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Abstract

We describe the linear MHD eigenmode code NOVA-R, which calculates the resistive
stability of axisymmetric toroidal equilibria. 4 formulation has been adopted which accu-
rately resolves the continuum spectrum of the ideal MHD aperator. The resistive MHD
stability equations are transformed into three coupled second order equations, one of which
recovers the equation solved by the NOVA code in the ideal limit [1;. The eigenfunctions
are represented by a Fourier expansion and cubic B-spline finite elements which are packed
about the internal boundary laver. Accurate results are presented for dimensionless re-
sistivities as low as 1072 in cvlindrical geometry. For axisvimmetric toroidal plasmas we
demonstrate the accuracy of the NOVA-R code by recovering ideal resuits in the n — 0
limit, and cylindrical resistive interchange results in the a/& -— 0 limit. A’ analvsis per-
formed using the eigenfunctions computed by the NOVA-R code agree with the asyvmptotic
matching results from the resistive PEST 2. code for ze~o beta equilibria.
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I. Introduction

In order to achieve improvement in the magnetic confinement properties of tokamak
fusion reactors, it is useful to be able to calculate what types of equilibria are free from
resistive AIHD instabilities. In this paper we present an accurate numerical method 10
determine the resistive NIHD stability of arbitrarily shaped axisvmmetric 1oroidal equi-
libria. The mathematical problem requires solving a system of two-dimensional partial
differential equations in which the complex frequency of the resistive AIHD eigenmodes is
the eigenvalue.

Obtaining an accurate numerical solution to these equations is made difficult by several
eflects. In tvpical svstems of interest the resistivity plays the role of a small parameter
multiplving the highest derivative, leading to the presence of an internal boundary layer in
the solution. Also, there exists several classes of solutions whose eigenmodes are of widely
different polarization, and whose eigenvalues can differ by many orders of magnitude.
Resistive instabilities correspond io one of the smallest eigenvalues and the most singular
eigenfunctions.

The time scale for ideal instabilities in tokamaks is given by the Alfvén time, 73 -
a,/p/ B (in rationalized MKS units). Here, ¢ is the plasma minor radius. p is the plasma
density. and B is the magnetic field. The slow time scale of global resistive diffusion is
given by T = a?/n, where 7 is the plasma resistivity. In the limit as § = /74 — x.
a bourdary laver theorv has been developed in which one dimensional “inner region™
equations involving resistivity are solved within the beundary laver, and two-dimensional

"“outer region” equations without resistivity are solved away from the boundary layer.
These regions are connected by asymptotic matching of the solutions from the neighboring
regions. :

By using this matching technique, the asvmptotic growth rate scaling for various
resistive modes can be derived. FKR {3 discovered the growth rate scaling of the tearing
made, T}"i"s-ri'ls. and the resistive interchange mode scaling, T:?'mrj":’. The asymptntic
matching method has been implemented numerically in cylindrical geometry 14, and has
been used to calculate the resistive stability properties of cvlindrical equilibrium wich

arbitrary profiles.

Glasser, Greene. and Johnson ‘5] extended the analytical asvmptotic analysis to ar-
bitrarily shaped axisymmetric ioroidal plasma equilibria. The asymptotic matching ap-
proach was successfully used to obtain a qualitative thearetical understanding af toroidal
effects on the stability of a plasma against resistive modes. GGJ found that favorable
average curvature i1s an important stabilizing 2D eflect.

Although the asympiotic approach established a qualitative theory of toroidal eflects.
it has proven quite difficult 10 apply this approach to deterinine the stability of arbitrary
axisymmetric toroidal equilibria. The resistive PEST-3 cude was successful only in ex-
amining the stability of pressure-free circular tokamak equilibria with one |2] or more 6



rational surfaces. Additional asymptotic maiching codes are presently being developed
-9

Initjal value codes have been developed in order to solve the time dependent linear {or
non-linear) resistive MHD equations throughout ihe entire plasma [4,10-14;. For toroidal
equilibria. these codes are typically effective for § < 10% Higher values of S are limited
by numerical accuracy and/or available comnputing resources. The § regime relevant tn
fusion reactors is given by 10% < § < 1010,

Eigenvalue or “spectral” codes have been developed [15-16 to solve the full set of lin-
earized eguations throughout the entire plasma, but these codes are specific to cylindrical
equilibria and are typically limited 10 § < 107. Kerner was able to create a cylindrical
eigenvalue code which succeeded in obtaining resulis for § < 10'¢ by taking measures to
reduce the fast wave “spectral poliution” problem [17]. However, there is not a straight-
forward way to extend Kerner’s technique for eliminating pollution from the cylindrical
problem to the toroidal problem.

It is a challenging task to find a satisfactory method of solving the toroidal stability
problem in a numerically efficient manner. for reasons that we now explain. Physically.
the role of resistivity is to allow the plasma to move with new degrees of [reedom that are
forbidden by the ideal MHD equations. One of the linearized resistive MHD equations can
be written as

(1- Z\“?)b'e Tx(ExB) . (1.1)

where £ is the plasma displacement. s is the growth rate, and B, b respectively give the
equilibrium and perturbed magnetic fields. }f the plasma perturbation has spatial vari-
ations over Jengths on the order of L, the maximal growth raie of a mode significantly
affected by the resistive term in Eqn. (1.1) is on the order of s ~ 1/L%. In order for a
growing mode 1o become interesting on a shorter time scale than the magnetic field diffu-
sion time (a®/#n), the mode must have spatial variations on a much smaller spatial scale
than a. The natural candidates for ideal MHD modes that will be significantly influenced
by resistivity are then the continuum mades, which diverge at singular surface(s) ,3.18.

The singular continuum modes arise when the highest order coeflicient of the ideal
MHD radial displacement eigenmode equation vanishes. Calculating this leading order
coefficient accurately is essential in order to resolve the continuum modes near the point
where thev diverge. The accurate numerical calculation of this small leading order term can
be particularly difficult because of the presence of large fast wave terms. A small relative
error in the computation of the large terms associated with the fast wave can “swamp”
the computation of the singular behavior of the continuum modes. Therefore, one of the
greates! challenges addressed by this paper is to find a way to formulate the resistive
MHD equations which accurately resolves the continuum spectrum. We have chosen a
mathematical formulation of the resistive MHD eigenmode equations that decouples the
continuous spectra from the fast magnetosonic wave. This formulation is a generalization
of the ane previously emploved by the NOVA 1" ¢ade for ideal MHAD.

The organization of this paper is now given. In Section 11. we describe the numerical
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problem of spectral pollution. We present a scheme to avoid spectral pollution and to
accurately resolve low frequency information by separating out the computation of the
ideal MHD continuum spectrum away from the computation of the fast wave. Section
111 gives the equations developed for our formulation of the linearized MHD eigenmode
equations. Section I\ provides an understanding of the numerical methods emploved by
the NOVA-R code. Section V gives results from the NOVA-RC code which implements the
cyvlindrical limit of our formulation of ihe resistive MHD stability problem. For a resistive
interchange mode, we show that our results have four significant digit agreement with an
asymptotic matching code at a magnetic Reynold’s number of § = 10%°. This represents
a breakthrough for a non-asymplotic code, and justifies the approach that we have taken
to eliminate pumerical pollution from the fast wave. Results for resistive interchange and
tearing instabilities are given from the fully toroidal two dimensional NOVA-R code in
Section YV'1. The NOVA-R results are in excelleni agreement with resistive PEST results
for a zero B case. A summary of the paper is given in Section V1. Appendix A and
Appendix B discuss important technical issues relevant to insuring the accuracy of cubic
B-spline packages when one wishes to closely pack grid points near an internal boundary
laver.

I1. Spectral Pollution

A resistive stability code must minimize the effect of fast wave spectral pollution if
it is to be capable of investigating resistive modes for resistivities Jow enough to be in
the range of interest for fusion reactors. Here, we illusirate in the cylindrical imit why
il is necessary for the problem to be formulated in terms of variables that “separate out™
these continuum-like modes from the fast magnetosonic modes in orderto more accurately
resolve the continuum-like resistive modes of interest.

Consider a cvlindrical plasma column in which the cvlindrical coordinate 7 is the only
non-ignorahle coordinate. We define the differential operators F = A = —i(g) - ¥ and
hy = ~z'(g x r) - ¥ which respectively correspond to directional derivatives along and
across field lines but within the plane of the magnetic surfaces. The Hirectional derivative
across the surfaces is given by &, = —ia—i. Let the simplifving assumption be made
that F = k, varies with r while all other equilibrium quantities are independent of r.
Thus, only F = F(r} will be in the way of recovering the homogeneous limit. In this
quasi-homogeneous cylindrical limit, the linearized ideal MHD eigenmode equation for the
radial displacement is {19

o | (a1~ vpepatll - ) - BFP (R - ) or ) -

it

a[ (p? - BEF?)ipw®(1 - £.) - B2F? 3 } (pu::'—Bze)é 0

(2.1)
Here 4 = 5/3 is the ratio of specific heats. The coefficient of the highest order derivative
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will vanish if either

pw” — B*F? = ¢ ) (2.2)
B? . :
or pwz(l T %) -B*F?*=0 . (2.3)

Equations (2.2) and (2.3) correspond to dispersion relations for the shear Alfvén and slow
sound continuum, respectively. If there is any point in the plasma where Egn. (2.2) or
{2.3) is satisfied, then a singular eigenmode solution exists {20,

Among the regular solutions to Eqn. (2.1) is the fast magnetosonic wave. In the
homogeneous limit for LE, << k'i, the fast wave dispersion relation is

2 B?
pw” = vpo(l + ‘r—;o)(ki + F%) + O(F%) .

where ¥2 = k2 + k2. The eigenfrequency of the fast magnetosonic mode is much larger
than that of all the other ideal MHD modes. Far vp, << B? the fast wave is given by
pu?/B? = k% and k7 = k% - k¥ | so we subsequently refer 1o A? as a “fast wave term”.

A formulation of the ideal MHD equations, which is vulnerable 1o spectral pollu-
tion. is now demonstrated. The plasma dlsplacement €. and penurbed perticle pressure,

p1. are used as unknown variables. For & = ( X 7)- E. & =7 € and (x;.22,23) =
£,/ B.ipy/B?.-£. ., the “guasi-hamogeneous” ideal ATHD cyvlindrical limit equations are
P 9 g q

given by
_ "79‘—7 -ki-F? k, ok, z) (0
ip? 2
ks Bp:; - %q, by ] = 0, (24)
kgke k, - k2L z3 \o

After Fourier transforms are applied in the two ignorahble coardinates 8 and =. note that £,
and p; can be algebraically eliminated in terms of £,, since the upper left hand corner 2x 2
matrix has no 5':’; = ik, differential operators and therefore can be inverted. Eliminating
p1 and £,. one obtains an equation which the numerically generated £, solution will obey,

ERR - (ps® - B°FY)ips(1- B) . B°F?
(p?) — ypolpw?(] - ;) B2F2 (k2 F")f‘er

(‘ - B )f 0 (2.5)

_ L= . 3
Y Po

Equation (2.3) differs from {2.1) because of the ERR term. The ERR term represents

the k? terms which cancel analytically. but will not perfectly cancel computationally.

Numerical errors causing ERR # 0 will directly affect the accuracy of the continuum

mode calculations.



One contribution to the ERR term will come from the fact that the 4% operator in
the upper left corner element of the matrix in Eqn. (2.4) is not numericaily equivalent
to the product of two k, operators. This will result in a computation of the singularity
associated with the shear Alfvén continuum given by

2f . KTk - (Redks)
pw® = B2F {hﬁl——ﬁ—”

Here we define the numerical error due to the fast wave terms,

ERR, = ku — (ks)(kf)
&

In toroidal geometry, the error due o k2 # (k,)(k,) will be enhanced by the convolu-
tion errors caused by the truncation of the Fourier series representation of &, and k7. Keep-
ing A/ harmonics, the truncation error of Fourier harmonics gives k2 — (k,)(k,) ~ e /2,
where the constant d is of order unity. When k"iERR_. = k2, the fast wave pollution
becomes a serious problem. )

We can use an estimation for ERR, based on the specific numerical compuiation
being used. The numerical errors generated by N linear elements in r. N cubic elements
in r. and M Fourier harmonics in @ are represented bv

ERR;=aN"2 , ERR, =N . ERRp = ce~ M2 respectively.

For our crude estimates, we take @ = b = ¢ = d = 1. For tearing modes w ~ 77°/% and at the

istive laver £L ~ p2i5 5 inv ; : t= 1 Th
resistive laver £ ~ £9°/°. Here ¢ is the inverse aspect ratio and we use 5 = fo- The range
of resistivities of interest to fusion reactors is 107'° < 7 < 1078 in our units (where the
resistivity is the inverse Magnetic Revnold's number). Insisting that the spectral pollution
errar be no larger than one percent of the correct value for this Shear continuum at the
boundary of the resistive laver (A2 ERR, /k7 < .01}, one obtains the numerical constraints
given by Table 1.

Table 1. Numerical Convergence Estimates

n=10"°% n=10"% p=10"1°
Linear Elements N > 25,000 160,000 1,000.000
Cubic Elements N > 160 400 1. 000
Fourier Harmonics A7 > 40 48 35

These rough estimates on the constrainl for N are somewhat pessimistic. lmprovement
is possible by using a non-uniform radial grid and packing grid points néar the singular
surface(s}. But the required Af number for resolution in 6 cannot be significantly lowered.
The run time will scale like N1/3. so carrving 55 Fourier modes will be costly. Due to
round off errors, the computer will obtain the given theoretical scaling of finite element
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errors only for sufficiently low N and M. Thus, for a poorly chosen formulation it may be
impossible to adequately lower the numerical error from the fast wave terms.

The NOVA-R formulation eliminates the possibility of any fast wave terms (k%) en-
tering into the calculation of the continuum singularities by analytically separating out the
terms relevant to the computation of the continuum singularities. In order 1o demonstrate
this. the £, equation of the final formulation which we have chosen is now given.

In the ideal limit, the NOVA-R formulation is based on the dependent variables P, =
p -~ B- b, Ev. Esand © -fwhere {:- {u%‘ + ig,ﬁ—’gﬂ -+ i.‘;‘bfx" and v plays the role of
the radial coordinate. The eigenmode equations |1 are given symbolically by:

B(v7e)= F(&)
£(e)= <(a) o)

where E. F. C. and D are 2 x 2 matrix involving only surface operators. fe. no ﬁ,% terms

aperating on the dependent variables. After eliminating the &, and ¥ - £ variables by
numerically inverting the E matrix, we have

dEL(E)%P] = HnPl + Hl'.’Ev i

o
det(E)a—wg"' = Moy Py = Hask,,

Hl] H]Z

HZI H22

where ( ) = det(E)C - DE°F and E° = det(E)E™!

Note that the B%, terms have been “tagged” with the det(E) terin. For spatial vari-
ations of §,. tu become infinite, det(E) must vanish and the continuum singularities will
be zeros of det(E). The formulation has been carefully chosen in such a manner that no
fast wave lerms (k2 ) are in the E matrix. Therefore, taking det(E) will immediately give
the continuum mode singularities without relving on the cancellation of large fast wave
terms. Thus. the formulation has separated out the computation of the continuum mode
singularities from all of the fast wave terms.

The explicit form of the E matrix was first derived by Cheng and Chance 1 and is
given by

ps? \';2.:? -B- V[!‘;‘;‘?E . V] 2K vpo
E= J
S A . “pa “pe g el BY
i2K, J-—’%-#B.\"[B]}



o B- B— , _B.XV‘ZI"»-:
where K = (E)V(E) K, = —Bz———.}\

The resistive MHD equations form a 6! order svsiem of differential equations in aiu'
In Section Il1, we present the NOVA-R formulation. which reduces to the second order
ideal AMTHD NOVA formulation in the hmit as  —- f). and thus eliminates the fast wave
spectral pollution of the Jower frequency shear Alfvén and slow sound continuous spectra.

I11. The NOVA-R Formulation
A. Equilibria

Equilibria are constrained to galisf_\'
Jx B=VP . UxB=Jand V.B=0 .

Magnetic coordinates have been used extensively in the literature to represent MHD equi-
libria 121-29". OQur computation uses straight field line magnetic flux coordinates, given by
{v.8,(). These coordinates are defined in terms of the cylindrical coordinates (X, ¢, Z).
A stationary axisymmetric MHD equilibrium with isotropic pressure is described in the
form,

po=P() . B=Y(xVu+qx)Ve x V8 =YV¢x V- g(v)Vo
where the magnetic flux is given by w = (X, Z). The v variable will be determined by

the T component of the force balance equation. J x B = VP, which gives a Poisson-like.
partial differential equation called the equilibrium Grad-Shafranov equation.

‘XT[F}' ( EZRRr

The Jacobian, J = (Vg x T8. V()" 1, is tvpically chosen such that for fixed 1 and o
a uniform # grid corresponds to equidistant arcs on the ¥ surface between adjacent grid
points. For the most general case, we represent the Jacobian by

\l

M2 = e

. where 7. 3. k are integers.

For fixed v+ and ¢, along an element of arc length ds (where ds® = dX'2 — dZ?) the relation

ds  J Vu
a4~ X
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determines #, so specifving J determines 8. Here a(3) is determined by the constraint
that @ be 27 periodic. The straight field line toroidal angle coordinate is given by

(=¢-q¥)s(y,0) ,

where é is 27 periodic in £ and defined by the equation

-9
('Ur) {] dﬂ) = '\—,2

This eguation defining & follows from the restriction that the field lines be straight in
(x:,8,¢) coordinates, ie, B - V{/B .- V8 = g(¢).

B. Resistive MHD Equations

Here. a deri\'ation of the equations solved by NOVA-R is given. All perturbed quan-
tities have ¢*! time dependence where s = —iw. The following vector equations have been
indexed according to the equation number subsequently used 1o refer to their Tu, Bx Ty
and B projections. respectively. The linearized resistive MJHD eigenmode equatiens (and

two nseful definitions) are given by:

psPE= ~VUp ~ (VY xB)xb-jx 8B (3.10.3.1,3.5s)
b=V x(£x B)- (n/s)T (3.15.3.45,3.2)
R R AN (3.25)
T=Cxj (3.4~ 3.6)
j=Vxb (3.7 - 3.9)
- BB (BxVTu)(BxVe¢) VevTw -]
ceov {(E SO "
¢ B B2V AR RV 53)
~ BEY\ -
ce v {( 5 g -
FE
\While keeping all the ¥ - £ terms, we now substitute in the following equations.
m=hP- B-b
- S¢ _BxV%%¢ B
§= EL‘IVL‘"'[? - 1, B2 - 1€b§§
u B x Ve B
= IQI‘ ' A o R v



B x vy

T:—' ) ————-.LR 3
=i+ Rjern cRB
- BxVy _ -
T = —lvaw + T‘W - TbB

and use the following definitions: -

N AR
5 %= (s) 7(z)

- _BxVw - ._(BxVy\ _ [(BxvVe
Ko=ve R = TR 8= (FRt) v (KR

The 15 equations given by {3.1-3.10) and (3.1s-3.5s} are then modified by sequentially
substituting out Qy, Qs, V-£1, and @, by using Eqn.s (3.1s) through (3.4s), respectively.
Then, Eqn. (3.3) is modified by subtracting 1/5” times Eqn. (3.2). This removes the
£, term in Eqn. (3.3). Finally, (3.3s) is used to eliminate £,. The final resistive MHD
equations to be implemented numerically in the NOVA-R code are given by the following

ten equations.

A ingl-:‘v[g,l_,]

(Tyi?T, - 1’13 V7T,

] + 12K, phy = 0 (3.1)

. - B.Y¥ _
i2Ks£s+{]+lR2—mB‘V[B }}vf—“%

B2 ps? B?
NP .z [V |? T 2Ky _
s ps? B \-’[—B—?Tw 7 ;Tb {Vtﬁ'fzgv =0 (3-2)
s o o o B
EEBX\_“L’—"VE,* FT&'— E__)
1. . [ 2K, Y YV Ve, .
sk [ivta-z v (:Tz--;'?)]é" T 0 (3-3)
1 -
Ty + 2o 2{13 VR, _z'Bwa-VRb} =0 (3.4)



2 g -
T, + VY {B VR, - $R, — PR\ + Vo VR = 0 (3.5)
) .

BE
1 5 BV
T,,.'E{—-szVLb- [PoTT ( ¢2)]
. vy VR,
~(J B)Rb} ~ogr =0 (3.6)
= [V L= V€l .s P
B-T[ le B. VE,J :z‘TPonV;/:-\"[ Bf} -'—szVzlJ-\_’[F;]
= , N ) U R .
—zzB-VT,a ‘Vw!zR,_.,-e-:B-\"[l B’i- sng +iphB x Vo [g’;] =0 (3.7)
= Vy? g PoPo o Po P
~SiBve - BT - B
n §
—2533 VT, ~ B,,T
R, ) elVe? 1 o [BV
"'\“w?‘{(B?) ¥ T.Bi’B"[!wi?]}‘f‘ﬁ
Moo P1 Pa
. v —— = =

200\ ] CTont2 5 . J-B
¥[, T-(B Td)] Vul? -VE,--J vau,\__.E_J B P

Ve )BT B B2 z B2
1, .o [(B®Ce
+ B—Bx?u Y’T 32 [po-v V-(W‘.w;?)JT,
1 BT, B2V \] V2 B.-v
SIS TR
Wl = : 1
\_,,vu v{ 5 [-zB-vg,—.s.wa}+§Fﬂ‘—§\'v-v7;=o (3.9)



J B V¥R \.5 2Ky — -~ 2Ky
(%57 - "5 8)iB v w6
J-B_;vw!zs-) B* .,

B2 32 AYE

_J ps P 2Ky BV _'(J‘.§_|-\—u'.!2_-_
{1"_’¢" Jro? B'v[!‘\"wi2 B T B 5)5 e

YA, (3.10)

va 3

n.E. _1
—SIB VTw 3(

These ten equations form tiie NOVA-R formulation. The 10 dependent variables are
Eu . E_; Pla T¢, T.n TbaR\Lw Raa Rb: Et'!

In the limit where 5 — 0, four of the ten NOVA-R equations, (3.1-3.3, 3.10), identically
recover the NOVA formulation [1].

The resistive boundary conditinns imposed at the wall are that £,. R, and R, vanish.
It wiil be shown that this is sufficier Lo provide boundary conditions for all variables. The
condition that R, and R, vanish fullows from: 1) £, = 0 (impeneirable wall), 2) ¢ = 0
(flow-free equilibria), 3) the ta.ngenmal electric field vanishes at the (infinitely conducting)
wall, and 4) E+ix B = (n/s)] But if 5 = 0. the fourth point in this argument
breaks down <ince Ohm'’s law nc longer vields anv information about ;. In the ideal limit.
R, = R,(£v.£y,6,) # 0and R, = R,(Ew,fu, ) # 0. For the ideal MHD preblem one
only imposes £, = 0 at the v.all, and there is no additional freedom to prescribe R, and

R, independently.

The additional, non-ideal boundary conditions at the wall have the potential of pre-
venling the recovery of ideal MHD results in the n — {0 limit. However, the NOVA-R
formulation has the beneficial property of directly recovering ideal MHD results in the
7 — 0 limit because the additional non-resistive boundary conditions fully decouple from
the second order differential £,, equation. This provides a smooth connection to ideal MHD
in the appropriate limit.

For solutions that are w.aalytic, it can he shown that all poloidal harmonics of £, and
R, must vanish at the origin. All m # 0 poloidal harmonics of R;, must also vanish, and
for m = 0, 8 R(U) = 0 where ¢ = /¥, This gives the set of boundary condiiions that are
used in the '\O\ A-R code at the origin.
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IV. Numerical Method

A. Discretization

To make further progress, the functional dependence of the probiem on the poloidal
angle @ and the toroidal angle ¢ is discretized by expanding each of the 10 dependent
variables into a truncated Fourier series. Only a single harmonic, n, in the toroidal angle
is retained since the axisymmetric equilibrium does not mix modes of different » number.
However, the two-dimensional equilibrium does couple together poloidal harmonics asso-
ciated with different m values. We keep A harmonics in the poloidal angle, letting m
vary from mlo to mhi, where Af = mhi — mlo + 1. After applying Galerkin’s method to
project out each of the M Fourier harmonics, each analytical NOVA-R equation becomes
AJ coupled ordinary differential equations. Each coefficient in the final analytical NOVA-R
equations (3.1-3.10) becomes an M x Af matrix which is in general ¥ dependent. There-
{ore, all of the A x Af coefficient matrices must be calculated on each ¥ surface (of the
numerical v grid one has chosen).

Some of the coefficients in the 10Af by 10Af svstem of equations have terms which
are multiplied by different powers of s. the growth rate. Each term involving a different
factor of s7 is computed independently with s? factored out. Thus, the computation can
be done onc- and for all outside of the loop in which one iterates over values of s to find
a solution.

_ Expanding into a Fourier series transforms the surface differential operators B-¥ and
B x Vi - VU into algebraic matrix multipliers. This allows the first 7 of the 10 equations
in the NOVA-R formulation te be algebraically inverted. thereby eliminating the first 7
unknowns (in the order as listed). To reduce the 1047 equations in 1017 unknowns into
3\ equations in 3Mf unknowns, first £, and V- E_'a.re simultaneously eliminated by using
Eqn.s (3.1) and (3.2). Then, P, is eliminated using Eqn. (3.3). Next Ty, T, and T, are
simultaneously eliminated using Eqn.s (3.4}, (3.3) and (3.6). Finally, R,, is eliminated using -
Egn. (3.7). This procedure for reduction to a 3M system of equations must be repeated
on each v surface. This reduction of the 101! equations to 3M is uniquely defined as long
as it is understood that one never reduces terms by differentiating coefficients with respect
1o v, Thus. one would not make the replacement

o) , OF B,
M{Egﬁ - Y EV‘ E s

Making this type of substitution would typically create more work since new equilibrium

quantities .z.e. g%, would have to be generated.

At this stage the NOVA-R formulation is a svstem of coupled second order radial
differential equations for the Af Fourier amplitudes of the three unknown quantities.

(R.H Rbe&v)
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The numerical NOVA-R equations are of the form,

Cr.8]. 8.1 @ 8\
o7 (23] 7~ 55|07 - 5 [ (369)] =0 -y
where
y(j"‘lal(l") ( -{‘r:ﬂi)](w)
W) || R
yﬁmh;)(ﬂ') R () (m)
y(mlo)(w) R‘(,mlo)(m) /R, ' mhi R'm (74")
g: 2 ’ - ) , -Rb — e~ in(+st Z Rim)(w) E:mP
: - :i L m=mlo E(m)[l’)
y(mh:)(v) R(((, ’h))(w) A¥] )
lmlo)(v) e'gu (u',)
\ y:{’mh[){w) E‘[imhi)(f;) /

In the . — 0 limit, the final A equations represented in (1.1}, originating from
(3.10). identicallv recover the NOVA equahons for £, a.nd decouple from ihe remaining
2.1/ equations originating from (3.8} and (3.9). :

For M/ = mhi ~ mio + 1, the nexl step in the calculation involves discretizing this
svstem of 31f coupled second order differential equaiions in v given by (4.1). An approx-
imation for each poloidal harmonic of the unknown solutic{n.'is to be constructied in the

form.

y" )= Y g Bv) . (4.2)

One also approximates all of the coefficients, given on the left hand side of Eqn. (4.1).
with a B-Splines expansion. This is done by evalualing all of the coefficients in Egn. (1.1)
on vach - surface and then choosing an expansion for the coefficients that interpolates
the N data points. For our particular choice of finite element, the interpolation constraint
removes only .V of the & —~ 2 degrees of freedom. The remaining two degrees of freedom
are found by using numerical approximations of the derivatives of each coefficient at the
endpoints of the 3 grid.

In carrying out this procedure, one arrives at a lensor equation for the finite element
amplitudes of the form,
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BT (s)+ CIPP4(s) + DITPM(s) + ESTP5(s) |y = 0 (43)

i, 1,2,3
for Lm | = | mle,...., mhi
p.k ,..N=2

Here i refers to one of the three final NOVA-R equations originating from (3.8-3.1t1).
and ! and p refer to e **B,(w) projection of that equation. The j. m. k indices are
consistent with Eqn. (4.2).

At this point we have developed 3M(N + 2) equations to solve for 3AJ(N + 2) un-
knowns, For the cubic B-Splines, only B;(¥) and Byi2(%) are non-trivial at @ = 0
and ¥v = 1 respeclively. Therefore, the boundary conditions, iy = 0,8) = 0 and
(v = 1,8) = 0 aresatisfied by imposing the condition that y}"" =0 for k =1 and
h = N +2for all m and j. This represents a set of 61f additional equations. These 61f
equations effectively remove the B;{y) and By,o{%) finite elements from the basic set be-
ing used to expand the unknown independent variables. Galerkin’s method requires that
the solution be orthogonal Lo the basis {unctions used to expand the unknown functions.
The 6.1 equations corresponding to the projections of By (%) and Bx 2(w) are, therefore,
replaced by the boundary conditions.

By rearranging the indices, one can reformulate the tensor equatiu:. given in Eqn.
(4.3) im0 a simple matrix equation. The structure of the cubic B-spline finite element
generated matrix is most easily visualized by considering each 3Af x 31/ matrix to be
one “element”. With this understood, when using N grid points in ¥ one generates an
(N +2) x (N + 2) matrix with seven non-trivial diagonals. The convention used is that for

a = (N=1)A(p—1)+M{i-1)+l-mio+1, 8= (N=M(F-1)=M{G-1)+m-mlo-]
Ha.a(s) = B (s) + C{T'P(s) = DTP*(s) + ETP*(s)

and Yz =y]

Now the problem has been reduced to the single matrix equation,

[H(s)]¥ =0

In order 1o find non-trivial solutions, one iterates over complex s space 10 find zeros of
det H(s) . Given a value § such that det{H(3)] = 0, the associated eigenfunction solution
corresponds to the null space of the H(5) matrix.

The eigenvalues, 5, that are real numbers are relatively easy to find. Since the deter-
minant is real for all real s, one simply needs to plot out values of the determinant along
the the real s axis and look for sign changes. A binary search is then used 1o converge
to the § value where the sign change occurs. For complex eigenvalues, solutions are much
more difficult 1o find. Typicaily one is forced to start with an equilibrium in which the
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eigenvalue of interest is real, and then slowly change parameters toward the desired equi-
ibrium while tracking the root through the complex plane. As long is such a technigue is
used to insure that one knows an initial guess very near the complex eigenvalue of interest.
then Muller’s method may be used to converge to the precise value of 3.

B. Numerical Advantages of the NOVA-R Formuiation

A question this paper addresses is how one might best reduce the resistive eigenmode
cguations into an equivalent workable set of equations which a computer can accurately
solve. We have chosen the NOVA-R formulation which is characterized by the following

beneficial fea.ures:

1. NOVA.R involves the Fourier moments of three coupled second order equations
in N = 3 variaples. The CPU time required to evaluate the determinant of the finite
element generaied matrix scales like N3, so formulations solving for more unknowns will
run slower. Furthermore, the determinant of a larger matrix will typically be a more iil-
behaved function of s so formulations using more than N = 3 dependent variables will
require more iterations of evaluating the determinant before converging to an eigenvalue.

2. Galerkin's method is optimally suited for second order equations and poorly suited
for first order equations {30:. For finite resistivity and for n = 0, none of Lthe variables have
highest order derivatives (in %) which are first derivatives.

3. For n = 0 NOVA-R directly recovers the identical formulation of a previously
developed 2D ideal MHD code, NOVA. A “smooth connection” exists between the finite 7
NOVA-R code and the NOVA code in the 5 — () limit. because the NOVA-R formulation
was deliberately formed in such a way that the non-ideal resistive boundary conditions
become decoupled from the relevant computation for the n = 0 equations.

4. The NOVA-R equations do not become degenerate at any paint in the plasma away
from the magnetic axis.

V. Cylindrical Geometry Results

Substantial simphfication of the formulation given in Sectior IV results when we
specialize 1o “straight” or 1D equilibria. Using cylindrical (7. £.z) crordinates. the equi-
librium guantities depend only on the minor radius ». and are thus one-dimensional. The
only tornidal effect retained is the periodicity length, 0 < = < 27 Ry. When the 8 and :
dependences are expanded in a Fourier series, €.g.,

Ex(r8,z) = 3_ £ (r)expli(mf — n:z/Ry). .

mn

we find that because the equilibrium quantities depend only on r. there is no coupling
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between the harmonics with different m and n. This simplification was used in developing
the 1D NOVA-RC code, which is significantly less cumbersome than the more complete
2D NOVA-R code. We first report on results using NOVA-RC for two problems given in
the literature.

Even if one chooses to only use one poloidal harmonic in the NOVA-R code, many
fundamental differences exist between the 1D NOVA-RC code and the 2D NOVA-R code.
For the 1D problem. the computational task of determining the equilibria involves inte-
grating simple first order differential equations in one variable. This task is performed
extremely accurately. For the 2D equilibria, a second order partial differential equation
must be solved iteratively. All of the equilibrium data required io define the coefficients
of the stability eyuations are directly calculated atl each point on the stability grid for the
1I) problem. For the 2D problem, the required equilibrium data are interpolated from
an equilibrium grid onto the stability grid. For the 1D stability equations, every coefhi-
cient is explicitly expressed as apn analytical function of the equilibrium data. In 2D, the
coefficients of the final svstem of differential equations are generated numerically.

We do not give an explicit list of the initial NOVA-R formulation equations in the 1D
limit. since it is preferable to instead refer 1o the more comprehensive 2D equations given by
{3.1-3.10) and (3.1s-3.55). In the 1D limit, this list of 15 equations in 13 variables includes
6 first order differential equations and 9 zeroth order equations. These equations include
57 coeificients of undiflerentiated independent variables and 6 coefficients of differentiated
variables. These 63 terms form the stariing point of a svmbolic algebra manipulator
program. The “REDUCE® utility was used on the MFECCC Cray-X\P E-machine. The
last 3 of these 13 equations, (3.1s) through (3.3s), are eliminated analytically in both the 1D
and 2D formulations. For the 2D code, the first 7 equations are numerically eliminated in
order 1o arrive at the final set of differential equations which form the NOVA-R formulation.
For the 1D problem. however, the first 7 equations are also eliminated analytically.

Unless otherwise stated, the resistivities given in this paper are scaled in units of
inverse magnetic Reynold’s number and E. M. U. units are used. In order to scale the
given growth rate, s, and resistivity, n, into other units for a fuston reactor, one would use
§ = T4 and 7} = nTa/a’. where 74 = a,/p/B(0). Here 5 and 7j are dimensionless numbers
which are fixed regardless of the particular values of a, p, B{0).

A. Resistive Interchange Instabilities
in Cylindrical Spheromak-like equilibria

The first equilibrium we consider for testing the NOVA-RC' code is the evlindrical
spheromak-like equilibrium examined in reference :4i. The eguilibrium profiles arc defined
for0<r<1by

hr r qqo "2, e 2 2"’
By(r) = gexp{—/(: [p + 2r - n——(g-A)Q—J l(f) —T‘J d?‘}


http://2l.ll

B:(r) = q(r)Be(r)/(kr}

i d

g(r) = qo(1—r?) ,and p(r) = g/‘rBf(%’) dr .

r

We examine an equilibrium with the parameters:
go=16.a=07,A=a/R=03,B.(r=0)=1,p=1.a=1.

Note wy = B(0)/{a,/p) = 1 here. We compute the growth rate of a m = n = 2 mode. -

The equilibrium is stable to ideal MHD interchange instabilities for 0 < a < 1, and is
unstable to resistive interchange modes for all a > 0 {4]. The growth rate of the resistive
interchange mode is determined to within four significant figures of the converged result
with ¥ = 200 radial grid points when n > 107'%. For the NOVA-RC results given ia
Table 2, we use N = 1001 in order to investigate just how low we can reduce the resistivity
before the NOVA-RC will stop converging toward asymptotic matching results.

Table 2.

1 NOVA-RC growth rate Asvmptotic Matching growth rate

10~ 2.2603-10°2 3.3410- 1072
1075 1.9634.102 . 1.5843 - 10-%
10-8 6.8617 - 103 7.2977-10°°
107 3.2125-10°3 3.2971-10° 3
10-8 1.4480-10°% 1.4642. 1073
10-9 6.3665 - 10~ 6.3968 - 10~
1010 2.7505 . 1071 2.7.60 - 10~1
10- 1 1.1763 - 10~* 1.1772- 1074
10° 12 5.0217-10°% 502341075
10-1¢ 2.1573-1075 2.1576 - 1073
10~ 9.3765-10-° 9.3772.10°¢
10718 4.1317-10°8 411318-107¢
10-17 8.3246-10°°7 8.3247-10°7
10-2¢ 7.9818.10°8 7.0818 . 10-8
10-25 1.6929 - 107 1@ 1.6929.1073¢
1040 3.6403 - 1012 3.6401-10- 12

For large values of resistivity. 21077, we expect the asvmptotic matching theory 10
wreak down, with leading order errors scaling as 7°/3. As  decreases, the growth rates from
NOVA-RC and asymptotic matching agree to five significant figures. But when 7 is further
reduced. 7 < 10~%, the agreement becomes worse. However, even at a magnetic Revnold's
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number of § = 10%°, NOVA-RC still reproduces the asymptotic matching growth rate to
four significant digits. Attaining this degree of accuracy at low resistivities represents a
breakthrough {or a non-asymptotic code.

Figure 1 shows the eigenfunction behavior in arder of decreasing resistivity, illustrating
how the eigenfunctions from NOVA-RC and asymptotic matiching converge together. The
NOVA-RC independent variable, £, is divided by By in order to enable comipanson with
the asvmptotic matching dependent variable, £,..

We now choose 7 = 10710 for the cylindrical spheromak equilibrium te do convergence
tests. We demonstrate the convergence of the NOVA-RC code with both a uniform and a
nonuniform grid. The procedure for how the radial grid points are preferentially allocated
near the singular surface is described in Appendix B. Table 3 specifies how the growth rate
changes according Lo the number of grid points that are used. Figure 2 demonstrates the
N~ convergence obtained when using a uniform grid. Note that for the nonuniform grid,
the growth rate is within 0.2 percent of the converged result with only N = 100 grid points.

Table 3. NOVA-RC Growth Rates at = 107'°

Nonuniform Grid Uniform Gnid

N grid points  Growth Rate N grid points  Growth Rate
50 2.6452- 1074
60 2.7619- 109 1400 2.3512. 104
80 2.7386 - 10~ 1500 2.4393 .10~
100 2,7443 . 101 1600 2.5610- 10" 9
150 2.7490- 1074 ) 1800 2.6259- 1077
200 2.7499 - 1077 2000 .2.6940- 1071
300 2.7504 - 10~ 2400 2.7382-10"*
400 2.7504 - 101 4000 2.7504 - 104
500 2.7505 - 197 6000 2.7505 - 101
600 2.7505- 107 8000 2.7505- 1077
700 2.7505- 10~* 10000 2.7505- 1077

B. Tearing Modes in Tokamak-like Equilibria

lzzo. €t al 12 reported on a tokamak-like ideal MHD stable cvlindrical eguilibrium
which was examined for stability against resistive tearing modes. The NOVA-R(' stability
results are 1o be compared with the published results from the initial value code used
by lzzo, referred to as HILO. HILO filters out the fast magnetosonic wave by making an
expansion in the inverse aspect ratio and the plasma 3. The value of 3 is assumed to be
first order in ¢ = a/R. The MHD equations HILO solves are accurate 1o fifth arder in «.
lzzo defpes 3 = 2p(r)/B*(1) and for this case ¢ = 0.2 and 4 < 6.13- 20~
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The equilibrium of interes! is defined for 0 <r < 1 by
g(r) = 1.6 (1 +r?/0.64) ,

p(r) = a(0.001 + 0.0287% — 0.05¢r* + 0.037%) .
a=025, k=a¢/R=02 , B{1)=1, 06=1.a=]

For the perturbation, m = 2 and n = 1 are chosen. This type of pressurc profile is
unusual in that it has a positive gradient for 0 < r» < 0.558. In particular, p'{», = 0.3) =
2.28.1073 > 0 at the resonant surface. The physical motivation for using an equilibrium
with the pressure gradient reversed at the resonant laver was to simulate the effecis of
good average curvature.

We temporarily defer investigating this specific equilibrium by first choosing 10 in-
vestigate the simpler equilibrium generated by setting a = 0, thereby “turning ofl” the
pressure profile. For this pressure-free equilibrium, we can check whether or not the growth
rate computed by the NOVA-RC code will scale like 7%/, which is predicted by asymp-
lotic theory. A total of N = 1001 grid points is used to obliviate the need for numerical
convergence studies,

Table 4.

NOVA-RC growth rate

7 s(n) logy, [ 422

10-4 4.90904 - 1074

1073 9.53777 - 1079

108 4.60722- 101 31601
10°7 1.4922¢ - 104 .18961
10-8 4.18112- 1075 .55253
1072 1.10219- 1078 .57904
10-1° 2.82845- 108 .59071
10-1 7.17215-10°7 .50590
10712 1.80904 - 10~7 .59820
10-13 4.33230 - 10-8 .59922
1074 1.13438 - 10~8 .59966
10°1° 2.87554- 10~ ¢ .50085
10-16 7.22714 - 10710 59975
1071 1.81469. 107 '° .60016
108 1.58671.10° 1 59730

The results shown in Table 4 show the growth rate, (7). and its scaling with respect 1o
resistivity for a wide range of n.values. The convergence to the 3/5 scaling begins 1o break
down at about n = 107%%. This breakdown occurs when the growth rates reach about
the same order of magnitude as the point at which NOVA-RC convergence to asymptotic
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matching began Lo break down in the previous interchange case. Figure 3 shows the tearing
mode eigenmode for various values of the resistivity.

Again, the actual equilibrium from the lzzo paper is deferred in order to investigate
what happens to the resislive tearing mode al a fixed resistivity as the pressure pro-
file is gradually “turned on™. The pressure profile is gradually increased by varving the
n parameter. We are thus able to confirm that the NOVA-RC code agrees with Izzo's
demonstration that this type of pressure profile has a stabilizing effect on the mode. The
particular value of 1he resistivity chosen is just above the point where the growth rate of
the mode found by NOVA-RC goes complex for an a = 0.5 pressure profile. For a fixed
equilibrium, the “critical resistivity™, 7., refers to the value of i below which the growth
rate makes a transition from being purely real to complex. For a fixed value of a = 0.5, the
NOVA-RC code finds that the growth rate goes complex when the resistivity is less than
7c = 3.34-1077. {Note that a = 0.5 is double the a = 0.25 case which lzzo investigated).

Table 5.
p=235-10"7

a NOVA-RC growth rate

.00 2.832- 1071
10 2.389-107"
20 1.928.10*
.30 1.450- 107
40 9.608 - 107°
45 7.027-107°
48 5.247-107°
.50 3.535-107°

Table 5 shows that the growth rate decreases as a increases and the effect of the pressurc
profile is stabilizing. Figure 4 shows the unstable eigenmode for various values of a.

Note that the radial displacement develops a relative minimum in the laver as the
{a.n) parameters approach the values for which the growth rate becomes complex. As the
two mos: unstable growth rates coalesce. their corresponding eigenfunctions also coalesce.
and the less unstable eigenfunction typically has this extra oscillation. (Here p = 3.5-10 7
at @ = 0.5 is near 7, = 3.34-107).

We now fix a = 0.25 so that we can compare the NOVA-RC gro“th rates with thouse
given by Izzo. For resistivities in the range 1.6-10°% < 5 < 2. 10" % comparison with the
HILO results from lzzo is given in Table 6.
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Table 6.

3 NOVA-RC growth rate HILO growth rate

2.10-¢ 3.41.1074 3.4.1074
6.10°7 2.21.104 2.2.10"1
1-10°7 7.94.10°° 82.10°°
3.1078 3.03.10°°% 3.2.10°5

Unfortunately, a comparison of the third decimal place with the lzzu results is not
possible because the HILO code is not able 1o find converged results to this degree of
accuracy. The NOVA-RC code does agree with HILO at high resistivity to within the
accuracy of the HILO code itself.

For lower resistivities the complex part of the HILO growth rate is not given. As
the the resistivity is Jowered below 1.6 - 1078 we find that: 1) lowering the resistivity will
eventually induce the osculation of the largest growth rate with the growth rate of a less
unstable mode. 2) further reduction of the resistivity (after the osculation) will cause the
unstable modes to “split” into two modes having respeciive complex growth rates that are
complex conjugates, and 3) these iwo modes subsequently become stable as the resistivity

is further reduced.

In Table 7 we explicitly write out the results with complex growth rates for small
values of 7. A total of N = 200 grid points was used for this study.

Table 7. Results at a = 0.25

NbVA—RC growth rate

7 Real(s) 1+ Imag(s)
1.504 - 10-8 8.54.10°° =1 0.22.10"°®
1.50.10°8 8.52.10% —i0.68-10°°
1.45-10-8 8.22.10°¢ =% 236 10-¢
14-10°8 7.92.10-% ~73.24-10°°
1.3-1078 7.31-107%  ={447-107°
1.2.1078 6.69 - 10~° +i 5.37-107¢
1.1.-10°8 6.04-10°¢ =i 6.09- 108
1.0-1078 5.39.10°°6 ~i 6.67-107°
09-10-8 4.71.10°€ =i 7.15-10°°
0.8.10°8 1.01-10°8 - 7.53-107°
0.7-10°8 3.29.10"% ~77.83-107°
06-10°3 2.55.10°% =i 8.03.10-¢
0.5-10°% 1.8 .10°8 ~:8.13.10°¢
0.45-10-¢ 005-10 ¢ —18.14.10"°

2]



The HILO code found that the equilibrium became stable at (roughiy) n = 4-10-°.
The NOVA-RC code, however, found stability at n = 4.5.10~%._ In addition to HILO.,
lzzo used a shooting cade that solved the incompressible equations. By using the shooting
code, 1zzo determined that the point at which the growth rate first became complex (as
1 is Jowered) occurred at {n,s) = (1.6-107%,8.6 - 107%). The NOVA-RC code found
(n7.5) = (1.5-107%,8.6-107%). Thus. small but noticeable differences exist between the
results of 1zzo and the more exact ireatment in NOVA-RC at low resistivities.

V1. Toroidal Geometry Results

A. Ideal Limit

In this section we 1est the NOVA-R code against several previcusly known results in
turaidal geometry. The first test is to insure that the NOVA-R code correctly recovers
known results in the axisymmetric 2D idea! MHD limit. As mentioned in the introduction.
the NOVA-R formulation was deliberatelv chosen in order to greatly simplify this task. The
NOVA-R formulation has been chosen to insure that when one sets 7 = 0, the NOVA-R
code should recover results identical to that of NOVA.

Here we illustrate Lthe numerical recovery of a published NOVA result with the NOVA-
R code. An equilibrium, which the ideal NOVA code found to be unstable to an m = 1,
7 = 1 internal kink mode |1, is analyzed by the NOVA-R code with'n = 0.

The equilibrium has a circular outermost surface and is defined on the interval 0 <
v < I hy profiles of the form
Ply) = Po(1 - 4°)°

—Ys
— Ys

where y — w/Advandy, = {9y — 1 + 9o /igh — 9, — 2(¢1 — qn)- The equilibrium has
AU = Viim — vy = 0.0609, < 5 >m— 0.01277. B = 143. Rja = 3.4, P = 0.02456,
gn = 0.8, ¢y = 285, gp = 13.857, ¢} = 106.88, and < Fpo; >= 0.86 . \Ve normalize the
growth rate to wy = Bo/ig; Rp'®. for a vacuum toroidal field given by B, = BoKo/R. In
specific. By = 1 and w,; = 0.2453 here. Figure 5 gives the NOVA-R result obtained with
AN = 100 evenly spaced ¢t grid points and eight poloidal harmenics from min = -2 10
mhi = 5. For 7 = 0, we have numerically verified the equivalence of all terms in NOVA-R
with the corresponding NOVA terms. Figure 5 shows the eigenfunction £, for different
peloidal harmonics corresponding to the growth rate, 5§ = s/ = 4.8-1072

q(y]=qo+y[q;—%—(y—1)(q —lh"rqu)
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B. Resistive Interchange Modes
In Toroidal Spheromak Equilibria

Our aim is to define a sequence of 2D toroidal axisymmetric equilibrium which allows
the NOVA-R code to recover results from the 1D NOVA-RC cvlindrical eode as the limit
of the sequence. Let 8. symbolically represent the svstem of three second order differen-
tial equations which make up the cylindrical siability equations. The cyvlindrical stability
equations depend on the g profile, the machine size, and the toroidal and polcidal mode
numbers, n, m, of the perturbation. Clearly, 8. = 5.(q,e, R,n,m). For k = a/R the depen-
dence of 5. on g.a. R, n,m can be written in the more restrictive form, S. = S.(g/k,nk, m)
|4". This means that one cannot recover the cylindrical limit with an axisymmetric 2D
code by merelv letting k = a/ R — Q. One also has to preserve the quantities g/k and nk.

The following parameters specify the cylindrical spheromak-Fke equilibrium which is
being iargeted for convergence studies. The equilibrium has a circular outermost surface
and is defined in the region from 0 < r < 1 with the parameters:

1 gy 2
glr) = @1 -.9%) ,  p(r)= 2 f rﬂf("-) dr
8 J q
g9 =01, a=01, k=a/R=01, B,(0)=1, p=1, a=1.

The equilibrium has a centrallv peaked pressure profile with p(0) = 5.71- 1073, For
the perturbation, m = 1 and n = 15 are chosen. Now we define a sequence of 2D equilibria
for which the corresponding 2D stability equations should approximate the 1D stability
equations of the given cylindrical equilibrium as a/R — 0. For low G, g, and g/K in
axisymmetric equilibria. the flux surfaces of the equilibria are very circular and the volume
within a given flux surface, V' = V(¥), should vary as r2, where » represents the average
minor radius on the flux surface. After normalizing both 0 < r < 1and 0 < V'(x) < 1. we
define 2e

oz fo TJ/X df

T OfFgX a8

The 2D spheromak equilibria are specified by the following parameters and profiles:

. 2
de) = g1 - 91). 2o —al'ld—‘,B? (3 E‘%)
"\g dl

dv 4 dy:
a = 0.1. B.(0) = 1. p=1, a=1
The pressure is required 1o vanish at the wall. Given the assumption that V' = 12, the

c_vlinfiricaldpressure profile is easily recovered after multiplying both sides of the equation
for g—‘,_: by T{::-" The three sets of parameters shown in Table 8 were used to abtain the large
aspect ratio equilibria that we investigated.
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Table 8.

k=a/R g n Resulting p(0)
Case 1 0.25 025 6 5.54.107°
Case 2 0.0 010 13 5.69-10°

0 573.10°%

[%}]

Case 3 0.01 0.01 1

For the third ease, note that p(0) = 5.73-1072 js approximately the same as the value
(5.71 - 107 8) found in the cylindrical limit. For the purposes of testing whether NOVA-
R correctly recovers the cvlindrical limit, the third case is of the mostl interest since the
central pressure agrees well with the cylindrical limit and the inverse aspect ratio is small.
Figure 6 gives the structure of the flux surfaces on the radial () stability computational
grid for the a/R = 0.01 equilibrium.

First the NOVA-R code is tested when keeping only the resonant harmonic, (m =
1.n = 150). This represents the closest possible comparison of NOVA-R with the compu-
tation performed by the cylindrical code. Let (N}, M) represent the number of v radial
grid points and poloidal harmonics kept in the final NOVA-R stability calculation. Let ¢
designate the width of a region or “layer” about ihe resonant surface. Lei j represent the
fraction of the total number of radial stability grid points (N,) which are to be packed
within the layer. Let (N, N?) give the number of radial and theta grid points used in the
equilibrium calculation and 6 represent the error tolerance of the eguilibrium code 27"
For the moment we are keeping only one poloidal harmonic, (M = 1), but in generzal, the
growth rate is a function of many computational parameters,

s=s(N¥ NE, ENFM. 1)

In order to confirm the results, convergenc » with respect to all of these parameters had to
be verified. Excellent numerical convergence of s was easily obtained with respect to all
of these parameters with the exception of N¥. For example, results in this section came
from N, = 300. and lowering N, to 200 changed onlv the sixth significant figure in the
growth rate. Lowering § by four orders of magnitude also affected only the sixth decimal of
the growth rate. The surprisingly large dependence of s on NJ¥ is shown in Fig. 7, which
illustrates a (N¥)~2 dependence. The resistivity is fixed at n = 10~7 here. The data point
given by a circle indicates the cylindrical limit obtained from the NOVA-RC code, The
growth rates given here are in units of § = s/w,4 and wy = 10.0 for all three spheromak
equilibria given in Table 8. Figure 8 shows the unstable eigenfunction, £, for n = 10°7
and VY = 200,

The equilibrium information is calculated with the use of “centered™ finite difference
{ormulas which are accurate 1o second order. Thus the equilibrium data are known to
converge like (N¥)™2. The tearing made examined in Section C displays a relatively
weaker dependence on N¥. A decrease of 25 percent in the growth rate between N¥ = 64
and V¥ = 200 was seen for this spheromak equilibrium at 7 = 107 7. This decrease is only
3 percent for the tokamak eguilibrium {analyzed in Section C) at » = 107%, The upusualiv
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large NY dependence seen here can primarily explained by the fact that for these low
growth rates, the plasma is very close to marginal stability. Thercfore, the accuracy of the
equilibrium data is being tested more stringently by the NOVA-R code thun is vsually the
case for stability codes which examine ideal instabilities, for example.

The next simple test of the NOVA-R code involves expanding the stability calculation
in order to xeep track of more than one harmonic. For this nearly cvlindrical equilibrium.
the addition of extra non-resonant harmonics should not aflect the result. For the previous
runs only the m = 1 resonant harmonic was kept. The range of harmonics is expanded ta
m ¢ -1.0.1.2,3l. The resulting growth rates are given in Table 9.

Table 9. 71 =107 NOVA-R growth rates

N¥=63 N!=101 NY=200

Many Modes 4.236-10° 3.567-107% 3.146-10°%
Single Modes 4.237-107° 3.368-107% 3.147-10-5

For an additional check we fix N¥ = 200 and fix the range of poloidal harmonics at
'~ 1,0.1.2, 3! in order 1o examine the variation in the I'OVA-R growth rate for each of the
three previously defined equilibria cases, given in Trble 8. Toroidal effects are known to
be of lesser importance for low 3, a/R and q plasmas. This test, as shown in Table 10,
also helps to insure that the ¢/R = 0.0]1 case was sufficientiv converged to the a/R — 0
limit so that we could properly compare it to the results from the cylindrical code.

Table 10. 7 = 10-7 NOVA-R Growth Rates

k= a/R Growth Rate

Casel 025  3.34.10°5
Case2 010  3.17-10-5
Case3 001  3.15-10-5

For the final check we vary the resistivity while fixing a/R = 0.01, N} = 200 and
keeping the range of poloidal harmonics at [~1,3]. This is done 10 check whether s ~ '3,
The growth rates as a function of # for the a/R = 0.01 case are given in Table 11 and Fig.
9.

Table 11, k=a/R = 0.01 NOVA-R Growtih Rates

1210 p=107 g=10

NOVA-RC (Cylindrical Limit) 1.55.10"% 3.22.70-5 6.06-
5.90

10 ®
NOVA-R 1.38.10°% 3.15-10°% &, 1073
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C. Tearing Modes In Tokamak Equilibria

The following parameters give a tokamak equilibrium which has previously been de-
termined to be unstable to resistive tearing modes by the resistive PEST code. This equi-
librium has a circular outermost flux surface and is defined on the region from 0 < 2» < 1

with the parameters:
k=a/R=01, B,(0)=1, p=1, a=0.1,

gl¥)=11+18s, p(r)=0.

For the computation of the equilibrium, N = 200 was used. Growth rates are scaled
using § = s/w4 and w? = B2(0)/[pg?(a)R]. Note that the minor radijus, a, is set to 0.1
for this equilibrium. Thus, the value of n used in the calculation for this case is a factor
of 10 smaller than the inverse magnetic Revnold’s number, $~?. In order to analvze the
stability of this equilibrium, the range of poloidal harmonics is fixed at m ¢ -1,0,....5
and the toroidal mode number was set at n = 1. A total of N, = 300 radial points were

used for the stability grd.

Figure 10 shows the harmonics of £, for the unstable tearing mode corresponding
to 7 = 1077, The resonant m = 2 harmonic is clearly dominant. Figure 11 gives the
£. eigenfunction at = 1079, Figure 12a simply magnifies the vertical scale for the
n = 107'° eigenfunction in Fig. 11. This blowup of the eigenfunction causes most of the
inner layer solution to be “clipped” ofl. The vertical scale of the blowup is normalized
so that the maximum value that £, reaches (if not clipped off) is unity. Figure 12b gives
the £ function generated by the resistive PEST code. The PEST code calculates the
eigenfunctioh only in the region away from the singular surface. For n = 167!, one can
expect good agreement with the asymptotic solution in the ideal region of the plasma.
Figure 12¢ shows an overlay of Fig. 12a and Fig. 12b, which shows excellent agreement of
the two codes.

Figure 13 demonstirates the 7°/® growth rate scaling of the unstable tearing mode
calculated by the NOVA-R code. The data shown in Fig. 13 is given directly in Table 1.2

Table 12. NOVA-R Growth Rates versus Resistivity

Resistivity 10710 10-° 198 107

Growth Rate 9.20-107% 3.65-107% 1.37-10°% 5.10-107°

The value of .\’ represents the asvmptotic behavior of 1he ideal salutivn very close to
the resonant surface. Therefore, in order 1o measure A' from the eigenfunction solution of
the NOVA-R cude. one must determine a region which is very close to the resonant surface
and yvet very far from the region where resistivity. inertia, and compressibility became
important. This should be possible for sufficiently small resistivity (75107'%} when the
outer region equations become valid near the singular layer.

For the @ = 2, n = 1 resonant barmonic of £, = £ - Vu. the following asvmptotic
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coeflicients were used to define A",

A Cromt €7 for r<r,
ARIIES | (6.1)
C,,rrl‘(!: for >,

where r represents the squaye root of the normalized paoloidal flux (0 < 7 < 1). Here r,
gives the location of the m = 2, n = | singular surface, A’ it then given by

(‘n - Cv+
.3' [
c; o

Qur pmcedure for determining the € coefficients involves fitting the NOVA-R com-
puted values of f /r al successive pairs of adjacent grid points (near the rational surface)
using the fundlona] form given by Eqn. (6.1). Through analysis of the &, eigenfunction
carresponding to 7 = 1070, NOVA-R determined that 1.0 € A' < 1.4. The resistive
PEST result was A = 1.5 .5,

VI. Summary

We have developed a formulation of the linearized resistive MHD eigenmode equations
which prevents the computation of resistive modes from being degraded by spectral pol-
lution from fast wave terms. This was accomplished by isolating the terms involved in the
computation of the continuum spectra. The practical numerical advantages gained by us-
ing a formulation which separates out the continuum spectrum is the ability to accurately
calculate resistive modes for the entire range of resistivities relevant 1o fusion reactors.

A derivation of the NOVA-R eigenmode equations has been presented. Straight field
line magnetic flux coordinates are used. and this choice is well suited for efficiently approx-
" imating resonant modes with a limited range of poloidal harmonics. An explanation was
given on how we expand into A/ poloidal harmonics and numerically eliminate the first
seven equations to form a s¥stem of 31/ second order differential equations. The NOVA-R
code currently imposes that the tangential electric field and perpendicular displacement
vanish at the wall. Expanding the cade 1 handle different types of boundary conditions
is straightforward. :

In Section 111. the following technical advantages of the NOVA-R formulation are
pointed out. 1.) 1t involves only three coupled secand order equations, in .V = 3 variables.
2.} For finite resistivity end for n = 0, none of the variables have highest order derivatives
(in 5‘%,,) which are first derivatives. 3.) NOVA-R directly recovers the identical results of
a well established 2D ideal MHD code, NOVA, for n = 0 and smooth connection exists
hetween the finite n NOVA-R code and the NOVA code in the p — 0 limit. 4.) The
NOVA-R equations do not become degenerate at any point in the plasma away fram the
magnetic axis.
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Section IV describes the numerical methods used in the NOVA-R code. In Appendix
A we demonstrate how rewriting a B-Spline package (31-32 improved the computational
accuracy of numerical solutions by up to four orders of magnitude. The relative advan-
tages offered by the NOVA-R cubic B-Spline package with respect to linear elements were
demonstrated by examining an example problem. In order to study resistive modes. a
nonuniform grid was used with many grid pomnt placed near the resonant surface(s). Our
approach and formulation for solving the resistive MHD equations has a straightforward
extension from the cvlindrical to the 2D problem.

In Section V. we have established the accuracy of the NOVA-RC code by compar-
ing results with other established 1D codes. The NOVA-RC code recovered asymptotic
matching results for resistivities significantly below the range of interest for fusion reactors
and initial value results for resistivities well above the range of interest for fusion reactors.
This demon:trated that the NOVA-RC code is producing the most accurale results within
the range of resistivities of interest for fusion reactors. Because cubic B-splines are being
used. we are able to obtain converged results with an order of magnitude fewer grid points
than linear finite elements would require. This advantage becomes very important for the
2D problem. The NOVA-RC results presented demonsirate the feasibility of extending our
non-asymptolic approach and choice of formulation to the 2D problem.

The NOVA-RC code is not limited by any sort of ordering assumptions or approxima-
tions that might limit the range of applicabilitv. The wider range of applicability represents
an importam advaniage over many of the previously developed 1D resistive MHD stability
codes. Because no ordering assumptions are made. our approach is more comprehensive
in capability for the low resistivity regime than asvmptotic matching codes. There 3s no
reason to believe that the specific ordering assumptions used for Lthe asympiotic approach
will be comprehensive enough to include the behavior of all possible types of instabilities
in the low resistivity limit. Other consistent orderings may exist. By avoiding any ordering
schemes or assumptions, we are free to search for additional modes which mayv not scale
like the tearing or interchange modes in the low resistivity limit. In particular. both the
NOVA-RC and 2D NOVA-R codes have found unstable mades which scale linearly with 7.
These modes are anticipated (o be the abject of further research in the immediate future.

The recovery of asymptotic matching results for magnetic Revnold’s numbers as high
as § = 10°® validates our approach for removing spectral pollution by carefully choosing a
formulation of the problem which “separales out™ the continuum spectrum. The accuracy
of these low resistivity results represent a breakthrough for a non-asymptotic code. The
imporiant problem of how to optimally choose a formulation for solving the resistive AJHD
stability equations has been resolved.

Section V1 gives numerical results from the NOVA-R code. The abiliiy of the NOYA-R
code to properly analyze the stability of general axisvmmetric equilibria in the ideal limit
was demonstrated. The task of making this check has been greatly facilitated by choosing
a formulation which performs the identical computation as the NOVA code in the ideal
limit. The NOVA-R code was used to analyze the resistive stability of axisvmmetric
torcidal equilibria. A spheromak-like 2D equilibria which was unstable against resistive
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interchange modes was analyzed by the NOVA-R code. The NOVA-R code correcily
recovered cylindrical results in the limit of infinite aspect ratio. An-equilibrium previously
determined to be unstable to tearing modes by the resistive PEST code was also anaivzed.
We demonstraied the numerical ability of the NOVA-R code to resolve the unstable mode
at 5 = 107'°. This justifies that the NOVA-R approach can make accurate calculations
for low resistivities in the range relevant for fusion reactors. Excellent agreement with the
PEST calculated eigenmodes and subsequent A' calculation was found.

The NOVA-R code provides quantitative information about what resistive MHD pre-
dicts, which may be compared with experimental results. 1ln the future, the NOVA-R
stability analvsis of specific equilibria can provide useful information relevant for the un-
derstanding and designing of future machines.
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Appendix A. The B-spline Package

In this section we document the improvement in accuracy obtained by rewriting a
B-Spline package obtained from the University of Texas at Austin [31-32]. For an example
problem we illustrate the relative performance of linear finite elements the Texas B-8pline
package, and 1he package used by NO\A R. For simplicity, only evenl\ spaced grids are
uséd for the example problem.

Let N represent the number of grid points used. For cubic B-Splines, one can converge
to the solution of a linear differential equation with an error that scales like 1/, Linear
elements converge like 1/N?. Alhough higher order elements converge siill faster. B-
Splines are optimal for interpolating the coefficients of the differential equation. The
coefficients of the differential equation are generally known only at the grid points, so an
interpolation is required 10 define these coefficients evervwhere. Assume that one wishes
Lo interpolate N data points defined on the domain, 0 < » < 1. Among all functions,
J{z). which have continuous second derivatives and interpolate N specified data points.
the cubic B-Spline interpolation minimizes

/ 11 (w);2ds

Interpolations made with higher order polyncmials tend to oscillate between grid points
33.

Regardless uf what type of package is used, the errors generated by differential equation
solvers gonerally stop converging for sufficiently large values of N. Let .\ represent the
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relative error caused by computer round off errors. For the Cray, A =~ 5107, Consider

the differential equation,
a(x)u"(z) + ble)ul(z) = 0

For the proper order of magnitudes, lel a(z) ~ ao and 6(z) ~ b,. Consider finite elements
with compact support over a domain having a length which varies as 1/N. Regardless of
what type of finite elements (or finite differences) are used, after discretizing the equation.
a(2)u"(2)=b(z}u(r) = 0, one will end up summing terms on the order of ag V(1 - A) with
by terms. As N becomes large, the numbers representing b(x}u(x) start to get truncated.
Therefore, the accuracy of all second order differential equation solvers are limited by a
“saturation” error on the order of ERR ~ (ao/bo)N2A.

The Texas package, however, will be shown to saturate with a worse error, which scales
like N2, For convenience, the Texas package defines all of the fourth order polynomials as
an expansion about z = 0. This creates a problem. In order to illustrate. let x; represent
the value of = al some k*® grid point where z is of order unity. Let y = 2 — 2. In order
to evaluate a cubic B-Spline between =, and zi+, it is necessary to evaluate the highest
order term.

’ oly)=ay® at y=§, for §~1/N

Accounting for the roundofl error in é, the computer obtains ¢(6) = aé3(1 = A)%. Buy, if
one uses r instead of y as the independent variable,

. : . > 3
oz} = aiz® — 3z%z¢ + 3z2; — 7}

For simplicity. assume that the computer only misrepresents the z} term by using z} —
{1 - A). Now,
$(z) = a(6® = z3A) ~ a8*(1.- CN?A)

By not defining the polynomials of 1he finite elements locally, the Texas package introduces
a new saturation error which scales like N3. In the NOVA-R package. the cubic B-Splines
polynoumials are defined by expansions about the nearest grid puints.

As previously stated, the performance ol three different differential solving packages
are 10 be compared. A simple differential equation problem is chosen.

bl

-u"(z) - 2®u(z) = [1-2 - (5)2} sin (Z;) . u(0)=0 and u{l) =1

The solution is
u{z) = sin(wz/2)

Let the computer generated soluiion be represented by u*(z). For N evenly spaced grid
poins given by {z4}r_,. the error is defined to be

ERR(N) = krerlyla);w{u'(zk) - sin(T—rﬂ

}
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The resulting errors, ERR(N), are shown in Fig. 14.

Before encountering saturation due to round off errors, the Texas and NOVA-R pack-
ages converge like 1/N*, while the linear elements converged like 1/N2. As N is increased.
the Texas package prematurely saturates with an error given by,

ERR~CN®A for A=5-107'° and (=63
The linear elements and the NOVA-R package saturation error is given by,
ERR=~CN?A for A=5-107"% and (=14

For the minimal errors, the Texas B-Spline package obtained ERR =~ 5-10~%, NOVA-R
obtained ERR =~ 5-10'%, and linear elements obtained ERR = 5. 1072 with & = 50,
N = 1530 and N = 2000, respectively. For this example problem, the NOVA-R package
represents a significant improvement relative to both linear elements and the original Texas

package.

Appendix B. Grid Packing

For problems with internal boundary layers, the numerical convergence can be im-
proved by employving a non-uniform grid which is relatively more dense in the layer. The
reason grid packing algorithms tend to be somewhat complicated is that the length be-
tween adjacent regions should not be allowed to change too quickly. Numerical instabilities
may arise if the separation between adjacent grid points changes too abruptly.

The NOVA-R code first calculates the value, v2;. where g{t:;) = m/n for the resonant
harmonic. An internal parameter, eps, is set to roughly the half width of the laver. Let N
represent the total number of ¥ grid points. For problems with only one rationai surface,
N, = N/7 grid points are packed into the resistive laver on a uniformly spaced grid.
Outside of the resistive laver, the spacing belween grid points grows geometrically. The
spacing increases by a factor of (1 + p;) to the left, where p; is among a set of discrete
values which allow a grid point to.exactl_v “land” at ¥ = 0. Similarly, the spacing increases
by a factor of (1 — p,.) on the right, all the way to 17 = 1. One needs to determine .\, and
N, the number of grid points to be used within the left and right regions cutside of the
‘ve — eps,y: — eps) interval. The values of N; and N are determined by minimizing the
statistical deviation of p- and pi, subject to the constraint that N = N, - ¥, - N 7.

Geaeralizing this procedure for two resonant surfaces s done by defining twe layvers,
t;) =eps and w5 = ops. A point is chosen exactly in betveen the two lavers in order to split
the region between the lavers into two equal parts. The manner of allocating grid poims
between the four resulting “external” regions is again done by minimizing the statistical
deviation of the four respective percentages. Here, the two middle regions of equal length
should be constrained to have an equal number of grid points.
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Figure Captions

Figure 1. A comparison of the radial displacement of an unstable resistive interchange
mode, as computed by NOVA-RC and asymptotic matching. The NOVA-RC results for

= 10"% 5 = 1077 and n = 107 are given in (a), (¢), and (e). The corresponding
asympiotic results are given by (b), (d), and ({).

Figure 2. Convergence of the NOVA-RC 5 = 107!° resistive interchange mode growth rate
as a function of ithe total number of grid points used on a grid with uniform spacing.

Figure 3. The NOVA-RC computed radial displacement of an unstable tearing mode for
7=10"1 7 =10"7, and = 1071% is given in (2),4b), and (c} respectively.

Figure 4. The NOVA.RC computed unstable eigenmode for 7 = 3.5- 1077 with o = 0.0.
0.45. 0.48, and 0.50 is given by (a-b), (c—d), (e-T), (g-h), respectively. Blow-ups of the
sulution near the resistive layer are given by (b), (2). {{). and {h).

Figure 5. The NOVA-R computed harmonics of the radial dxsplacemem of an ideal MHD
instability recovers the results published in Ref. [1].

Figure 6. The flux surfaces of a nearly circular 2D spheromak-like equilibrium (with
e/R = .01). The equilibrium is unsiable to resistive interchange modes.

Figure 7. The convergence of the NOVA-R growth rate of the resistive interchange mode
for a/R = .01 and 7 = 1077 is shown as a function of the number of radial grid points
used in the calculation of the equilibrium. Some of the equilibrium gquantities calculated
begin to oscillate between grid points at high N,, confirming the degradation away from
l/Nf convergence shown for high N,.

Figure 8 The NOVA-R computed radial displacement of the unstable resisiive inerchange
mode at 7 = 1077,

Figure 8. Comparison of NOVA-R growth rate results at o/R = .01 with the NOVA-RC
computed cyvlindrical limit.

Figure 10. The NOVA-R computed eigenmode of a unstable resistive tearing made at
n=10 7,

Figure 11. The NOVA-R computed eigenmode of a unstable resistive tearing mode at
= 10710

Figure 12. A vertical scale hlow-up of the same data scen in Fig. 1] is given by (a). This
is to be compared with the eigenmode computed by the resistive PEST code. given in (b).
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An overlay of (a) and (b) is given in (c), showing excellent agreement.
Figure 13. Scaling of the growth rate with resistivity for the unstable tearing mode.

Figure 14. A comparison of the numerical errors for three different finite element packages
demonstrates the superior accuracy of the modified package used by the NOVA-R and

NOVA-RC codes.
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Figure 4f NOVA-RC a = 0.48 Blowup of the Resistive Layver
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Figure 4¢ NOVA-RC a =0.5
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Figure 4h NOVA-RC a = 0.5 Blowup of the Resistive Laver

.3725

.380

.385

.390 |
.395 |
.400 |
415

MINOR RADIUS

Fig, 18

53

410

. 415

.420

. 425




1.0

0.0

Figure 5

NOVA-R n = 0 Ideal Instability




Figure 8 Spheromak 2d Equilibritm
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Figure 7 Convergence of NOVA-R Growth Rate at 5 = 10~7

~5
x18
5.8 ’
| &
|
|
i
4.5 7
T
" /
LR P T | L T
4 3 4 S

—-q
x12
N¥#¥( -2 > WHERE N=NO. OF EDUILIBRIUM RADIAL GRID POINTS

Fig. 21

56



Figure 8 NOVA-R Resistive Interchange Instability
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Figure 9 Scaling of Unstahle Mode
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Figure 10 NOVA-R Tearing Mode
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Figure 11 NOVA-R Tearing Moile
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Figure 12¢ Superposition of NOVA R and PEST Tearing Mode
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Figure 13 Scaling of Unstable Mode
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Fig. 14 Errors from three different computer packages
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