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Abstract 

We describe the linear MHD eigenmode code NOVA-R, which calculates the resistive 
stability of axisymmetric toroidal equilibria. A formulation has been adopted which accu­
rately resolves the continuum spectrum of the ideal MHD operator. The resistive MHD 
stability equations are transformed into three coupled second order equations, one of which 
recovers the equation solved by the NOVA code in the ideal limit []'], The eigenfunctions 
are represented by a Fourier expansion and cubic B-spline finite elements which are packed 
about the internal boundary layer. Accurate results are presented for dimensionless re­
sistivities as low as 10~ 3 0 in cyJindrical geometry. For axisymmetric toroidal plasmas we 
demonstrate the accuracy of the NOVA-R code by recovering ideal results in the 7 — 0 
limit, and cylindrical resistive interchange results in the alR --< 0 limit. &' analysis per­
formed using the eigenfunctions computed by the NOVA-R code agree with the asymptotic 
matching results from the resistive PEST.2. code for ze~<> beta equilibria. 
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I. Introduction 

In order to achieve improvement in the magnetic confinement properties of tokamak 
fusion reactors, it is useful to be able to calculate what types of equilibria are free from 
resistive MHD instabilities. In this paper we present an accurate numeriral method 1c> 
determine the resistive MHD stability of arbitrarily shaped axisymmetrir toroidal equi­
libria. The mathematical problem requires solving a system of two-dimensional partial 
differential equations in which the complex frequency of the resistive MHD eigenmodes is 
the eigenvalue. 

Obtaining an accurate numerical solution to these equations is made difficult by several 
effects. In typical systems of interest the resistivity plays the role of a small parameter 
multiplying the highest derivative, leading to the presence of an internal boundary layer in 
the solution. Also, there exists several classes of solutions whose eigenmodes are of widely 
different polarization, and whose eigenvalues can differ by many orders of magnitude. 
Resistive instabilities correspond to one of the smallest eigenvalues and the most singular 
eigenfunctions. 

The time scale for ideal instabilities in tokarnaks is given by the Alfven lime, rA -
a^/'p/B (in rationalized MKS units). Here, a is the plasma minor radius, ft is the plasma 
density, and B is the magnetic field. The slow time scale of global resistive diffusion is 
given by T# = a 2/ 7?? where 77 is the plasma resistivity. In the limit as S - TR/T^ -• x . 
a boundary layer theory has been developed in which one dimensional ''inner region" 
equations involving resistivity are solved within the boundary layer, and two-dimensional 
"outer region" equations without resistivity are solved away from the boundary layer. 
These regions are connected by asymptotic matching of the solutions from the neighboring 
regions. 

By using this matching technique, the asymptotic growth rate scaling for various 
resistive modes can be derived. FKR |3 discovered the growth rate scaling of the tearing 
mode, Tft°TA . and the resistive interchange mode scaling, r f l ' T,! . The asymptotic 
matching method has been implemented numerically in cylindrical geometry 'A , and has 
been used to calculate the resistive stability properties of cylindrical equilibrium with 
arbitrary profiles. 

Glasser, Greene, and Johnson 5; extended the analytical asymptotic analysis to ar­
bitrarily shaped axisymmetric toroidal plasma equilibria. The asymptotic matching ap­
proach was successfully used to obtain a qualitative theoretical understanding of toroidal 
effects on the stability of a plasma against resistive modes. GGJ found that favorable 
average curvature is an important stabilizing 2D effect. 

Although the asymptotic approach established a qualitative theory of toroidal effects, 
il has proven quite difficult to apply this approach to determine the stability of arbitrary 
axisymmetric toroidal equilibria. The resistive PEST-3 rode was successful only in ex­
amining the stability of pressure-free circular tokamak equilibria with one !2i or more |6 



rational surfaces. Additional asymptotic matching codes are presently being developed 
7-9\ 

Initial value codes have been developed in order to solve the time dependent linear (or 
non-linear) resistive MHD equations throughout the entire plasma 14,10-1-1]. For toroidal 
equilibria, these codes are typically effective for 5 < 10 6. Higher values of S are limited 
by numerical accuracy and/or available computing resources. The S regime relevant to 
fusion reactors is given by 10 s < S < 10 1 0 . 

Eigenvalue or ''spectral" codes have been developed ; 15-16 to solve the full set of lin­
earized equations throughout the entire plasma, but these codes are specific to cylindrical 
equilibria and are typically limited to S < 10'. Kerner was able to create a cylindrical 
eigenvalue code which succeeded in obtaining results for 5 < 1 0 1 0 by taking measures to 
reduce the fast wave "spectral pollution" problem [17]. However, there is not a straight­
forward way to extend Kemer's technique for eliminating pollution from the cylindrical 
problem to the toroidal problem. 

It is a challenging task to find a satisfactory method of solving the toroidal stability 
problem in a numerically efficient manner, for reasons that we now explain. Physically, 
the role of resistivity is to allow the plasma to move with new degrees of freedom that are 
forbidden by the ideal MHD equations. One of the linearized resistive MHD equations can 
be written as 

(1 - ? V 2 ) 6 - V x ( f x B) . (1.1) 

where f is the plasma displacement. 5 is the growth rate, and B, 6 respectively give the 
equilibrium and perturbed magnetic fields. If the plasma perturbation has spatial vari­
ations over lengths on the order of L, the maximal growth rate of a mode significantly 
affected by the resistive term in Eqn. (1.1) is on the order of 5 -- rj/lr. In order for a 
growing mode to become interesting on a shorter time scale than the magnetic field diffu­
sion time (a 2 / 7 ?) : t n e mode must have spatial variations on a much smaller spatial scale 
than a. The natural candidates for ideal MHD modes thai will be significantly influenced 
by resistivity are then the continuum modes, which diverge at singular surface(s) ,3.18 . 

The singular continuum modes arise when the highest order coefficient of the ideal 
MHD radial displacement eigenmode equation vanishes. Calculating this leading order 
coefficient accurately is essentia] in order to resolve the continuum modes near the point 
whpre they diverge. The accurate numerical calculation of this small leading order term can 
be particularly difficult because of the presence of large fast wave terms. A small relative 
error in the computation of the large terms associated with the fast wave can "swamp" 
the computation of the singular behavior of the continuum modes. Therefore, one of the 
greatest challenges addressed by this paper is to find a way to formulate the resistive 
MHD equations which accurately resolves the continuum spectrum. We have chosen a 
mathematical formulation of the resistive MHD eigenmode equations that decouples the 
continuous spectra from the fast magnetosonir wave. This formulation is a generalization 
of ihe one previously employed by the NOVA 1 code for ideal MHD. 

The organization of this paper is now given. In Section II. we describe the numerical 
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problem of spectral pollution. We present a scheme to avoid spectral pollution and to 
accurately resolve low frequency information by separating out the computation of the 
ideal MHD continuum spectrum away from the computation of the fast wave. Section 
III gives the equations developed for our formulation of the linearized MHD eigenmode 
equations. Section IV provides an understanding of the numerical methods employed by 
the NOVA-R code. Section V gives results from the N'OYA-RC code which implements the 
cylindrical limit of our formulation of the resistive MHD stability problem. For a resistive 
interchange mode, we show that our results have four significant digit agreement with an 
asymptotic matching code at a magnetic Reynold's number of S — 10 3 0 . This represents 
a breakthrough for a non-asymptotic code, and justifies the approach that we have taken 
to eliminate numerical pollution from the fast wave. Results for resistive interchange and 
tearing instabilities are given from the fully toroidal two dimensional NOVA-R code in 
Section VI. The NOVA-R results are in excellent agreement with resistive PEST results 
for a zero 3 case. A summary of the paper is given in Section VI. Appendix A and 
Appendix B discuss important technical issues relevant to insuring the accuracy of cubic 
B-spline packages when one wishes to closely pack grid points near an internal boundary 
laver. 

II. Spectral Pollution 

A resistive stability code must minimize the effect of fast wave spectral pollution if 
it is to be capable of investigating resistive modes for resistivities low enough to be in 
the range of interest for fusion reactors. Here, we illustrate in the cylindrical limit why 
it is necessary for the problem to be formulated in terms of variables that "separate out" 
these continuum-like modes from the fast magnetosonic modes in order to more accurate]y 
resolve the continuum-like resistive modes of interest. 

Consider a cylindrical plasma column in which the cylindrical coordinate 71 is the only 
non-ignorable coordinate. We define the differential operators F = It :_ - i ( jj-) • V and 
Aj = - z ( g x rj • V which respectively correspond to directional derivatives along and 
across field lines but within the plane of the magnetic surfaces. The "directional derivative 
across the surfaces is given by hT = -i-^. Let the simplifying assumption be made 
that F = k, varies with r while all other equilibrium quantities are independent of r. 
Thus, only F — F(r) will be in the way of recovering the homogeneous limit. In this 
quasi-homogeneous cylindrical limit, the linearized ideal MHD eigenmode equation for the 
radial displacement is [19 

d_ 
Ip**)' - 7 P o ^ 2 ( l -%;)- B*F*\(k* - F=)Sr 

(2J) 
Here -t - 5/3 is the ratio of specific heats. The coefficient of the highest order derivative 
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will vanish if either 
pj2 - B2F2 = 0 (2.2) 

B2 

or pw 2 ( l - r — ) - B 2 F 2 = 0 . (2.3) 
~rPo 

Equations (2.2) and (2.3) correspond to dispersion relations for the shear Alfven and slow 
sound continuum, respectively. If there is any point in the plasma where Eqn. (2.2) or 
(2.3) is satisfied, then a singular eigenmode solution exists [20,. 

Among the regular solutions to Eqn. (2.1) is the fast rnagnetosonic wave. In the 
homogeneous limit for kf, « k\. the fast wave dispersion relation is 

f>J = 7Po(l + — )(*i -r F2) -r 0(F4) , 

where k2_ = A2 -i- k2. The eigenfrequency of the fast magnetosonic mode is much larger 
than that of all the other ideal MHD modes. For -yp0 << B2 the fast wave is given by 
p^-2 /B2 ?= k2 and A-2 = k2 ~ k% , so we subsequently refer to k2 as a "fast wave term". 

A formulation of the ideal MHD equations, which is vulnerable to spectral pollu­
tion, is now demonstrated. The plasma displacement, £. and perturbed particle pressure. 
Pi. are used as unknown variables. For f, = ( | x r) • £ fr = r • £ and (xi.X2,x3) = 
£ s ; B.ip\ IB2. -£r. -. the "quasi-homogeneous" ideal MHD cylindrical limit equations are 

given by 

-jgr - k~ — r - A.-j 

After Fourier transforms are applied in the two ignorabie coordinates 6 and c, note that £s 

and pi can be algebraically eliminated in terms of £ r . since the upper left hand corner 2 x 2 
matrix has no £-r = ikT differential operators and therefore can be inverted. Eliminating 
;j] and f3- one obtains an equation which the numerically generated £ r solution will obey. 

8r 
ERR - {PJ> - B2F2)ip^(l - ^ ) B2F2 Q 

(P^r- - 1Pa[P^(l -%)- B2F2\{k2 - F2) dr 

(pJ1- B2F2\ 

5r 

0 . (2.5) 

Equation (2.5) differs from (2.1) because of the ERR term. The ERR term represents 
the k2 terms which cancel analytically, but will no1 perfectly cancel computationally. 
Numerical errors causing ERR f 0 will directly affect the accuracy of the continuum 
mode calculations. 
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One contribution to the ERR term will come from the fact that the fcj operator in 
the upper left corner element of the matrix in Eqn. (2.4) is not numerically equivalent 
to the product of two fc, operators. This will result in a computation of the singularity 
associated with the shear Alfven continuum given by 

} • 
Here we define the numerical error due to the fast wave terms. 

E R R x , *i - (M(M . 

In toroidal geometry, the error due to k2

s ^ (fcj)(A-j) will be enhanced by the convolu­
tion errors caused by the truncation of the Fourier series representation of kt and kt. Keep­
ing M harmonics, the truncation error of Fourier harmonics gives k^ — (k,)(k3) ~- e~ '•. 
where the constant d is of order unity. When k^ERR_ = k*, the fast wave pollution 
becomes a serious problem. 

We can use an estimation for ERR^ based on the specific numerical computation 
being used. The numerical errors generated by JV linear elements in r. A' cubic elements 
in r . and ivi Fourier harmonics in 9 are represented by 

ERRi = a.\'~2 , ERRC = bN~* , ERRF = ce~M,i!2 respectively. 

For our crude estimates, we take a = b = c — d = 1. For tearing modes u," -- T;3/O and at the 
resistive layer j - 1 ~- 1 T ) 2 , D . Here t is the inverse aspect ratio and we use '- ?z yn. The range 
of resistivities of interest to fusion reactors is ] 0 - 1 ° < T) < 1 0 - 8 in our units (where the 
resistivity is the inverse Magnetic Reynold's number). Insisting that the spectral pollution 
error be no larger than one percent of the correct value for this Shear continuum al the 
boundary of the resistive layer (k^ERRs /k2 < .01), one obtains the numerical constraints 
given by Table 1. 

Table ] . Numerical Convergence Estimates 

r)= 1Q- 6 t j= 10" a T) = l f r 1 0 

Linear Elements .V > 25.000 160,000 1,000.000 
Cubic Elements .V > 160 400 1.000 

Fourier Harmonics A J > 40 48 55 

These rough estimates on the constraint for TV are somewhat pessimistic. Improvement 
is possible by using a non-uniform radial grid and packing grid points near the singular 
surface(s). But the required A/ number for resolution in 6 cannot be significantly lowered. 
The run time will scale like \M3. so carrying 55 Fourier modes will be costly. Due to 
round off errors, the computer will obtain the given theoretical scaling of finite element 

pus 2 _ ***{^% it? 
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errors only for sufficiently low N and M. Thus, for a poorly chosen formulation i1 may be 
impossible to adequately lower the numerical error from the fast wave terms. 

The NOYA-R formulation eliminates the possibility of any fast wave terms (Jr ) en­
tering into the calculation of the continuum singularities by analytically separating out the 
terms relevant to the computation of the continuum singularities. In order to demonstrate 
this, the £v, equation of the final formulation which we have chosen is now given. 

In the ideal limit, the NOYA-R formulation is based on the dependent variables Px -
Pi ~ B -b, £,,., £ 4 and V • f where £ = &>iy^; -r *&> jgi v -r i£t,B and ip plays the role of 
the radial coordinate. The eigenmode equations ;1, are given symbolically by: 

E(vVj = 

(£) H*() 
where E. F . C. and D are 2 x 2 matrix involving only surface operators, it. no ^ terms 

rating <m the dependent variables. After eliminating the £s and V • £ variables by opera 
numerically inverting the E matrix, we have 

det(E)~A HuPi+HisZv 

d e t ( E ) ^ r ^ = f f a i A - r / ' 2 2 € v • 

where ( ^ v " , 2 ) = det(E)C - D E C F and E c = det (E)E~ ! . 
\ -"21 " 2 2 / 

Note that the ^ terms have been "tagged" with the det(E) term. For spatial vari­
ations of ^ v. to become infinite. det(E) musl vanish and the continuum singularities will 
be zeros of det(E). The formulation has been carefully chosen in such a manner that no 
fast wave terms (k^_) are in the E matrix. Therefore, taking det(E) will immediately give 
the continuum mode singularities without relying on the cancellation of large fast wave 
terms. Thus, the formulation has separated out the compulation of the continuum mode-
singularities from all of the fast wave terms. 

The explicit form of the E matrix was first derived by Cheng and Chance 1 and is 
given by 

E = 
Ps ~W - B ' ~ 

i2K, 

! T V i ' B-V\ i2K,ip0 

2£B-V 

\ 

B V 
fl-

e 



where A ^ _ ] - v ( - ) K, , - — -K . 

The resistive MHD equations form a 6'* order system of differential equations in •£-.. 
In Section II], we present the NOVA-R formulation, which reduces to the second order 
ideal MHD NOVA formulation in the limit as rj — 0. and thus eliminates the fast wave 
spectral pollution of the lower frequency shear Alfven and slow sound continuous spectra. 

I I I . The NOVA-R Formulation 

A. Equilibria 

Equilibria are constrained to satisfy 

J xH-=\P .. V x B = J and V • B = 0 . 

Magnetic coordinates have been used extensively in the literature to represent MHD equi­
libria ; 2]-29 . Our computation uses straight field line magnetic flux coordinates, given by 
\-L-.B, Q). These coordinates are defined in terms of the cylindrical coordinates (X.p.Z). 
A stationary axisymmetric MHD equilibrium with isotropic pressure is described in the 
form. 

P o = Pty) . B = VC x Vv •+ q(i!.-)Tt- x V0 = V<£ x Vw - g(v>)V(p 

where the magnetic flux is given by w = t/>(A",Z). The p variable will be determined by 
ihe Vi" component of the force balance equation. J x B — V / 7 , which gives a Poisson-like. 
partial differential equation called the equilibrium Grad-Shafranov equation. 

A' 2 V - W-
A |-2 

(v2dP dg\ 

The Jacobian, J = ( V r x V# • V ^ } " 1 . is typically chosen such that TOT fixed v and o 
a uniform f) grid corresponds to equidistant arcs on the i> surface between adjacent grid 
points. For the most general case, we represent the Jacobian by 

J(\. Z) — —- ——-—- . where i. j . k- are integers. 
n{v)Yv}Bh 

For fixed v and (p, along an element of arc length ds (where ds2 = dX2 - dZ2) the relation 

ds J Vy 
d6 ~~ X 

file:///-l-.B


determines 9, so specifying J determines 9. Here a(ii>) is determined fay the constraint 
that 9 be 2n periodic. The straight field line toroidal angle coordinate is given by 

C = </> - q(rP)6(i>,e) , 

where b is 2n periodic in 9 and defined bv the equation 

. / 86 \ gJ 
•«KW5sJ =.v5 

This equation defining 8 follows from the restriction that the field' lines be straight in 
(v.ff.Q coordinates, ie, B • V ( / 5 • ¥8 = q(ik). 

B. Resistive MHD Equations 

Here, a derivation of the equations solved by NOVA-R is given. AH perturbed quan-
1 ittt-s have r'1 time dependence where .s = -iu.'. The following vector equations have been 
indexed according to the equation number subsequently used to refer to their Vf, B x Vv 
and B projections, respectively. The linearized resistive .MHD eigenmode equations (and 
two useful definitions) are given by: 

ps2(= - T p i - r ( r x B) x 6 - J x B (3.10.3.1,3.5s) 

b = V x ( f x B) (n/.s)f (3.15,3.4^3.2) 

P j - t ^ P o - f - 7 P n ^ - f = 0 (3.2^) 

f = T x J (3.4 - 3.6) 

j = V x b (3.7 - 3.9) 

^ . { ( W . g ; * ^ , *£•).,-} ( , 3 ) 

r.£,r.{(,-«*).<} 
While keeping all the V • £ terms, we now substitute in the following equations. 

p, = f, - 5 • b 

f- f S^L _ "f * X ^ f £ 

£ r> V ^ " ^ 5 x Vv _ tf 

s 



j = -iR^ip 4 R, ,„ , J + ftj,£ 

r = -iT^,vi> 4 r. 
and use the following definitions: ' 

B x Vy 
4 T 6 5 

•-I-MIH!) 
AV sv^ . /c , A:, = £ 2 * ' s=(l^WJ'Vx(~W^F) ; 

The 15 equations given by (3.1-3.10) and (3.1s-3.5s) are then modified by sequentially 
substituting out Q^, Qt,, V- f j . , and Q, by using Eqn.s (3.1s) through (3.4s). respectively. 
Then, Eqn. (3.3) is modified by subtracting \/B2 times Eqn. (3.2). This removes the 
£l, term in Eqn. (3.3). Finally, (3.5s) is used to eliminate £fr. The final resistive MHD 
equations to be implemented numerically in the NOVA-R code are given by the following 
ten equations. 

^ ^ £ , - £ - r B-Vl. i2K,fpi,V-$ i 5 x V t : T P> 
B1 

^J B 2 1 7 -55- I v^ i Tv, - -xB • XT, 
s a- s 

M^-B-V^-iB-V |V^ ',;2 

B2 •S& 4 i2K,p,

0£v = 0 (3 .1 : 

*M-{> + 5-3S«- }V-«'-»2 B 2 

• # " - ^ . 

T/ 2A\.. 
(3.: 

^ x W - V ^ V - ^ 

-5r.- 2A"v (£0 •3.3) 

T . . 4 i?M7'*'™' iB x Vv • VJib \ = 0 {3.4) 
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T, + ^ - IB • VRV - SR, - p'0P,} + Vii> • VRb = 0 

,{•* T f r - > - ^ < - i £ x V * • V*# • Rs 

-,/•«,«.} . a - ™ . . 

B- V 
£ 2 B • V 6 -r Z7PoB xVlj) -V VJ1 

B 2 
- tfi' x VT/I • V 

• -s i? • VT, - ' V v f R v + iBV 
s 

FM: 

B S£* — JC,V> + ip'0B y Cv> • V k. 
B2 

B 2 . 

= 0 

A - V V ' Po 7Po, Po P. 
3 B* < s B* B3 Z B- B-

n ' R V T ^ ^' T 

"] p | , f l - o 
!VV': :^^{f ̂  ̂  B 2 

ff 1 / , / B [ / B 2 ^ \ 
B 2 

S - B x V ^ - T 
B - V l 

1 v^.v{^|-tff.V«^% iVii- 2 

\ . 1 1 

V^i2_ 

Vf • v r . - o 
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(JB I W 6 \ . g _ , 2K* r t 2K* P 
VW- -ws)lB•Vf*-wrw *_ i w l 

—slBVT*--s{-W B* S)>WT' 

'xww ~ ̂ iw" vw?\ "I B2 B-- ^ j " -

Those ten equations form the NOVA-R formulation. Th*1 10 dependent variables are 

In the limit where r\ -» 0, four of the ten NOVA-R equations, (3.1-3.3, 3.10). identically 
recover the NOVA formulation [1]. 

The resistive boundary conditions imposed at the wall are that ^ , , K, and Ri, vanish. 
It will be shown that this is sufficient to provide boundary conditions for ail variables. The 
condition that R, and Rt, vanish follows from: 1) 4v- - 0 (impenetrable wall), 2) v» = 0 
(flow-free equilibria), 3) the tangential electric field vanishes at the (infinitely conducting) 
wall, and 4) E -+• v x B = (r]/s)j. But if r; = 0, the fourth point in this argument 
breaks down =ince Ohm's law nc< longer yields any information about j . ID the ideal limit. 
R* = R,{$»-&,0 f 0 and Rh = #>{&,, & , £ J ) ? 0. For the ideal MHD problem one 
only imposes £ v - 0 at the vail, and there is no additional freedom to prescribe Rs and 
Rb independently. 

The additional, non-ideal boundary conditions at the wall have the potential of pre­
venting the recovery of ideal MHD results in the n —• 0 limit. However, the NOVA-R 
formulation has the beneficial property of directly recovering ideal MHD results in the 
7] —« 0 limit because the additional non-resistive boundary conditions fully decouple from 
the second order differentia] £v equation. This provides a smooth connection to idea] MHD 
in the appropriate limit. 

For solutions that are f.nalytic, it can be shown that all poloidal harmonics of £v. and 
/?j must vanish at the origin. All m ^ 0 poloidal harmonics of Rt, must also vanish, and 
for rrt - 0, ^.Rt — 0 where x = y/il-. This gives the set of boundary conditions that are 
used in the NOVA-R code at the o-igin. 
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IV. Numerical Method 

A. Discretization 

Tu make further progress, the functional dependence of the problem on the poloidal 
angle 6 and the toroidal angle <j is discretized by expanding each of the 10 dependent 
variables into a truncated Fourier series. Only a single harmonic, n. in the toroidal angle 
is retained since the axisymmetric equilibrium does not mix modes of different n number. 
However, the two-dimensional equilibrium does couple together poloidal harmonics asso­
ciated with different m values. We keep A/ harmonics in the poloidal angle, letting m 
vary from mlo to mhi. where AI — mhi — mlo + 1. After applying Galerkin's method to 
project out each of the Al Fourier harmonics, each analytical NOVA-R equation becomes 
M coupled ordinary differential equations. Each coefficient in the final analytical NOYA-R 
equations (3.1-3.10) becomes an A/ x A/ matrix which is in general I/J dependent. There­
fore, all of the M x. M coefficient matrices must be calculated on each -ij> surface (of the 
numerical v grid one has chosen). 

Some of the coefficients in the IOJU by 10A] system of equations have terms which 
aTe multiplied by different powers of s. the growth rate. Each term involving a different 
factor of sp is computed independently with sp factored out. Thus, the computation can 
be done o n e and for all outside of the loop in which one iterates over values of 5 to find 
a solution. 

Expanding into a Fourier series transforms the surface differential operators B • V and 
B x Vir • V into algebraic matrix multipliers. This allows the first 7 of the 10 equations 
in the NOYA-R formulation to be algebraically inverted, thereby eliminating the first 7 
unknowns (in the order as listed). To reduce the 10M equations in 10A/ unknowns into 
3.1/ equations in 3A/ unknowns, first fs and V • £ are simultaneously eliminated by using 
Eqn.s (3.1) and (3.2). Then, Pj is eliminated using Eqn. (3.3). Next 7^, Ts and Tj are 
simultaneously eliminated using Eqn.s (3.4), (3.5) and (3.6), Finally, R^ is eliminated using 
Eqn. (3.7). This procedure for reduction to a 3A/ system of equations must be repeated 
on each t» surface. This reduction of the 1QA1 equations to 3A/ is uniquely defined as long 
as it is understood that one never reduces terms by differentiating coefficients with respect 
t " v . Thus, one would not make the replacement 

Making this type of substitution would typically create more work since new equilibrium 
quantities .i.e. | v , would have to be generated. 

At this stage the NOYA-R formulation is a system of coupled second order radial 
differential equations for the M Fourier amplitudes of the three unknown quantities. 

(R„Rb^v) . 
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The numerical NOVA-R equations are of the form. 

where 

« , • 
_ d 

y dp Dv 

| T 7 l ( 0 - 1 ) . . 

.Vl (V) 

y S m h i V ) 

(m h t) / \ 

y3 (w) 

Vfc 

{c "'w / 

E (^)] = '° ' a , ) 

->(m). 

In the r) — 0 limit, the final A/ equations represented in (4A). originating from 
(3.10). identically recover the NOVA equations for 4V, and; decouple from the remaining 
2.1/ equations originating from (3.8) and (3.9). 

For M - mhi — mlo + ] , the next step in the calculation involves discretizing this 
system of 3;V coupled second order differential equations in to. given by (4.1). An approx­
imation for each poloidal harmonic of the unknown solution is to be constructed in the 
form. • 

,\"-2 

v? *)=Y.vTkBM (-1.2) 
* = ] 

One also approximates all of the coefficients, given on the left hand side of Eqn. (4.1). 
with a B-Splines expansion. This is done by evaluating all of the coefficients in Eqn. (•!.]) 
on "ach i- surface and then choosing an expansion for the coefficients that interpolate? 
the A' data points. For our particular choice of finite element, the interpolation constraint 
removes only .V of the .V - 2 degrees of freedom. The remaining two degrees of freedom 
are found by using numerical approximations of the derivatives of each coefficient at the 
cndpoints of the v grid. 

In carrying out this procedure, one arrives at a tensor equation for the finite element 
amplitudes of the form, 
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yT" = 0 (4.3) 

( i , j \ / 1,2,3 \ 
for I /, m I = I mlo, rnhi 1 

\p,kj l l , . . J . 2 / 

Here i refers to one of the three final NOVA-R equations originating from (3.8-3.1(1). 
and / and p refer to e~leB?(ii>) projection of that equation. The j . m. k indices are 
consistent with Eqn, (4.2). 

At this point we have developed 3M(N 4 2) equations to solve for 3A/(.V -r 2) un­
knowns. For the cubic B-Splines, only Bi(V") and BN+zbP) a r e non-trivial at w = 0 
and V' = ] respectively. Therefore, the boundary conditions, y[tj> = 0,9) = 0 and 
y{ib =- 1,0) = 0 are\salisfied by imposing the condition that j / J 1 ' = 0 for k — ] and 
k — JV -f- 2 for all m and j . This represents a set of 6il/ additional equations. These 6/1/ 
equations effectively remove the B^ip) and Bfi+2(ij;) finite elements from the basis set be­
ing used to expand the unknown independent variables. Galerkin's method requires that 
the solution be orthogonal to the basis functions used to expand the unknown functions. 
The 6.1/ equations corresponding to the projections of Bi(</>) and BN~2{V?) are, therefore, 
replaced by the boundary conditions. 

By rearranging the indices, one can reformulate the tensor equatjo:- given in Eqn. 
(4.3) into a simple matrix equation. The structure of the cubic B-spline finite element 
generated matrix is most easily visualized by considering each 3.1/ x 3M matrix to be 
one "element". With this understood, when using JV grid points in tr one generates an 
(N + 2 ) x (A* -r 2) matrix with seven non-trivial diagonals. The convention used is that for 

o = (M-l)M(p--l)+M(i-l)+l-7nlo+l, '3 = (JVi-2)j l /(*-l)- ! -A/(J- ])-m-mlo-1 . 

H a . „ («) = B%'k{s) -t- C^pk(s) -r D'£',t(s) -r E$*"{s) , 

and Y0 = yfk . 

Now the problem has been reduced to the single matrix equation, 

[ H ( - ) 1 V = 0 . 

In order 1O find non-trivial solutions, one iterates over complex s spare to find zeros of 
det H(js) , Given a value i such that det[H(.s)] = 0, the associated eigenfunction solution 
corresponds to the null space of the H(s) matrix. 

The eigenvalues, s, that are real numbers are relatively easy to find. Since the deter­
minant is real for all real s. one simply needs to plot out values of the determinant along 
the the real s axis and look for sign changes. A binary search is then used to converge 
lo the 5 value where the sign change occurs. For complex eigenvalues, solutions are much 
more difficult to find. Typically one is forced to start with an equilibrium in which the 

Bl™pk(s) + C£"*(*) + i>!™'*(*) + £ y " * ( s ) 
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eigenvalue of interest is real, and then slowly change parameters toward the desired equi­
librium while tracking the root through the complex plane. As long is such a technique is 
'used to insure that one knows an initial guess very near the complex eigenvalue of interest, 
then Muller's method may be used to converge to the precise value of s. 

B. Numerical Advantages of the NOVA-R Formulation 

A question this paper addresses is how one might best reduce the resistive eigenmode 
equations into an equivalent workable set of equations which a computer can accurately 
solve. We have chosen the NOVA-R formulation which is characterized by the following 
beneficial features: 

1. NOVA-R involves the Fourier moments of three coupled second order equations 
in /V = 3 variables. The CPU time required to evaluate the determinant of the finite 
element generated matrix scales like N3, so formulations solving for more unknowns will 
run slower. Furthermore, the determinant of a larger matrix will typically be a more ill-
behaved function of 5 so formulations using more than N = 3 dependent variables will 
require more iterations of evaluating the determinant before converging to an eigenvalue. 

2. Galerkin's method is optimally suited for second order equations and poorly suited 
fur first order equations J30;. For finite resistivity and for n = 0, none of the variables have 
highest order derivatives (in ^ r ) which are first derivatives. 

3. For TJ = 0 NOVA-R directly recovers the identical formulation of a previously 
developed 2D ideal MHD code, NOVA. A "smooth connection" exists between the finite 17 
NOVA-R code and the NOVA code in the T) —» 0 limit, because the NOVA-R formulation 
was deliberately formed in such a way that the non-ideal resistive boundary conditions 
become decoupled from the relevant computation for the n = 0 equations. 

•4. The NOVA-R equations do not become degenerate at any point in the plasma away 
from the magnetic axis. 

V. Cylindrical Geometry Results 

Substantial simplification of the formulation given in Section IV results when wc 
specialize to "straight'' or ID equilibria. Using cylindrical (r.G.z) coordinates, the equi­
librium quantities depend only on the minor radius r. and are thus one-dimensional. The 
only toroidal effect retained is the periodicity length, 0 < ; < 2~Ftti. When the 0 and z 
dependences are expanded in a Fourier series, e.g., 

Mr,0,z) = £ £ m > n ) ( » - ) e x p j i ( r o f l - nz/R0) . 

we find that because the equilibrium quantities depend only on r. there is no coupling 
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between the harmonics with different m and n. This simplification was used in developing 
the ID NOVA-RC code, which is significantly less cumbersome than the more complete 
2D NOVA-R code. We first report on results using NOVA-RC for two problems given in 
the literature. 

Even if one chooses to only use one poloidal harmonic in the NOVA-R code, many 
fundamental differences exist between the ID NOVA-RC code and the 2D NOYA-R rode. 
For the ID problem, the computational '.ask of determining the equilibria involves inte­
grating simple first order differential equations in one variable. This task is performed 
extremely accurately. For the 2D equilibria, a second order partial differential equation 
must be solved iteratively. All of the equilibrium data required to define the coefficients 
of the stability equations are directly calculated at each point on the stability grid for the 
]D problem. For the 2D problem, the required equilibrium data are interpolated from 
an equilibrium grid onto the stability grid. For the ID stability equations, every coeffi­
cient is explicitly expressed as an analytical function of the equilibrium data. In 2D, the 
coefficients of the final system of differential equations are generated numerically. 

We do not give an explicit list of the initial NOVA-R formulation equations in the ID 
limit, since it is preferable to instead refer to the more comprehensive 2D equations given by 
(3.1-3.10) and (3.1s-3.5s). In the ID limit, this list of 15 equations in 15 variables includes 
6' first order differential equations and 9 zeroth order equations. These equations include 
57 coefficients of undifferentiated independent variables and 6 coefficients of differentiated 
variables. These 63 terms form the starting point of a symbolic algebra manipulator 
program. The "REDUCE" utility was used on the MFECCC Cray-XMP E-machine. The 
last oof these 15 equations, (3.1s) through (3.5s), are eliminated analytically in both the ID 
and 2D formulations. For the 2D code, the first 7 equations are numerically eliminated in 
order to arrive at the final set of differential equations which form the NOYA-R formulation. 
For the ID problem, however, the first 7 equations are also eliminated analytically. 

Unless otherwise stated, the resistivities given in this paper are scaled in units of 
inverse magnetic Reynold's number and E. M. U. units are used. In order to scale the 
given growth rate, .s, and resistivity, 77, into other units for a fusion reactor, one would use 
i =" T4.S and ij = rjTm'a2, where T^ = a^/p/B(0). Here 5 and f) are dimensionless numbers 
which are fixed regardless of the particular values of a,p, i?(0). 

A. Resistive Interchange Instabilities 
in Cylindrical Spheromak-like equilibria 

The first equilibrium we consider for testing the NOVA-RC code is the cylindrical 
sphoromak-like equilibrium examined in reference 'A\. The equilibrium profiles arc defined 
for 0 < r < 1 by 

J ' M *} Be[r) 
9o exp -i A-2 + 2r 2l.ll. 

8A' 2 
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B_-(r) = q[r)Be{v)l{kv) 

q(r) = W ( ] - r 2 ) , and p ( r ) = ? j f ' r . 0 2 ^ rfr . 

We examine an equilibrium with the parameters: 

</o 1-6 . n - 0.7 , It = a/ '# = 0.3 , B:(r = 0) = 1 , p - I 

Note a;.4 £ B(0)/[a.y/p) = 1 here. We compute the growth rate of a m — n = 2 mode. 

The equilibrium is stable to ideal MHD interchange instabilities for 0 < Q < 1, and is 
unstable to resistive interchange modes for all a > 0 [4J. The growth rate of the resistive 
interchange mode is determined to within four significant figures of the converged result 
with -V = 200 radial grid points when ij > 1 0 " 1 0 . For the NOVA-RC results given in 
Table 2. we use N = 1001 in order to investigate just how low we can reduce the resistivity 
before the NOYA-RC will stop converging toward asymptotic matching results. 

Table 2. 

17 NOYA-RC growth rate Asymptotic Matching growth rate 

HI" 1 2.2603 • 10" 2 3.3410-10" 2 

1 0 ' 5 1.3634-10" 2 . 1.5843 10" 2 

10" 6 6.8617 - l O " 3 7.2977 1 0 ' 3 

10 7 3.2125-10 " 3 3.2971 10 - 3 

10 ' 8 1.4480-10" 3 1.4642 10" 3 

i o - 9 6.3665 • lO""5 6.3968 IO-* 
, 0 - i o 2.7505 • Id'4 2.7o60 10"^ 
i o - ] I 1.1763- 10~ 4 1.1772 lO" 4 

i o 1 2 5.0217- 10" s 5.0234 10" 5 

i o - , a 2.1573-lO" 8 2.1576 10" 5 

1 0 - " 9 .3765-10 - 6 9.3772 10 - 6 

1 0 - 1 S 4.1317-10" 6 4 1318 ] 0 - < i 

1 0 - 1 7 8.3246-10" 7 8.3247- 10" 7 

] 0 - 2 O 7.9818-10" 8 7.9818-10" 8 

10 2 S 1.6929-10 , 0 1.6929 10-" ' 
i o - a o 3.6403- 10 r 2 3.6401 - 1 0 - i a 

For large values of resistivity. rji.lO"*. we expect the asymptotic matching theory to 
break down, with leading order errors scaling as rf ' 3 . As 77 decreases, the growth rates from 
NOYA-RC and asymptotic matching agree to five significant figures. But when T) is further 
reduced. 77 < 1 0 _ 2 £ . the agreement becomes worse. However, even at a magnetic Reynold's 
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number of S = 10 3 0 , NOVA-RC still reproduces the asymptotic matching growth rate to 
four significant digits. Attaining this degree of accuracy at low resistivities represents a 
breakthrough for a non-asymptotic code. 

Figure 1 shows the eigenfunction behavior in order of decreasing resistivity, illustrating 
how the eigenfuflctions from NOVA-RC and asymptotic matching converge together. The 
NOVA-RC independent variable, £„,, is divided by Be in order to enable comparison wilh 
the asymptotic matching dependent variable, £ T. 

We now choose 77 = 1 0 " 1 0 for the cylindrical spheromak equilibrium to do convergence 
tests. AYe demonstrate the convergence of the NOVA-RC code with both a uniform and a 
nonuniform grid. The procedure for how the radial grid points are preferentially allocated 
near the singular surface is described in Appendix B. Table 3 specifies how the growth rate 
changes according to the number of grid points that are used. Figure 2 demonstrates the 
.V" 4 convergence obtained when using a uniform grid. Note that for the nonuniform grid, 
1 he growth rate is within 0.2 percent of the converged result with only TV = 100 grid points. 

Table 3. NOVA-RC Growth Rates at r, = 1 0 " 1 0 

Nonuniform Grid 
N grid points Growth Rate 

50 2.6452 • 10" 4 

60 2.7619- lO""4 

80 2.7386- 10" 4 

100 2.7443- 10" 4 

150 2.7490- 10" 4 

200 2.7499- 10 " 4 

300 2.7504 - 10-" 
400 2.7504-10" 4 

500 2.7505- 10 -- 1 

600 2.7505-10" 4 

700 2.7505-lO" 4 

Uniform Grid 
N grid points Growth Rate 

1400 2.3512 10-* 
1500 2.4393 1 0 - 4 

1600 2.5610 io- 4 

1800 2.6259 10" 4 

2000 2.6940 1 0 - 4 

2400 2.7382 ID" 4 

4000 2.7504 10~ 4 

6000 2.7505 10" 4 

8000 2.7505 10" 4 

10000 2.7505 10" 4 

B . Tearing Modes in Tokamak-like Equilibria 

Izzo. et al 12 reported on a tokamak-like ideal MHD stable cylindrical equilibrium 
which was examined for stability against resistive tearing modes. The NOVA-HC stability 
results are !o be compared with the published results from the initial value code used 
by Jzzo, referred to as HILO. HILO fillers out the fast magnetosonic wave by making an 
expansion in the inverse aspect ratio and the plasma /3. The value of 3 is assumed to be 
first order in 1 = a/R. The MHD equations HILO solves are accurate to fifth order in c. 
Izzo defines 3 = 2p[r)IB-{\) and for this case t = 0.2 and 3 < 6.13 • lO" 4 . 
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The equilibrium of interest is defined for 0 < r < 1 by 

q{r) = 1.6(1 +r- 2/0.64) , 

p{r) = Q(0 .001 -+• 0.028r2 - 0.059r4 ~ 0.03r 6) . 

o = 0.25 . k- = a/R = 0.2 , J5,(l) = 1 . p = 1 . a = 1 . 

For the perturbation, m - 2 and n = 1 are chosen. This type of pressure profile is 
unusual in that it has a positive gradient for 0 < r < 0.558. In particular, p'(rs — 0.4) = 
2.28 • 1 Q - 3 > 0 at the resonant surface. The physical motivation for using an equilibrium 
with the pressure gradient reversed at the resonant layer was to simulate the effects of 
good average curvature. 

We temporarily defer investigating this specific equilibrium by first choosing to in­
vestigate the simpler equilibrium generated by setting o = 0, thereby "turning off" the 
pressure profile. For this pressure-free equilibrium, we can check whether or not the growth 
rate computed by the NOVA-RC code will scale like TJZ/S, which is predicted by asymp-

grid points is used to obliviate the need for numerical 

Table 4. 

/'A-RC growth rate 
siv) "8.0 [ ^ 

4.90904 • 10-* 
9.53777- li)"5 

4.60722-10"1 .31601 
1.49220 •11)-' .48961 
4.18112-lO"5 .55253 
1.10219-ID'5 .57904 
2.82845 • 1<T 6 .59071 
7.17215 -1(T 7 .59590 
1.80904- 10- 7 .59820 
4.55230- 10" 8 .59922 
1.14438 lO - 8 .59966 
2.87554- 10" 9 .59985 
7.22714 -HP' 0 .59975 
1.81469- 10" J" .60016 
4.58671 - 10' n .59730 

The results shown in Table 4 show the growth rate. S(TJ), and its scaling with respect to 
resistivity for a wide range of JJ. values. The convergence to the 3/5 scaling begins to break 
down at about r/ = 10~ 1 6 . This breakdown occurs when the growth rates reach about 
the same order of magnitude as the point at which NOVA-RC convergence to asymptotic 

totic theory. A total of N - IOC 
convergence studies. 

V 

io-4 

10" 5 

10~ 6 

1 0 - 7 

10" 8 

i o - 9 

HT 1 1 

l O " 1 2 
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10- w 
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matching began to break down in the previous interchange case. Figure 3 shows the tearing 
mode eigenmode for various values of the resistivity. 

Again, the actual equilibrium from the lzzo paper is deferred in order to investigate 
what happens to the resistive tearing mode at a fixed resistivity as the pressure pro­
file is gradually "turned on' 1. The pressure profile is gradually increased by varying the 
n parameter. We are thus able to confirm that the NOVA-RC code agrees with Izzo's 
demonstration lhal this type of pressure profile has a stabilizing effect on the mode. The 
particular value of the resistivity chosen is just above the point where the growth rate of 
the mode found by NOVA-RC goes complex for an a = 0.5 pressure profile. For a fixed 
equilibrium, the "critical resistivity", T)c, refers to the value of rj below which the growth 
rate makes a transition from being purely real to complex. For a fixed value of a = 0.5, the 
NOVA-RC code finds that the growth rate goes complex when the resistivity is less than 
T)C = 3.34 - 10" 7 . (Note that a — 0.5 is double the a = 0.25 case which lzzo investigated). 

Table 5. 

77 = 3.5-10~ T 

a NOVA-RC growth rate 
.00 2.832-10" 4 

.10 2.389 •10" ' 

.20 1.928-lO" 4 

.30 1 .450- lO - 4 

.40 9.608 1 0 - s 

.45 7.027 • 10" 5 

.48 5.247 • 10" 5 

.50 3.535 • 10~ 5 

Table 5 shows that the growth rate decreases as a increases and the effect of the pressure 
profile is stabilizing. Figure 4 shows the unstable eigenmode for various values of a. 

Note that the radial displacement develops a relative minimum in the layer as the 
(a. rj) parameters approach the values for which the growth rate becomes complex. As the 
two most unstable growth rates coalesce, their corresponding eigenfunctions also coalesce, 
and the less unstable eigenfunction typically has this extra oscillation. (Here r/ = 3.5-10 ' 
a t n ^ 0.5 is near n c =• 3.34 • 10" 7 ) . 

We now fix a = 0.25 so that we can compare the NOVA-RC growth rates with those 
given by Izzo. For resistivities in the range 1 . 6 - 1 0 " < 17 < 2- 10" B comparison with the 
HILO results from Izzo is given in Table 6. 
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Table 6. 

NOVA-RC growth rate HILO growth rate 

2 1 0 ~ 6 3.41 N T 4 3.4 • 10" 4 

6 - 1 0 - 7 2.21 IO-" 2.2 • KT"' 
i-ur7 7.94 vr* 8 . 2 - i f r 5 

3- 10~ 8 3.03 10" s 3.2- 10"° 

Unfortunately, a comparison of the third decimal place with the Izzo results is not 
possible because the HILO code is not able to find converged results to this degree of 
accuracy. The NOVA-RC code does agree with KILO at high resistivity to within the 
accuracy of the HILO code itself. 

For lower resistivities the complex part of. the HILO growth rate is not given. As 
the the resistivity is lowered below 1.6-10~ 8 we find that: 1) lowering the resistivity will 
eventually induce the osculation of the largest growth rate with the growth rate of a less 
unstable mode. 2) further reduction of the resistivity (after the osculation) will cause the 
unstable modes to "split'7 into two modes having respective complex growth rates that are 
complex conjugates, and 3) these two modes subsequently become stable as the resistivity 
is further reduced. 

In Table 7 we explicitly write out the results with complex growth rates for small 
values of 77. A total of A' = 300 grid points was used for this study. 

Table 7. Results at a ~ 0.25 

NOVA-RC growth rate 

Real(s) i* lmag(s) 

1.504 1 0 - 8 8.54 •10-* -i 0.22 1 0 - 6 

1.50- 10" 8 8.52 • 1 0 " 6 =i 0.68 ] 0 - e 
1.45-10-* 8.22 10" 6 =i 2.36 j f t - 6 

1.4 - 1 0 - 8 7.92 1 0 - 6 -i 3.24 10~ e 

1.3 10" 8 7.31 lO" 6 -£ 4.47 10" 8 

1.2-10- 8 6.69 1 0 - 6 ±i 5.37 10" 6 

1.1 - l O " 8 6.04 10" 6 -i 6.09 i ( r 6 

1.0-lO" 8 5.39 10- 6 =i 6.67 l ( r 6 

0.9 -10~ 8 4.71 icr 6 —i 7.15 i o - f i 

0.8 -1Q- 8 4.01 10~ 6 -i 7.53 10~ 6 

0 .7 -10 - 8 3.29 1 0 ' 6 - J 7.83 • 10~ 6 

0 .6- lO" 8 2.55 i n - 6 =i 8.03 10" 5 

0.5-10-* 1.78 ] 0 - 6 = ; 8.13 • io~ e 

0.45 -10~ 8 0.05 10 6 - z 8.14 io~6 
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The HILO code found that the equilibrium became stable at (roughly) TJ = 4 • 10~ 9 . 
The NOYA-RC code, however, found stability at t] = 4.5 • 10~ 9 .- In addition to HILO. 
Izzo used a shooting code that solved the incompressible equations. By using the shooting 
code. Izzo determined that the point at which the growth rate first became complex (as 
i) is lowered) occurred at (r),s) = (1.6 • 1(T 8,9.6 • 1 0 - 6 ) . The NOVA-RC code found 
(T/.S) •-- (1.5 - 10 _ s . 8 . 6 • 10" 6 ) . Thus, small but noticeable differences exist between the 
results of Izzo and the more exact treatment in NOYA-RC at low resistivities. 

VI. Toroidal Geometry Results 

A. Ideal Limit 

In this section we lest the NOVA-R code against several previously known results in 
toroidal geometry. The first test is to insure that the NOVA-R code correctly recovers 
known results in the axisymmetric 2D ideal MHD limit. As mentioned in the introduction, 
the NOVA-R formulation was deliberately chosen in order to greatly simplify this task. The 
NOVA-R formulation has been chosen to insure that when one sets ij = 0, the NOVA-R 
rode should recover results identical to that of NOVA. 

Here we illustrate the numerical Tecovery of a published NOVA result with the NOYA-
R code. An equilibrium, which the ideal NOVA code found to be unstable to an m = !, 
?) — 1 internal kink mode jlj. is analyzed by the NOYA-R code with r) =-= 0. 

The equilibrium has a circular outermost surface and is defined on the interval 0 < 
V < J bv profiles of the form 

P[y) = PoO - V7? 

i(y) = <j° - y 9i-<k>~{y- 1)(V - 9i + 9n)-

where y - • r / i i v and y, = \q\ - qi 4 qoj[q'o - q\ - 2(iyj - qn) . The equilibrium has 
A v •=- vnm - vu - 0.0609, < Si >„,,= 0.01277, Ji = 1.43. R/a = 3.4, P0 = 0.02456. 
qn = 0.8, 9i = 2.85, q'0 - 13.857, q\ = 106.88, and < ppal > = 0.86 . We normalize the 
growth rate- u> ^A 2 B^I\qiRp\'°. for a vacuum toroidal field given by B0 - BORQ/R. In 
specific. BQ = 1 and *iA — 0.2455 here. Figure 5 gives the NOVA-R result obtained with 
.V -- 100 evenly spaced -6 grid points and eight poloidal harmonics from ruin •_ - 2 to 
mhi = 5. For rj = 0, we have numerically verified the equivalence of all terms in NOYA-K 
with the corresponding NOVA terms. Figure 5 shows the eigenfunction fv, for different 
poloidal harmonics corresponding to the growth rate, 5 = s/^A - 4.8 • 10~ 2 . 
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B . Resistive Interchange Modes 
In Toroidal Spheromak Equilibria 

Our aim is to define a sequence of 2D toroidal axisymmetric equilibrium which allows 
the NOVA-R rode to recover results from the ID NOVA-RC cylindrical code as the limit 
of the sequence. Let Sr symbolically represent the system of three second order differen­
tial equations which make up the cylindrical stability equations. The cylindrical stability 
equations depend on the q profile, the machine size, and the toroidal and poloidal mode 
numbers, n. m. of the perturbation. Clearly, Sc — Sc(q,a. R,n, m). For k — a/R the depen­
dence of Sc on q. a. R, n, m can be written in the more restrictive form, Sc — Sc{q/ k.nk.rn) 
\4\ This means that one cannot recover the cylindrical limit with an axisymmetric 2D 
code by merely letting k = a / R —> 0, One also has to preserve the quantities q/h and. nfc. 

The following parameters specify the cylindrical spberomak-iike equilibrium which is 
being targeted for convergence studies. The equilibrium has a circular outermost surface 
and is defined in the region from 0 < r < 1 v.'ith the parameters: 

9(r) = W ( ] - . 9 r * ) , P ( ' , )= | j f ^ f ( ^ ) * -

q0 = 0.1, a = 0.1, k = a/R = 0.1. "5,(0) = 1, p = 1, a = 1. 

The equilibrium has a centrally peaked pressure profile with p{0) = 5.71 • 10~ 3 . For 
the perturbation, m = 1 and n = 15 are chosen. Now we define a sequence of 2D equilibria 
for which the corresponding 2D stability equations should approximate the ID stability 
equations of the gi/en cylindrical equilibrium as a/R —> 0. For low p. q, and a/R in 
axisymmetric equilibria, the flux surfaces of the equilibria are very circular and the volume 
within a given flux surface, V = V(i£), should vary as r 2 , where ?• represents the average 
minor radius on the flux surface. After normalizing both 0 < r < 1 and 0 < V(v) < 1. we 
define 

S^j/xM 
The 2D spheromak equilibria are specified by the following parameters and profiles: 

,M=„ ( ,-„v B — • • ; £ < £ ) • • 
a =- 0.1. tf.(D) - \ . p = \, o = 1 . 

The pressure is required to vanish at the wall. Given the assumption that V = i-z. the 
cylindrical pressure profile is easily recovered after multiplying both sides of the equation 
for -£-_ by ^ j . . The three sets of parameters shown in Table 8 were used to ohl ain the large 
aspect ratio equilibria that we investigated. 
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Table 8. 

k = a/R go n Resulting p(0) 

Case l 0.25 0.25 6 5.54 • 1 0 - 3 

Case 2 0.10 0.10 15 5.69-10 3 

Case3 0.01 0.01 150 5.73- 10~ 3 

For the third case, note that p(0) = 5.73-10~ 3 is approximately the same as the value 
(5.71 • ID'3) found in the cylindrical limit. For the purposes of testing whether NOVA-
R correctly recovers the cylindrical limit, the third case is of the most interest since the 
central pressure agrees well with the cylindrical limit and the inverse aspect ratio is small. 
Figure 6 gives the structure of the flux surfaces on the radial (rp) stability computational 
grid for the a/H = 0.01 equilibrium. 

First the NOVA-R code is tested when keeping only the resonant harmonic, (m — 
I.TI = 150). This represents the closest possible comparison of NOYA-R with the compu­
tation performed by the cylindrical code. Let (Nf,\1) represent the number of x> radial 
grid points and poloidal harmonics kept in the final NOVA-R stability calculation. Let t 
designate the width of a region or "layer" about the resonant surface. Lei f represent the 
fraction of the total number of radial stability grid points (JV S ) which are to be packed 
within the layer. Let (N^,Nf) give the number of radial and theta grid points used in the 
equilibrium calculation and 6 represent the error tolerance of the equilibrium code 127'. 
For the moment we are keeping only one poloidal harmonic, [M — 1), but in general, the 
growth rate is a function of many computational parameters. 

s = ,(N*,N!,6,N*,M,f,L) . 

In order to confirm the results, convergent ? with respect to all of these parameters had to 
be verified. Excellent numerical convergence of s was easily obtained with respect to all 
of these parameters with the exception of N*. For example, results in this section came 
from Ns = 300. and lowering A*, to 200 changed only the sixth significant figure in the 
growth rate. Lowering 6 by four orders of magnitude also affected only the sixth decimal of 
the growth rate. The surprisingly large dependence of s on .Ve

v is shown in Fig. 7, which 
illustrates a (N^')'2 dependence. The resistivity is fixed at r) = ]0~ ' here. The data point 
given by a circl? indicates the cylindrical limit obtained from the NOVA-RC code. The 
growth rates given here are in units of $ - s/uA and uA - 10.0 for all three spheromak 
equilibria given in Table 8. Figure 8 shows the unstable eigenfunction. £,.,, for r\ — 10 ' 7 

am\ A7,*- = 200. 

The equilibrium information is calculated with the use of "centered" finite difference 
formulas which are accurate to second order. Thus the equilibrium data are known to 
converge like (N^)~2. The tearing mode examined in Section C displays a relatively-
weaker dependence on N*. A decrease of 25 perrent in the growth rate between A'*" = G-J 
and J\lf •= 200 was seen for this spheromak equilibrium at 77 — ]0~ ' . This decrease is only 
3 percent for the tokatnak equilibrium (analyzed in Section C) at n = 1 0 _ R . The unusually 
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large N? dependence seen here can primarily explained by the fact that for these low 
growth rates, the plasma is very close to marginal stability. Therefore, the accuracy of the 
equilibrium data is being tested more stringently by the NOYA-R code thiin is usually the 
case for stability codes which examine ideal instabilities, for example. 

The next simple test of the NOV.A-R code involves expanding the stability calculation 
in order to Keep track of more than one harmonic. For this nearly cylindrical equilibrium, 
the addition of extra non-resonant harmonics should not affect the result. For the previous 
runs only the m = 1 resonant harmonic was kept. The range of harmonics is expanded to 
in € -1 .0 .1 .2 .3L The resulting growth rates are given in Table 9. 

Table 9. n = 10~ 7 NOVA-R growth rates 

TV* = 64 N* = 101 N? ~ 200 

Many Modes 4.236 • 10" 5 3.567 • lO" 5 3.146 • lO" 5 

Single Modes 4.237- 10~ 5 3.568 iO" 5 3 . 1 4 7 - 1 0 - 5 

For an additional check we fix N? = 200 and fix the range of poioidal harmonics at 
- 1,0.1.2,3] in order to examine the variation in the POVA-R growth rate for each of the 

three previously defined equilibria cases, given in Tf ble 8. Toroidal effects are known to 
be of lesser importance for low 8, a/R and q plasmas. This test, as shown in Table 10, 
also helps to insure that the a/R = 0.01 case was sufficiently converged to the a/R — 0 
limit so that we could properly compare it to the results from the cylindrical code. 

Table 10. n = 10" 7 NOVA-R Growth Rates 

h = a/R Growth Rate 

Case 1 0.25 3.34 • 10 " 5 

Case 2 0.10 3 .17 -10 ' 5 

Case 3 0.01 3.15 • 10~ 5 

Fur the final check we vary the resistivity while fixing a/R = 0.01, A'e

1' = 200 and 
keeping the range of poloidal harmonics at [-1,3]. This is done to check whetht r,s ~- 7j' ' 3 . 
The growth rates as a function of JJ for the a/R = 0.01 case are given in Table 11 and Fig. 
9. 

Table 11. k = a/R = 0.01 NOVA-R Growth Rates 

77= 10~ 8 7J_=_10_-V n = 10~^ 

NOVA-RC (Cylindrical Limit) 1.55 - 10" s 3.22 - '0~5 6.06 • 10 5 

NOVA-R 1.38-10" s 3.15 • 30^ s 5 . 9 0 - 1 0 ' 5 
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C. Tearing Modes In Tokamak Equilibria 

The fol'owing parameters give a tokamak equilibrium which has previously been de­
termined to be unstable to resistive tearing modes by the resistive PEST code. This equi­
librium has a circular outermost flux surface and is defined on the region from 0 < t!> < 1 
with the parameters: 

k = a/R = 0 . 1 , #$(0) = 1 , P=l, a = 0 . 1 , 

q[i/.') = 1.1 -fl.8u> 2 . p(tfr) = 0 . 

For the computation of the equilibrium, JV^-" = 200 was used. Growth rates are scaled 
using 5 — s/u,\4 and urA — B 2(0)/[pg 2(a)J?j. Note that the minor radius, a. is set to 0.1 
for this equilibrium. Thus, the value of TJ used in the calculation for this case is a factor 
of 10 smaller than the inverse magnetic Reynold's number, 5 - ] . In order to analyze the 
stability of this equilibrium, the range of poloidal harmonics is fixed at m £ - 1 . 0 , 5 
and the toroidal mode number was set at n = 1. A total of Nt = 300 radial points were 
used for the stability grid. 

Figure 10 shows the harmonics of fa for the unstable tearing mode corresponding 
to 77 = 10" ' . The resonant m — 2 harmonic is clearly dominant. Figure l i gives the 
fa eigenfunction at T) = 10~ 1 0 . Figure 12a simply magnifies the vertical scale for the 
r) — 10~ i O eigenfunction in Fig. 11. This blowup of the eigenfunction causes most of the 
inner layer solution to be "clipped" off. The vertical scale of the blowup is normalized 
so that the maximum value that fa reaches (if not clipped off) is unity. Figure 12b gives 
the fa function generated by the resistive PEST code. The PEST code calcuJates the 
eigenfunctioh only in the region away from the singular surface. For 77 = 10~ J O , one can 
expect good agreement with the asymptotic solution in the ideal region of the plasma. 
Figure 12c shows an overlay of Fig. 12a and Fig. 12b, which shows excellent agreement nf 
the two codes. 

figure 13 demonstrates the rf'^ growth rate scaling of the unstable tearing mode 
calculated by the NOVA-R code. The data shown in Fig. 13 is given directly in Table 1:?. 

Table 12. NOVA-R Growth Rates versus Resistivity 

Resistivity 1 0 - 1 0 10~ s 1(1"" 10^ T 

Growth Rate 9 .20-10" s 3 .65- lO" 4 1.37-10~ 3 5 .10-10" 3 

The value of A' represents the asymptotic behavior of the ideal solution very close to 
the resonant surface. Therefore, in order to measure A' from the eigenfunction solution of 
the NOYA-R code, one must determine a region which is very close to the resonant surface 
and yet very far from the region where resistivity, inertia, and compressibility become 
important. This should be possible for sufficiently small resistivity ( f j ^ lO - 1 0 ) when the 
outer region equations become valid near the singular layer. 

For the m = 2. n = 1 resonant harmonic of fa = £ • Vtf. the following asymptotic 
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coefficients were used to define A'. 

_ (crw±7\ + c; {OT r < r > ] ' 
t*Ty/T*l \ (6.1) 

[CYj^r^C: for r > r , J 

where r represents the square root of the normalized poioidal flux (0 < r < 1). Here rs 

gives the location of the rr, = 2, n = 1 singular surface. iV i: then given by 

Our procedure for determining the C coefficients involves fitting the NOVA-R com­
puted values of f J " jr at successive pairs of adjacent grid points (near the rational surface) 
using the functional form given by Eqn. (6.1). Through analysis of the £ v eigenfunction 
corresponding to n = 1 0 " : o . NOVA-R determined that 1.0 < A' < 1.4. The resistive 
PEST result was S' - 1.5 ± .5. 

VI. Summary 

We have developed a formulation of the linearized resistive MHD eigenmode equations 
which prevents the computation of resistive modes from being degraded by spectral pol­
lution from fast wave terms. This was accomplished by isolating the terms involved in the 
computation of the continuum spectra. The practical numerical advantages gained by us­
ing a formulation which separates out the continuum spectrum is the ability to accurately 
calculate resistive modes for the entire range of resistivities relevant to fusion reactors. 

A derivation of the NOVA-R eigenmode equations has been presented. Straight field 
line magnetic flux coordinates are used, and this choice is well suited for efficiently approx­
imating resonant modes with a limited range of poloidal harmonics. An explanation was 
given on how we expand into M poloidal harmonics and numerically eliminate the first 
seven equations to form a system of 3A1 second order differential equations. The NOVA-R 
code currently imposes that the tangential electric field and perpendicular displacement 
vanish at the wait. Expanding the code to handle different types of boundary conditions 
is straightforward. 

In Section III. the following technical advantages of the NOVA-R formulation are 
pointed out. ].) It involves only three coupled second order equations, in .V = 3 variables. 
2.) For finite resistivity and for r) — 0. none of the variables have highest order derivatives 
(in ^ , ) which are first derivatives. 3.) NOVA-R directly recovers the identical results of 
a well established 2D ideal .MHD code. NOVA, for n = 0 and smooth connection exists 
between the finite n NOVA-R code and the NO\A code in the r) —. 0 limit. -3.) The 
NO\A-R equations do not become degenerate at any point in the plasma away from the 
magnetic axis. 
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Section IV describes the numerical methods used in the NOVA-R code. In Appendix 
A we demonstrate how rewriting a B-Spline package [31 —32] improved the computational 
accuracy of numerical solutions by up to four orders of magnitude. The relative advan­
tages offered by the NOVA-R cubic B-Spline package with respect to linear elements were 
demonstrated by examining an example problem. In order to study resistive modes, a 
nonuniform grid was used with many grid point placed near the resonant surface(s). Our 
approach and formulation for solving the resistive MHD equations has a straightforward 
extension from the cylindrical to the 2D problem. 

In Section V. w-e have established the accuracy of the NOVA-RC cod? by compar­
ing results with other established ID codes. The NOVA-RC code recovered asymptotic 
matching results for resistivities significantly below the range of interest for fusion reactors 
and initial value results for resistivities well above the range of interest for fusion reactors. 
This demonstrated that the NOVA-RC code is producing the most accurate results within 
the range of resistivities of interest for fusion reactors. Because cubic B-splines are being 
used, we are able to obtain converged results with an order of magnitude fewer grid points 
than linear finite elements would require. This advantage becomes very important for the 
2D problem. The NOVA-RC results presented demonslrate the feasibility of extending our 
nun-asymptuiir approach and choice of formulation to the 2D problem. 

The NOVA-RC code is not limited by any sort of ordering assumptions or approxima­
tions that might limit the range of applicability. The wider range of applicability represents 
an important advantage over many of the previously developed ID resistive MHD stability 
codes. Because no ordering assumptions are made, our approach is more comprehensive 
in capability for the low resistivity regime than asymptotic matching codes. There is no 
reason to believe that the specific ordering assumptions used for the asymplotic approach 
will be comprehensive enough to include the behavior of all possible types of instabilities 
in the low resistivity limit. Other consistent orderings may exist. By avoiding any ordering 
schemes or assumptions, we are free to search for additional modes which may nol scale 
like the tearing or interchange modes in the low resistivity limit. In particular, both the 
NOYA-RC and 2D NOVA-R codes have found unstable modes which scale linearly with tj. 
These modes are anticipated to be the object of further research in the immediate future. 

The recovery of asymptotic matching results for magnetic Reynold's numbers as high 
as S = I t ) 3 0 validates our approach for removing spectral pollution by carefully choosing a 
formulation of the problem which "separates out" the continuum spectrum. The accuracy 
of these low resistivity results represent a breakthrough for a non-asymplotic code. The 
important problem of how to optimally choose a formulation for solving the resistive MHD 
stability equations has been resolved. 

Section VI gives numerical results from the NOVA-R code. The ability of the NOVA-K 
code to properly analyze the stability of general axisymmetric equilibria in the ideal limit 
was demonstrated. The task of making this check has been greatly facilitated by choosing 
a formulation which performs the identical computation as the NOVA code in the ideal 
limit. The NOVA-R code was used to analyze the resistive stability of axisymmetrir 
toroidal equilibria. A spheromak-liko 2D equilibria which was unstable against resistive 
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interchange modes was analyzed by the NOVA-R code. The NOYA-R code correctly 
recovered cylindrical results in the limit of infinite aspect ratio. An-equilibrium previously 
determined to be unstable to tearing modes by the resistive PEST code was also analyzed. 
We demonstrated the numerical ability of the NOVA-R code to resolve the unstable mode 
at 77 = I D - 1 0 . This justifies that the NOVA-R approach can make accurate calculations 
for low resistivities in the range Televant for fusion reactors. Excellent agreement with the 
PEST calculated eigenmodes and subsequent A 1 calculation was found. 

The NOVA-R code provides quantitative information about what resistive MHD pre­
dicts, which may be compared with experimental results. In the future, the NOYA-R 
stability analysis of specific equilibria can provide useful information relevant for the un­
derstanding and designing of future machines. 
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Appendix A. The B-spline Package 

In this section we document the improvement in accuracy obtained by rewriting a 
B-Spline package obtained from the University of Texas at Austin (31-32). For an example 
problem, we illustrate the relative performance of linear finite elements, the Texas B-Spline 
package, and the package used by NOYA-R. For simplicity, only evenly spaced grids are 
used for the example problem. 

Let .V represent the number of grid points used. For cubic B-Splines. one can converge 
to the solution of a linear differential equation with an error that scales like 1/.V1. Linear 
elements converge like ] /A' 2 . Although higher order elements converge still faster. B-
Splines are optimal for interpolating the coefficients of the differential equation. The 
coefficients of the differential equation are generally known only at the grid points, so an 
interpolation is required to define these coefficients everywhere. Assume that one wishes 
to interpolate N data points defined on the domain, 0 < J < 1. Among all functions. 
f(x). which have continuous second derivatives and interpolate .V specified data points, 
the cubic B-Spline interpolation minimizes 

Jo 

Interpolations made with higher order polynomials tend to oscillate between grid points 
3 3 . 

Regardless of what type of package is used, the errors generated by different ial equat ion 
solvers b ; nerally stop converging for sufficiently large values of .V. Let ^i represent the 
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relative error caused by computer round off errors. For the Cray, A =; 5 • 1 0 " 1 6 . Consider 
the differential equation, 

a{x)u"(x) + b(x)u{x)=0 . 

For the proper order of magnitudes, let a(x) ~~ o 0 and b(x) ~~ b0. Consider finite elements 
with compact support over a domain having a length which varies as I/JV. Regardless of 
what type of finite elements for finite differences) are used, after discretizing the equation. 
a(i)u"(j ' ) — b(x)u(x) - 0, one will end up summing terms on the order of ao-V~(l —A) with 
b0 terms. As N becomes large, the numbers representing b(x)u(x) start to get truncated. 
Therefore, the accuracy of all second order differential equation solvers are limited by a 
"saturation'" error on the order of ERR -- (ao/&o)-N2A. 

The Texas package, however, will be shown to saturate with a worse error, which scales 
like JV3. For convenience, the Texas package defines all of the fourth order polynomials as 
an expansion about x — 0. This creates a problem. In order to illustrate, let J* represent 
the value of x at some k-th grid point where i* is of order unity. Let y = x - Xk- In order 
to evaluate a cubir B-Spline between i * and Zfc.fi, it is necessary to evaluate the highest 
order term, 

4>(y) — ay3 at y = i. for h -~ 1 /.V 

Accounting for the roundoff error in i. the computer obtains <p(6) = aS3(l -r A ) s . But, if 
one uses T instead of y as the independent variable, 

<p(x) = ax3 - 3x2xt T 3xxl - x*] . 

For simplicity, assume that the computer only misrepresents the a* term by using x\ — 
4 ( 1 - A). Now. 

0(ar) = « ( 6 3 ^ x | A ) ~ a 6 3 ( l . - C * A ' 3 A ) . 

By not defining the polynomials of the finite elements locally, the Texas package introduces 
a new saturation error which scales like N3. In the NOVA-R package, the cubic B-Splines 
polynomials are defined by expansions about the nearest grid points. 

As previously stated, the performance of three different differential solving packages 
are to be compared. A simple differential equation problem is chosen. 

- u"(x) — x2u(x) — 

The solution is 

f 2 - ( ^ ) « n ( y ) , u(0) = 0 a n d «(l) = l 

u[x) — sin(7ra;/2) 

Ln the romputer generated solution be represented by u'(x). For .V evenly spaced grid 
points given by { z * } ; ^ , . the error is defined to be 

ERR(\] = max ju"(xk)- s i n ( ^ ~ ) 
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The fesulting errors, ERR(N), are shown in Fig. 14. 

Before encountering saturation due to round off errors, the Texas and .NOYA-R pack­
ages converge like 1 /W 4 , while the linear elements converged like ] IN"2. As N is increased, 
the Texas package prematurely saturates with an error given by, 

ERR % CN3A for A = 5 • 1 0 - ' 6 and C = 63 . 

The linear elements and the NOVA-R package saturation error is given by. 

ERR*CN2A for A = 5 1 0 1 6 and C = 1.4 . 

For the minimal errors, the Texas B-Spline package obtained ERR =s 5 • 10" 9 , NOYA-R 
obtained ERR =s 5 • 1 0 ~ u , and linear elements obtained ERR ^ 5 • ] 0 ~ 9 with N =t 50. 
N =i 150 and N s= 2000, respectively. For this example problem, the NOYA-R package 
represents a significant improvement relative to both linear elements and the original Texas 
package. 

Appendix B. Grid Packing 

For problems with internal boundary layers, the numerical convergence can be im­
proved by employing a non-uniform grid which is relatively more dense in the layer. The 
reason grid packing algorithms tend to be somewhat complicated is that the length be­
tween adjacent regions should not be allowed to change too quickly. Numerical instabilities 
may arise if the separation between adjacent grid points changes too abruptly. 

The NOYA-R code first calculates the value, vs. where q{vs) = m/n for the resonant 
harmonic. An internal parameter, eps. is set to roughly the half width of the layer. Let A' 
represent the total number of ip grid points. For problems with only one rational surface, 
A ;

P = AY7 grid points are packed into the resistive layer on a uniformly spaced grid. 
Outside of the resistive layer, the spacing between grid points grows geometrically. The 
spacing increases by a factor of (1 - p/) to the left, where pi is among a set of discrete 
values which allow a grid point to exactly "land" at w — 0. Similarly, the spacing increases 
by a factor of (] -r pr) on the right, all the way to p = 1. One needs to determine .V, and 
A' r, the number of grid points to be used within the left and right regions ouiside of the 
L'J - eps.i>> — eps] interval. The values of Ni and A'r are determined by minimizing the 

statistical deviation of pT and pi, subject to the constraint that .V - A'r - A'( - .Y 7. 

Generalizing this procedure for two resonant surface is done hy defining two layers. 
fj] - eps and u , 2 ~ cps. A point is chosen exactly in between the two layers in order to splil 
the region between the layers into two equal parts. The manner of allocating grid poims 
between the four resulting "external1 1 regions is again done by minimizing tlie statistical 
deviation of the four respective percentages. Here, the two middle regions of equal length 
should be constrained to have an equal number of grid points. 
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Figure Captions 

Figure 1. A comparison of the radial displacement of an unstable resistive interchange 
mode, as computed by NOVA-RC and asymptotic matching. The NOVA-RC results for 
i) = lO -" 1 . n = 10~' and r) = 1 0 ~ , u are given in (a), (c), and (e). The corresponding 
asymplotic results are given by (b), (d), and (f). 

Figure 2. Convergence of the NOVA-RC ri — I 0 " 1 0 resistive interchange mode growth rate 
as a function of the total number of grid points used on a grid with uniform spacing. 

Figure 3. The NOVA-RC computed radiai disptacement of an unstable tearing mode for 
TJ = l O - 4 . t) = 1 0 ' 7 , and r) = 10~ 1 0 is given in (a),^b), and (c) respectively. 

Figure -4. The NOVA-RC computed unstable eigenmode for TJ = 3.5 • 10" 7 with o = 0.0. 
0.45. 0.48, and 0.50 is given by (a-b), (c-d), (e-f), (g-h), respectively. Blow-ups of the 
solution near the resistive layer are given by (b), (d), (f), and fh). 

Figure 5. The NOVA-R computed harmonics of the radial displacement of an ideal MHD 
instability recovers the results published in Ref. j]j. 

Figure 6. The flux surfaces of a nearly circular 2D spheromak-like equilibrium (with 
a/R — .01). The equilibrium is unstable to resistive interchange modes. 

Figure 7. The convergence of the NOVA-R growth rate of the resistive interchange mode 
for a/R = .01 and 77 — 10" ' is shown as a function of the number of radial grid points 
used in the calculation of the equilibrium. Some of the equilibrium quantities calculated 
begin to oscillate between grid points at high Nt, confirming the degradation away from 
1 /A'^ convergence shown for high Nc, 

Figure 8. The NOVA-R computed radial displacement of the unstable resistive interchange 
mode at 77 = 10" ' . 

Figure 9. Comparison of NOVA-R growth rate results at a/R = .01 with the NOVA-RC 
compuled cylindrical limit. 

Figure 10. The NOVA-R computed eigenmode of a unstable resistive tearing mode at 
T) ^ 1 0 7 . 

Figure 11. The NOVA-R computed eigenmode of a unstable resistiv<- tearing mode at 
r, = 10- 1 0 . 

Figure 12. A vertical scale blow-up of the same data seen in Fig. 11 is given by (a). This 
is to be compared with the eigenmode computed by the resistive PEST code, given in (b). 
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An overlay of (a) and (b) is given in (c), showing excellent agreement. 

Figure 13. Scaling of the growth rate with resistivity for the unstable tearing mode. 

Figure 14. A comparison of the numerical errors for three different finite element packages 
demonstrates the superior accuracy of the modified package used by the NOYA-R and 
NOYA-RC codes. 
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Figure la NOVA-RC q = 10 -4 
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Figure lb Asymptotic Matching rj = 10 4 
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Figure lc NOVA-RC r) = 1CT7 
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Figure Id Asymptotic Matching rj = 10 " 
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Figure le NOVA-RC 1/ = N T 1 0 
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Figure If Asymptotic Matching TJ = 10 -10 
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Figure 2 Convergence of Growth Rate with a Uniform Grid 
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Figure 3a NOVA-RC rj = 10 - i n - i 

. 0 

- . 1 

— - - ^ j 1 1 1 i^—• i 1 1 

-.2 \ / -

- 3 

- . 4 

- . 5 

- . 6 

- . 7 

1 J -- 3 

- . 4 

- . 5 

- . 6 

- . 7 

: 

-

- 3 

- . 4 

- . 5 

- . 6 

- . 7 1 1 -

- .8 -

- . 9 

i n r i i \ / l i i i i 1_ 

GO ff) 

MINOR RADIUS 
Fig . 8 

43 



Figure 3b NOVA-RC i) = 10~ r 
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Figure 3c NOVA-RC 77 = 10 - m - 1 0 
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Figure 4a NOVA-RC a = 0 
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Figure 4b NOVA-RC a — 0 Blowup of the Resistive Layer 
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Figure 4c NOVA-RC a = 0.45 
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Figure 4d NOVA-RC a = 0.45 Blowup of the Resistive Layer 
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Figure 4e NOVA-RC a = 0.48 
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Figure 4f NOVA-RC a = 0.48 Blowup of the Resistive Layer 
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Figure 4g NOVA-RC a = 0.5 
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Figure 4h NOVA-RC a = 0.5 Blowup of the Resistive Layer 
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Figure 5 NOVA-R r] = 0 Ideal Instability 
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Figure 6 Spheromak 2d Equilibrium 
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Figure 7 Convergence of NOVA-R Growth Rate at q = 10~" 
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Figure 8 NOVA-R Resistive Interchange Instability 
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Figure 9 Scaling of UnstaMe Mode 
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Figure 10 NOYA-R Tearing Mode 
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Figure 12a NOVA-R Tearing Mode Blowup 
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Figure 12b PEST Solution 
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Figure 12c Superposition of NOVA-R and PEST Tearing Mode 
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Figure 13 Scaling of Unstable Mode 
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Fig. 14 Errors from three different computer packages 
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