
UCRL- JC-I05425

PREP_I'NT

"' i "

, JAN I 6 1.991

BBN TC2000 ARCHITECTURE AND PROGRAMMING MODELS

Eugene D. Brooks III, Brent C. Gorda, Kaven H. Warren, Tammy S. Welcome
Massively Parallel Computing Initiative

Lawrence Livermore National Laboratory
Livermore, CA 94550

This paper was preparr_ for submittal to
CompCon Spring '91, San Francisco, California

February 25-March 1, 1991

November, 1990

Th_s is apreprirt of a paler intended f_r Fablication ,in a journal or proce_inss. Since
char_$es may be made before publication, this preprint f_ made available with the
understandin 8 that it will not be cited or rept_luced without the permission of the
author;

DISCI,AIMER

"lhl,_r!,ocumenlwas prepared as an account of w,ork sponsored by un agency of the
iinited States Go_ernment, Neither the United States Government nor the University
of California nor any of their empiuyees, makes an.','_arraniy, express (Jrimplied, or
assumes an._ legal liability or responsibility for the accurac), completeness° or useful-
ness of any information, apparatus, product, or process disclo.,_d, or represents that
its use _ould not infringe pri_'ately o_ned rights, Reference herein to an) specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendttion,
or favoring b._ the U_ited States Government or the University of California, The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United Stat_ Governmen! or the University of California. and shall not
be used for advertising or product endorsement purposes,

t

UCRL-JC--105425

DE91 006 235

. BBN TC2000 Architecture and Programming Models*

, Eugene D. Brooks III, Brent C. Gorda, Karen Ii. Warren, Tammy S. Welcome

Massively Parallel Computing Initiative

Lawrence Livermore National Laboratory

Livermore, California 94550

Abstract: The BBN TC2000 is a scalable general message passing library within the split-join program-
purpose parallel architecture capable of efficiently sup- ming environment. The split-join parallel program-
porting both shared memory and message passing pro- ming model is very similar to Harry Jordan's Force

gramming paradigms. We describe the TC2000 ma- [3] and the IBM SPMD [4] progran_ning model, the
chine architecture and the programming models which most significant difference being the support for team
we have implemented on it. The parallel programming splitting and the arbitrary nesting of concurrency con-
models are implemented in a portable manner and will structs. The split-join parallel programrrfing model is

be useful on the scalable shared memory machines we implemented with the Parallel C Preprocessor (PCP)
expect to see in the future, for the C programming language and with the Parallel

FORTRAN e_:processor (PFP) for FORTIL_,N. The
Keywords: Split-join, fork-join, shared memory, mes-

Livermore Message Passing System (LMPS) is a mes-sage passing, BBN TC2000, scalable multiprocessor
sage passing library which currently lives within the
split-join programming environment, but could stand
alone on a message passing machine if this were re-

1 Introduction quired.
Microprocessors have made incredible strides in per- The split-join parallel programming model is highly
formance in recent years and are beginning to over- portable because a full featured version is easily ira-
run traditional supercomputer performance for scalar plemented with a preprocessor and relatively little
dominated application codes, lt is expected that su- back end compiler support. An earlier version of PCP

percomputer class vector processing performance will has been used on a variety of machines, including Se-
appear in microprocessor form in the next few years, quent Symmetry, Sequent Balance, Alliant FX/8, SGI,
This development is enabling a new breed of super- Stellar, and Cray multiprocessors. PFP was written
computers composed of hundreds, and in some cases specifically for the large base of FORTRAN users who
thousands, of high performance microprocessors, are participating in the Massively Parallel Computing

The BBN TC2000 is a scale.hie microprocessor Initiative at Lawrence Livermore National Laboratory.
based machine which provides a shared memory facil- The PCP and PFP preprocessors have an option of
ity through a multi-staged interconnection network, emitting efficient serial code and this has been used
It is very similar to the IBM RP3 architecture [1] to target both multiprocessors and uniprocessors with
but is currently commercially available. Because the the same source code. We have found the split-join
machine supports both high bandwidth interleaved programming model to be a very good match to the
shared memory and large local memories, it is well BBN TC2000 architecture. The current areas of ac-
suited to supporting both shared memory and mes- tire work are extending the implementation of team
sage passing programming models, splitting, which begins to get heavy use as the num-m

We have implemented Fortran and C versions of the ber of processors available climbs beyond a dozen or

split.join [2] parallel prograrmning paradigm on the so. Users have found that one must exploit nested
,b. BBN TC200q, and have provided an Argonne style concurrency effectively if we are to successfully use

' large numbers of processors on general purpose appli-
* Work performed under the augpice_ of the I, S. Department cations.

of Energy by the Lawrence Livermore National Laboratory un-

der contract No. W-7405.ENG-48. The sections of this paper are as follows. The BBN

I fi_ /::i/_":":__'0

TC2000 hardware and capabilities are presented in ber of processors can be configured to contribute to
Section 2. The split-join model, its memory model the interleaved shared memory pool and it is useful

aud the message passing model are described in Soc- and convenient to set the number of contributing pro-
tions 3, 4, and 5. Specifics on how the implemen- cessors to a prime number to avoid hot spot problems.
tation of th_e models take advantage of the archi- The rest of the memory in each node can be used for ei-
tecture are included. The synchronization primitives thor local memory or non-interleaved shared memory.

' offered in PCP and PFP are discussed in Section 6. This division is enforced by the memory management

Section 7 is on the debugging and performance mon- unit attached to the processor and is set at the time
itoring abilities within the models. Finally the time an application is run in a completely flexible way.
and space scheduling mechanism used on our machine As noted above, the data caches in the TC2000 are
is described in section 8. under programrner control. The cacheability of sec-

tions of virtual address space can be adjusted at run
time with system calls. System calls are also provided

2 TC2000 architecture to flush regions of virtual address space from the data
cache as required. This facility is used in the "data

The BBN TC2000 [5] is a scalable multiprocessor ar- mover" routines of the message passing package to im-
chitecture which can support up to 512 computational prove transfer rates, but the system call mechanism
nodes. The Motorola 88100 microprocessor is used in has too high an overhead to be used for fine grained
conjunction with three Motorola MC88200 chips to concurrency control of specific variables. In general,
provide for a 32K byte code cache and a 16K byte local data is left cacheable and shared data is left not

data cache. The data caches are under programmer cacheable, with the possible exception of "write once

control with no hardware assistance for maintaining - read many" variables (hot spots) that are efficiently
the coherence of shared data. handled as write through cacheable shared memory

The processors are operated at clock speed 20 MHZ, variables.

providing a manufacturer's rating of 17 MIPS and Unlike the message passing and SIMD machines
a peak single precision floating point, speed of 20 which tend to restrict the user to a single program-
MFLOPS. Double precision floating point computa- ming model, the BBN TC2000 offers a rich architec-
tion runs at a peak speed of 10 MFLOPS, because ali tural structure presenting many possibilities for the
data busses in the architecture are 32 bits wide. The language developer. BBN offers their Uniform System
size of the main memory on each computational node [7] for C and Fortran, carried over from earlier ma-
in our machine is 16 megabytes, although some earlier chines which lacked hardware support for interleaved
produced machines only have 4 megabytes, shared memory. They also offer a parallel extensicm

The processors, with their 16 megabyte memories, of FoP_rRAN [8] which is a snapshot of the Parallel
are interconnected to each other in a PE-to-PE model Computing Forum specification at some point in the
by a variant of a multistage cube network [6] which past,, this specification is still undergoing evolution at
BBN refers to as the "butterfly switch." In the the current time. In addition to the BBN st, pplied
TC2000, 8x 8 switch nob'es are used to construct the programming models, we have made a substantial eL
network. The 512 node configuration requires only fort in developing programming models which fit the
three stages of switch nodes in the network, leading TC2000 architecture well and are implemented in a
to a latency of about 2 microseconds for comrmmica- manner that preserves portability to scalable archi-
tion between arbit',rary processors. This low' latency tectures possessing shared memory that we expect to
is directly accessible to the programmer, through the see in the filture.
shared memory paradigm that the machine provides.
The network connections are 8 bits wide an'J. are

clocked at 38 MHZ. 3 The split-join model
The BBN TC2000 supports local memory, sharefl

, memory wherein successive cache lines reside on one In the traditional fork-join parallel prograrnmir.g
card, and in'_erleaved shared memory wherein succes- model, a single processor starts the execution of the
sire cazhe lines are placed on successive cards and program and acquires more processors as concurrency
wrap around the machine. The contribution of each is encountered in the code. The forl:-ioin program-
node to the interleaved shared memory pool is made ruing model has been quite useful on tightly coupled
at boot time, set via device registers in the interface go shared memory machines with relatively few proces-
the switch which connects the processors. Any hum- sots, and some architectures such as the Alliant FX/8

,, ,ILl *, diddl,, ,, ,_ , Jill,

and the Convex C2 provide special hardware to make programming model is in some sense the dual of the

the dispatch of slave processors happen as quickly as fork-join model. One finds that one can usually ac-
possible. Scalable machine architectures are not as complish the task at hand with either programming
tightly coupled and the cost of communication be- model. The advantage of tile split-join programming
tween processors, heavily used in the process of dis- model is its full featured, bottleneck free, implemen-
patching processors in the fork-join model, is relatively ration through a highly l)ortable preprocessor.
high. The BBN TC2000 is a realistic example of what
one might expect in this regard, the latency of a cache
hit on local memory is 3 clocks (pipelined at a rate of 4 The memory model
one per clock) where as the latency of a remote mem- In the split-join programming paradigm, three, types
ory reference is roughly 40 clocks (not pipelined). If

of rnemory are required to fully exploit the notion of
one rnust deal with a 40 clock iatency for every mem-

team splitting. These are:
ory reference required in the code used to dispatch
processors, even an efficient spanning tree implemen- • memory which is private to a processor, private
tation can have substantial overhead, memory,

In the split-join paradigm we deal with the high ® memory which is shared among all processors,
cost of processor dispatch, and the high cost of com- shared memory,
munication between processors, by minimizing their

• and memory which is shared among the membersoccurrence ;.n the fundamental constructs of the pro-
grarnming model. Ali of the processors the job will of a given team or grouping of processors, but
ever acquire are dispatched at the start of the pro- private to it, teamprivate memory.
gram and are immediately placed under the control Private memory is implemented on the processor
of the programmer. This bunch of processors which which has access to it. Shared memory is implemented
loosely follow each other through the code is referred in the interleaved shared memory facility of the BBN
to as a team of processors. At this level, the program- TC2000. Teamprivate memory is allocated as an array
ming model is quite similar to Harry Jordan's Force or in the interleaved shared memory, indexed by a team
the IBM SPMD model, except perhaps for the deter- descriptor which is unique to a given team.
minism which the user can establish with respect to Team splitting is handled in a block structured way.
which processors do what in the split-join paradigm. Each time a processor "changes sides" and becomes a

Nested concurrency is exploited by the user through member of a new subteam, it computes e. new team
the construct called team splitting. In this construct, descriptor and its position in tile new team without
tile user explicitly marks off separate blocks of work accessing any shared memory or synchronization re-
which can be executed independently of each other sources. This leads to an efficient, bottleneck free ira-

(it is assumed that each block of work is itself a job plementation of team splitting, the c_t of which is
consisting of subtasks which can be executed in paral- completely independent of the number of processors

lel), and possibly indicates the relative total amount of iri the tearn. As the processor computes a new team
work in each block of code. When the teanl encounters descriptor, it pushes the old one or._a private stack for

the split blocks, it divides into a number of subteams recovery when it reaches the end of its share of the
matching the number of blocks ot" code and tackles work in the split block. Since a processor carries the
each block of work with new teams having smaller team descriptors of ali its antecedent teams on a stack,

it has access to the team private memory of a parentnumbers of processors. If the user has provided ac-.
curate loading information the processors finish their team. This can be very useful in a situation where

work at the same time and join bad.t, up into the parent the tasks in the split blocks are to compute some re-
suits required by ali the members of the parent team,team nearly simultaneously. The total number of pro-
but for which the use of the top level shared memorycessors is conserved in the team splitting process, an

accurate analogy is that the processors "change sides" would pose an access hazard due to nested use of' t.eam
becoming members of a new team. splitting iri a reentrant way.

Splitting the size of the team into smaller subteams

. as nested concurrency is encountered is counter intu- 5 Message passi,lg
itive. The goal, however, in exploiting nested con-
currency is to use a fixed number of processors more There is good deal of interest in message passing
efficiently, not to use more processors. The split-join mazhines such as thee offered by Intel or NCUBE.

To enable the use of men,sage passing library code 7 Debugging and Performance
within the split-join programming model, and to pro- Monitoringvide for portability to message passing machines for

those users who want to use a strict message pass- Debugging a parallel program is typically the hardest
ing paradigm, we have developed a message passing problem faced by a programmer. Simple tools such
library which runs within the PCP/PFP run time en- as dbx are just not effective in displaying the state of

' vironment, execution. Reproducing complex timings under these

The message calls are patterned after the Argonr, e conditions makes it very hard to debug.
message passing package [9], with the addition of The models presertted here fit transparently on top
broadcast support. The message passing library cur- of the system tools provided by BBN [11]. The to-
rently functions at the top most level in the split-joip talview debugger gives the programmer a view of his
environment, but will be extended so that it can l_ PCP/PFP or LMPS source code. Running under the
used at any nesting level of team splitting. This will X Window System, the debugger shows each separate
be useful for thc_e applications which would like to use parallel stream with its own window and execution
a message passing library routine deep in the bowels control. The programmer may debug a stream by it-
of some highly concurrent application, self or easily control the parallel program in a global

manner.

The PCP, PFP, and LMPS programming models
also allow a programmer to work with the BBN sup-
plied performance monitoring tool gist. With gist,

6 Synchronization trigger points are inserted within the source, the pro-
gram executed, and the results post analyzed with a
graphical analysis tool. The user can view the result-

Barrier synchronization and the notion of locks are ing data from various time scales, from a global timing
provided in the PCP and PFP implementations of the presentation down to a fine grained specific event tim-
split-join programming model. In barrier synchroniza- ing.
tion, ali of the processors in a given team are forced
to wait at the barrier until the last straggler has ar-

rived. A bottleneck free software implementation [10] 8 Time sharing support
is used, requiring 30 to 40 microseconds to synchro-
nize 32 processors. The execution time of the barrier The BBN TC2000, as it, arrives from the factory, sup-
scales as the log of the processor count. Each team ports only the notion of space sharing by dividing the
has its own unique barrier, processors into clusters as users request them. Once

all of the free processors are allocated, a new user must
The notion of a lock is also provided. A processor wait until a cluster is relinquished before being able

attempting to acquire a lock spin-waits until the the to run a parallel program. This is a common sitaa-
lock is unlocked and then indivisibly locks it. lt then

tion which occurs on ali of the scalable parallel ma-
unlocks the lock, making it available to others when chines commercially available today. It leads to "sign
done with the critical region the lock was beihg used to up sheets" to allocate computer time, a throwback to
protect. Locks may be located in the top level shared the days we scheduled people onto supercomputers us..
memory, or teamprivate memory, depending on the ing similar mechanisms in the 50's. This is completely
scope of the critical region which is being protected, unworkable for a large institutional machine with hun-

In the addition to the use of barriers and locks, the dreds of users.

user may implement an event by simply _.pin-waiting Fortunately, the UNIX operating system runs in ev-
on a location in shared, or teamprivate, memory to cry node of the TC2000 and this provides an oppor-

change. On a machine supporting coherent, shared tunity for the system support staff to create a gang
memory caches this is particularly effective and has scheduler which runs as a daemon outside of *_heop-

no negative impact. If the machine lacks this sup- erating system. When a parallel program starts up
, port, as is the ca_e for the BBN TC2000, one must it communicates with the gang scheduler to inform it

be careful about tl,e pos_sibility of generating adverse with regard to the number of processors required. The

impact on available memory bandwidth through the gang scheduler reserves a spatial slot in the machine
introduction of a hot spot. for the job to run in, attempting to optimally fill any

holes which exist within its schedule. The gang sched- References
uler then proceeds to collectively start and stop jobs
which contend for processor resources in a way which [1] G. F. Pfister, et al, "The IBM Research Paral-

• avoids live lock. The scheduler maintains a notion Icl Processor Prototype (RP3): Introduction and

of fair share delivery of processor resources, and the Architecture," Proc. of the 1985 International

length of time slices can be adjusted to optimize for Conference on Parallel Processing, pp. 764-771,
i interactive respnnse or production throughput as the August 20-23, 1985.

case may be. [2] E. D. Brooks III, PCP: A Parallel Extension of
C that is 999_ Fat Free, UCRL-99673, Lawrence

9 Discussion I.,ivermore NationM Laboratory, 1988.

We have described the BBN TC2000 architecture and [3] H. F. Jordan, The Force: A Highly Portable Par-
allel Programming Language, Proceeding of tilethe programming rnodels we have developed for use

on it by research staff participants in the Massively International Conference on Parallel Processing,
Parallel Computing Initiative at Lawrence Livermore August, 1989.

National Laboratory. These programming naodels are [4] F. Darenaa, D. A. George, V. A. Norton and G.
routinely used by the research staff in a wide range of F. Pfister, A single.program-multiple data com.

efforts in computational physics, chemistry, engineer- putatioaal mode', for EPEX/FORTRAN, Parallel
ing, and graphics applications. These applications in- Computing, April, 1988.
elude, but are not limited to:

• 3-D finite element neutron transport, [5] BBN Advanced Computers Inc., Inside the
TC2000, Cambridge, MA, 1989.

• cold matter Monte Carlo photonics,

• linear algebra, [6] H. J. Siegel, Interconnection Networks for Large.Scare Parallel Processing, 2nd edition, McGraw

• hot matter Monte Carlo photonics, Hill, New York, 1990.

• the solution of Maxwell's curl equations, [7] BBN Advanced Computers Inc., Uniform System

• molecular dynamics for tool cutting, Programming in C, Cambridge, MA, 1990.

• mixed-zone Eulerian hydrodynarrfics, [8] BBN Advanced Computers Inc., TC2000 Fortran
Reference, Cambridge, MA, 1989.

• geophysical fluid dynamics,
[9] Ewing Lusk, et al., Portable Programs for Paral.

• parallelized image rendering, Icl Processors, Ho,lt, Rinehart and Winston, Inc.,

• lattice-gas hydrodynamics, San Fransisco, 1987.

• quantum mechanics, [10] D. Hensgen, R. Finkel, U. Manber, "Two AI-
gorithrm for Barrier Synchronization," Inter.

• and plasma simulations tbr fusion energy devices, national Journal of Parallel Programming, vgl.
The programming support is highly portable, having 17(1), pp. 1-17, 1988.
its roots in language support developed for earlier bus
based shared memory multiprocessors such as the Se- [11] BBN Advanced Computers Inc., Debugging with
quent, Silicon Graphics, Stellar, and Alliant machines, the Xtra Tools, Cambridge, MA, 1990.

" The key to high performance on the BBN TC2000,
and any future scalable system supporting shared
memory, is the efficient exploitation of data locality.

: _ The split-join parallel programming paradigm imple.
mented via PCP and PFP support the user in pursu-
ing data locality by providing explicit local memory in

, the programming model and a predictable execution
environment wherein processors can be tiled onto a
data set in a way which makes maximum use of data
locality.

=

,' ,_ n ,__ll rlI,"ll I' ,,,',, ,r'_pl'l' ,hl,,irl!I nlll_ _ll

