to correlate cytology with DNA content measurements and to couple these observations with other cellular parameters using multiparameter methods by sorting to identify cells within peak 1 (bimodal distribution). From cytology alone (see the appendix), we have been unable to identify positively the cells with the bimodal distribution of peak 1.

B. Cytology: Macrophage Rosettes and Giant Cells
From microscopic examination of cytocentrifuge
sample preparations of exposed hamster respiratory

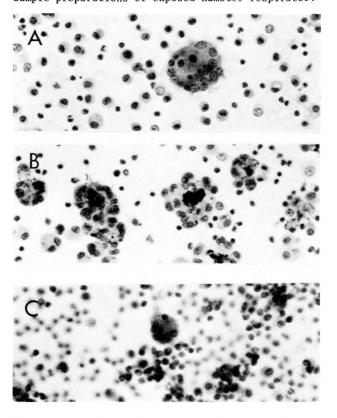


Fig. 9. Photomicrographs of macrophage rosettes located around (A) raw oil shale, (B) spent oil shale, and (C) giant cells (multinucleated) (x320).

TABLE I

NUMBER OF MACROPHAGE ROSETTES AS A FUNCTION

OF TIME AFTER EXPOSURE TO RAW SHALE,

SPENT SHALE, AND SILICA

Time aft		Number of Rosettes					
Exposure (days)	(raw shale)	(spent shale	(silica)			
4		5	35	-			
7		20	25	3			
14		9	51	-			
21		8	7	-			
28		29	5	-			
35		17	30	8			
42		26		1			
49		3	7	-			
60		9		-			
90		_1_					
	Total	127	160	12			

tract cells, there also appears to be a "chemical attraction" between macrophages and raw and spent shale. ¹¹ This takes place in the form of rosettes of macrophages that form around pieces of oil shale particles that are too large to be injected (Fig. 9). Very little "attraction" was found with macrophages and large silica particles. These data are summarized in Table I.

Increased multinucleation (giant cells) also was observed in lung cell samples from hamsters exposed to raw oil shale and silica at 7 to 14 days postexposure. Although "giant cells" were not observed at other times or in cell samples exposed to spent shale, they were most likely present.

C. Flow Cytometric Quantitation of β-Glucuronidase Activity: Preliminary Evaluation

Fluorogenic substrates that are hydrolyzed by intracellular enzymes into fluorescent compounds offer a new method for quantitating various enzyme activities in alveolar macrophages and epithelial cells. For example, total esterase activity has been measured in macrophages and leukocytes using fluorescein diacetate (FDA) as a fluorogenic substrate (nonfluorescent), which is converted to free fluorescein by the enzymatic action of esterases. 12,13 Naphthol AS-BI similarly has been used to quantitate alkaline phosphatase in rat respiratory tract cells. 1 It has been well established that certain inhaled particles and gaseous agents

alter the susceptibility of experimental animals to pulmonary infection by cytotoxic damage to alveolar macrophages. 14,15 Since lysosomal enzymes play a prominent role in the cellular bacterial function, attempts will be made to locate suitable fluorogenic substrates for quantitating primarily those enzymes related to alveolar macrophage function (i.e., acid hydrolases).

To begin development of a method for studying β-glucuronidase activity in macrophages, naphthol AS-BI-β-glucuronic acid was selected as a fluorogenic substrate. Figure 10 shows the fluorescence excitation and emission curves of Chinese hamster ovary (line CHO) cells fixed in 10% neutral formalin and then treated with the substrate (20 min). Since the excitation maxima occur near 340 nm wavelength, either the high-power argon or krypton laser was used to excite the fluorochrome. The kinetics of β -glucuronidase activity were done on unfixed CHO cells incubated with the substrate at room temperature (80 to 85°F). Cells were analyzed (fluorescence intensity/cell) at different time intervals (Fig. 11) by recording frequency distribution histograms and plotting the peak channel numbers. As illustrated in Fig. 11, fluorescence intensity (enzyme hydrolyzed substrate) is linear to about 30 min and, by 80 min, saturation is obtained.

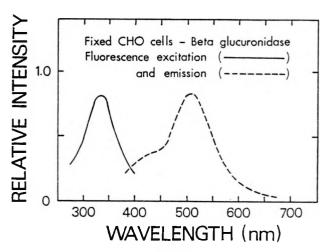


Fig. 10. Fluorescence excitation (--) and emission (--) spectra for β -glucuronidase measured in unfixed Chinese hamster ovary cells using naphthol AS-BI- β -d-glucuronic acid as a fluorogenic substrate.

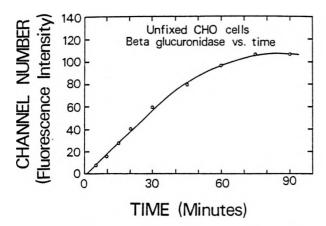


Fig. 11. Plot of β-glucuronidase in unfixed CHO cells vs time after adding fluorogenic substrate (naphthol AS-BI-β-d-glucuronic acid) to cells. Fluorescence intensity was measured by recording the peak channel number from the frequency distribution histograms at different time intervals.

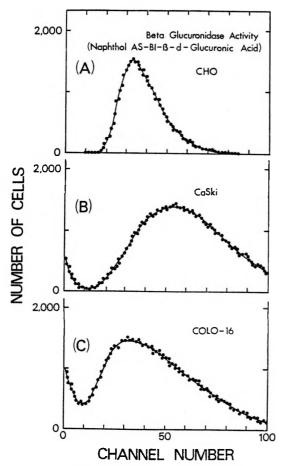


Fig. 12. Frequency distribution histograms of β-glucuronidase activity in unfixed (A) CHO, (B) CaSki, and (C) COLO-16 cells 30 min after reacting with naphthol AS-BI-β-d-glucuronic acid.

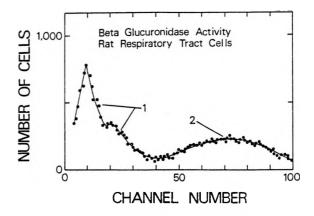


Fig. 13. Frequency distribution histogram of β-glucuronidase activity in unfixed respiratory tract cells from a normal rat 30 min after reacting with naphthol AS-BI-β-d-glucuronic acid.

To demonstrate the measurement of β-glucuronidase activity in the cultured cell lines, unfixed CHO and two epithelial lines (CaSki and COLO-16) were stained (i.e., reacted with the substrate for 30 min) and then analyzed. β-Glucuronidase activity in the CaSki cell line was higher than in CHO and COLO-16. Normal rat (Sprague-Dawley) respiratory tract cells also were analyzed for β-glucuronidase activity. Figure 13 shows a frequency distribution histogram of β-glucuronidase per cell. Although peaks 1 and 2 have not been positively identified, they most likely represent leukocytes and macrophages, respectively. These preliminary data illustrate the potential for quantitating enzymes in alveolar macrophages using fluorescence methods. Future studies will involve determining the effects of cell fixation, concentration of cells/ml, cell volume, temperature, and other factors on enzyme measurement prior to exposing the animals to toxic agents that have been shown to alter enzymatic action in pulmonary macrophages and epithelial cells.

IV. FUTURE PLANS

Experimental goals during the next 6 months are to (1) continue exposing hamsters to particulates of oil shale and silica, with emphasis on DNA content measurements and the possibility of combining these data with other cellular parameters to differentiate macrophages, leukocytes, and epithelial cells, correlate cytology and cell counts

with flow cytometric measurements, and sort cells within the different regions of the histograms for identification; (2) improve the present experimental setup for exposing animals to gaseous agents such as ozone and possibly nitrogen dioxide; (3) continue the development of using fluorescent microspheres to measure phagocytic activity of alveolar macrophages; and (4) continue the development of enzyme staining methods for measuring hydrolytic enzymes in respiratory tract cells.

REFERENCES

- J. A. Steinkamp, J. S. Wilson, Z. V. Svitra, and K. M. Hansen, "Detection of Early Changes in Lung Cell Cytology by Flow-Systems Analysis Techniques," Los Alamos Scientific Laboratory report LA-7680-PR (February 1979).
- J. A. Steinkamp and J. S. Wilson, "Flow Cytometric Analysis of Exfoliated Respiratory Tract Cells Exposed to Environmental Pollutants," Acta Pathol. Microbiol. Scand. (1979), in press.
- J. A. Steinkamp and J. S. Wilson, "Flow Cytometric Methods for Assaying Damage to Respiratory Tract Cells," in Proceedings of the United States Environmental Protection Agency Symposium on Oil Shale Sampling, Analysis, and Quality Assurance, Denver (March 1979), in press.
- J. A. Steinkamp, M. J. Fulwyler, J. R. Coulter, R. D. Hiebert, J. L. Horney, and P. F. Mullaney, "A New Multiparameter Separator for Microscopic Particles and Biological Cells," Rev. Sci. Instrum. 44, 1301-1310 (1973).
- P. F. Mullaney, J. A. Steinkamp, H. A. Crissman, and D. M. Holm, "Laser Flow Microphotometers for Rapid Analysis and Sorting of Individual Mammalian Cells," in <u>Laser Applications in Medicine and Biology</u>, M. L. Wolbarsht, Ed. (Plenum Press, New York-London, 1974), Vol. 2, pp. 151-204.
- J. A. Steinkamp, D. J. Orlicky, and H. A. Crissman, "Dual-Laser Flow Cytometry of Single Mammalian Cells," J. Histochem. Cytochem. <u>27</u>, 273-276 (1979).

- H. A. Crissman and R. A. Tobey, "Cell Cycle Analysis in Twenty Minutes," Science <u>184</u>, 1297-1298 (1974).
- H. A. Crissman, M. S. Oka, and J. A. Steinkamp, "Rapid Staining Methods for Analysis of DNA and Protein in Mammalian Cells," J. Histochem. Cytochem. 24, 64-71 (1976).
- 9. F. A. Dolbeare and W. Phares, "Naphthol AS-BI Phosphatase and Naphthol AS-BI β -D Glucuronidase in Chinese Hamster Ovary Cells: Biochemical and Flow Studies," J. Histochem. Cytochem. 27, 120-124 (1979).
- 10. J. A. Steinkamp, K. M. Hansen, J. S. Wilson, G. C. Saunders, D. J. Orlicky, and H. A. Crissman, "Detection of Early Changes in Lung Cell Cytology by Flow-Systems Analysis Techniques," Los Alamos Scientific Laboratory report LA-7247-PR (April 1978).
- J. A. Steinkamp, K. M. Hansen, J. S. Wilson, and L. M. Holland, "Detection of Early Changes in Lung Cell Cytology by Flow-Systems Analysis Techniques," Los Alamos Scientific Laboratory report LA-6888-PR (July 1977).
- 12. B. Rotman and B. W. Papermaster, "Membrane Properties of Living Mammalian Cells as Studied by Enzymatic Hydrolysis of Fluorogenic Esters," Proc. Natl. Acad. Sci. U.S.A. 55, 134-141 (1966).
- J. A. Steinkamp, K. M. Hansen, J. S. Wilson, and G. C. Salzman, "Detection of Early Changes in Lung Cell Cytology by Flow-Systems Analysis Techniques," Los Alamos Scientific Laboratory report LA-6602-PR (December 1976).
- 14. D. E. Gardner, R. S. Holzman, and D. L. Coffin, "Effects of Nitrogen Dioxide on Pulmonary Cell Population," J. Bacteriol. <u>98</u>, 1041-1043 (1969).
- D. J. Hurst, D. E. Gardner, and D. L. Coffin, "Effect of Ozone on Acid Hydrolases of the Pulmonary Alveolar Macrophage," J. Reticuloendothelial Soc. 8, 288-300 (1970).

APPENDIX TABLE A-I DIFFERENTIAL CELL COUNTS OF RESPIRATORY TRACT CELL SAMPLES FROM HAMSTERS EXPOSED TO SALINE (ALONE), LATEX SPHERES, RAW AND SPENT OIL SHALE, AND SILICA^a

Hamster Number	Exposure (agent)	Time after Exposure (days)	Macrophages (%)	Leukocytes (%)	Epithelial Cells (%)
C-1	Control		53	17	30
S-1	Saline	4	47	15	38
LX-1	Latex spheres	4	55	13	32
LX-2	Latex spheres	4	64	16	20
LX-3	Latex spheres	4	53	17	30
PRS-1	Raw shale	4	56	11	33
PRS-2	Raw shale	4	57	25	18
PRS-3	Raw shale	4	42	6	52
PSS-1	Spent shale	4	75	22	3
PSS-2	Spent shale	4	66	9	25
PSS-3	Spent shale	4	75	22	3
Q-1	Silica	4			
Q-2	Silica	4	60	7	33
Q-3	Silica	4	43	30	27
C-2	Control		75	6	19
S-1	Saline	7	75	6	19
LX-4	Latex spheres	7	43	11	46
LX-5	Latex spheres	7	63	19	18
LX-6	Latex spheres	7	69	9	22
PRS-4	Raw shale	7	53	27	20
PRS-5	Raw shale	7	65	16	19
PRS-6	Raw shale	7	71	11	18
PSS-4	Spent shale	7	74	5	21
PSS-5	Spent shale	7	54	34	12
PSS-6	Spent shale	7	69	0	31
Q-4	Silica	7 7	60 45	36 41	4
Q-5 Q-6	Silica Silica	7	57	28	14 15
C-3	Control	14	58	13	29
S-3	Saline	14	57	15	28
LX-7	Latex spheres	14	63	12	25
LX-8	Latex spheres	14	58 73	7	35
LX-9	Latex spheres Raw shale	14 14	63	2 25	25 12
PRS-7 PRS-8	Raw shale	14	55	31	14
PRS-9	Raw shale	14	45	29	26
PSS-7	Spent shale	14	44	47	9
PSS-8	Spent shale	14	66	21	13
PSS-9	Spent shale	14	67	15	18
Q-7	Silica	14	56	19	25
Q-8	Silica	14	57	43	0
Q-9	Silica	14	46	29	25
C-4	Control	~ •	64	4	32
S-4	Saline	21	61	8	31
LX-10	Latex spheres	21	56	9	35
LX-11	Latex spheres	21	53	14	33
LX-12	Latex spheres	21	58	8	34
PRS-10	Raw shale	21	53	19	28
PRS-11	Raw shale	21	69	3	28
PRS-12	Raw shale	21	56	15	29
PSS-10	Spent shale	21	59	14	27
PSS-11	Spent shale	21	54	28	18
PSS-12	Spent shale	21	55	14	31
Q-10	Silica	21	69	4	27
Q-11	Silica	21	46	23	31
Q-12	Silica	21	51	16	33

TABLE A-I (cont)

Hamster Number	Exposure (agent)	Time after Exposure (days)	ne after sure (days) Macrophages (%)		Epithelial Cells (%)	
C-5	Control		60	12	28	
S-5	Saline	28	49	13	38	
LX-13	Latex spheres	28	57	10	33	
LX-14	Latex spheres	28	64	9	27	
LX-15	Latex spheres	28	51	8	41	
PRS-13	Raw shale	28	63	25	12	
PRS-14	Raw shale	28	66	13	21	
PRS-15	Raw shale	28	53	28	19	
PSS-13	Spent shale	28	57	5	38	
PSS-14	Spent shale	28	56	12	32	
PSS-15	Spent shale	28	54	16	30	
Q-13	Silica	28	50	26	24	
Q-14	Silica	28	54	9	37	
Q-15	Silica	28				
C-6	Control	35	60	10	30	
S-6	Saline	35	58	8	34	
LX-16		35	50	5	45	
LX-17	Latex spheres	35	65	17	18	
LX-17 LX-18	Latex spheres	35	66	10	24	
	Latex spheres Raw shale	35	63	25	12	
PRS-16		35	45	32	23	
PRS-17	Raw shale	35	54	38	8	
PRS-18	Raw shale	35	51	10	39	
PSS-16	Spent shale	35	47	35	18	
PSS-17	Spent shale	35 35	64	36	0	
PSS-18	Spent shale		10	80	10	
Q-16	Silica	35	35	55	10	
Q-17	Sílica Silica	35 35	48	26	26	
Q-18	SIIICa					
C-7	Control	42	73	5	22	
S-7	Saline	42	64	4	32	
LX-19	Latex spheres	42	42	26	32	
LX-20	Latex spheres	42	43	21	36	
LX-21	Latex spheres	42	59	8	33	
PRS-19	Raw shale	42	45	37	18	
PRS-20	Raw shale	42	70	22	8	
PRS-21	Raw shale	42	54	41	5	
PSS-19	Spent shale	42	50	17	33	
PSS-20	Spent shale	42	64	8	28	
PSS-21	Spent shale	42	37	37	26	
Q-19	Silica	42	48	52	0	
Q-20	Silica	42	35	59	6	
Q-21	Silica	42	26	42	32	
C-8	Control	49	46	33	21	
S-8	Saline	49	83	14	3	
LX-22	Latex spheres	49	51	10	39	
LX-23	Latex spheres	49	49	15	36	
LX-24	Latex spheres	49	55	14	31	
PRS-22	Raw shale	49	56	19	25	
PRS-23	Raw shale	49	55	37	8	
PRS-24	Raw shale	49	56	24	19	
PSS-22	Spent shale	49	52	23	25	
PSS-23	Spent shale	49	54	26	20	
PSS-24	Spent shale	49	42	25	33	
Q-22	Silica	49	42	53	5	
Q-23	Silica	49	38	62	0	
Q-24	Silica	49	53	8	39	

TABLE A-I (cont)

Hamster Number	Exposure (agent)	Time after Exposure (days)	Macrophages (%)	Leukocytes (%)	Epithelial Cells (%)
C-9	Control	60	75	10	15
S-9	Saline	60	50	10	40
LX-25	Latex spheres	60	60	9	31
LX-26	Latex spheres	60	52	18	30
LX-27	Latex spheres	60	43	20	37
PRS-25	Raw shale	60	51	27	22
PRS-26	Raw shale	60	48	31	21
PRS-27	Raw shale	60	38	45	17
PSS-25	Spent shale	60	48	28	24
PSS-26	Spent shale	60	54	9	37
PSS-27	Spent shale	60	63	7	30
Q-25	Silica	60	27	44	29
Q-26	Silica	60	37	63	0
Q-27	Silica	60	36	64	0
C-10	Control	90	34	13	53
S-10	Saline	90			
LX-28	Latex spheres	90	33	26	41
LX-29	Latex spheres	90	5	19	46
LX-30	Latex spheres	90	54	18	28
PRS-28	Raw shale	90	58	11	31
PRS-29	Raw shale	90	40	30	30
PRS-30	Raw shale	90	52	10	38
PSS-28	Spent shale	90	51	15	34
PSS-29	Spent shale	90	42	14	44
PSS-30	Spent shale	90	18	49	33
Q-28	Sílica	90	32	68	0
Q-29	Silica	90	27	63	10
Q-30	Sílica	90	30	58	12

^aDifferential counts were determined microscopically from samples by lavaging the lungs x days after exposure.

 $^{^{}b}$ C = control; S = saline; LX = polystyrene latex particles; PRS = raw shale; PSS = spent shale; Q = silica.

Printed in the United States of America. Available from National Technical Information Service US Department of Commerce 5285 Port Royal Road Springfield, VA 22161

Microfiche \$3,00

001-025	4.00	126-150	7.25	251-275	10.75	376-400	13.00	501-525	15.25	
026-050	4.50	151-175	8,00	276-300	11.00	401-425	13.25	526-550	15.50	
051-075	5.25	176-200	9.00	301-325	11.75	426-450	14.00	551-575	16.25	
076-100	6,00	201-225	9.25	326-350	12.00	451-475	14.50	576-600	16.50	
101-125	6.50	226-250	9.50	351-375	12.50	476-500	15.00	601-un		

Note: Add \$2,50 for each additional 100-page increment from 601 pages up.