NTRRRT

[osf - 910263 - 2

UCRL- JC-105425
PREPRINT
EEA

JAN 1 6 1gq,
BBN TC2000 ARCHITECTURE AND PROGRAMMING MODELS

Eugene D. Brooks III, Brent C. Gorda, Karen H. Warren, Tammy S. Welcome
Massively Parallel Computing Initiative
Lawrence Livermore National Laboratory
Livermore, CA 94550

This paper was prepared for submittal to
CompCon Spring '91, San Francisco, California
February 25-March 1, 1991

November, 1990

This is a preprirt of a paper intended f~r publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the

understanding that it will not be cited or reproduced without the permission of the
author.

DISTHEILW

s . L e e
Vit 0% el B aind b v v mg it b h//h..ainnfmu



DISCLAIMER

This Aocument was prepared as an account of wark sponsored by &n agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights, Reference herein to any specific
cammercial products, process, or service by trade name, trademark, manufacturer, or
otherwise. does not necessarily constitute or imply its endorsement, recommendsation,
or favoring by the United States Government or the University of California. The
views and opinions of ruthors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for ndvertising or product endorsement purposes,



UCRL-JC--105425

DE91 006235

BBN TC2000 Architecture and Programming Models*

Eugene D. Brooks II1, Brent C. Gorda, Karen H. Warren, Tammy S. Welcome

Massively Parallel Computing Initiative
Lawrence Livermore National Laboratory
Livermore, California 94550

Abstract: The BBN TC2000 is a scalable general
purpose parallel architecture capable of efficiently sup-
porting both shared memory and message passing pro-
gramming paradigms. We describe the TC2000 ma-
chine architecture and the programming models which
we have implemented on it. The parallel programming
models are implemented in a portable manner and will
be useful on the scalable shared memiory machines we
expect to see in the future.

Keywords: Split-join, fork-join, shared memory, mes-
sage passing, BBN TC2000, scalable multiprocessor

1 Introduction

Microprocessors have made incredible strides in per-
formance in recent years and are beginning to over-
run traditional supercomputer performance for scalar
dominated application codes. It is expected that su-
percomputer class vector processing performance will
appear in microprocessor form in the next few years.
This development is enabling a new breed of super-
computers composed of hundreds, and in some cases
thousands, of high performance microprocessors.

The BBN TC2000 is a scaleble microprocessor
based machine which provides a shared memory facil-
ity through a multi-staged interconnection network.
It is very similar to the IBM RP3 architecture [1]
but is currently commercially available. Because the
machine supports both high bandwidth interleaved
shared memory and large local memories, it is well
suited to supporting both shared memory and mes-
sage passing programming models.

We have implemented Fortran and C versions of the
split-join [2] parallel programming paradigm on the
BBN TC2001, and have provided an Argonne style

* Work performed under the auspices of the ', S. Department
of Energy by the Lawrence Livermore National Laboratory un-
der contract No. W-7405-ENG-48.

message passing library within the split-join program-
ming environment. The split-join parallel program-
ming model is very similar to Harry Jordan's Force
[3] and the IBM SPMD [4] programrning model, the
most significant difference being the support for team
splitting and the arbitrary nesting of concurrency con-
structs. The split-join parallel programming model is
implemented with the Parallel C Preprocessor (PCP)
for the C programming language and with the Parallel
FORTRAN P :processor (PFP) for FORTRAN. The
Livermore Message Passing System (LMPS) is a mes-
sage passing library which currently lives within the
split-join programming environment, but could stand
alone on a message passing machine if this were re-
quired.

The split-join parallel programming model is highly
portable because a full featured version is easily im-
plemented with a preprocessor and relatively little
back end compiler support. An earlier version of PCP
has been used on a variety of machines, including Se-
quent Symmetry, Sequent Balance, Alliant FX/8, SGI,
Stellar, and Cray multiprocessors. PFP was written
specifically for the large base of FORTRAN users who
are participating in the Massively Parallel Computing
Initiative at Lawrence Livermore National Laboratory.
The PCP and PFP preprocessors have an option of
emitting efficient serial code and this has been used
to target both multiprocessors and uniprocessors with
the same source code. We have found the split-join
programnming model to be a very good match to the
BBN TC2000 architecture. The current areas of ac-
tive work are extending the irnplementation of team
splitting, which begins to get heavy use as the num-
ber of processors available climbs beyond a dozen or
so. Users have found that one must exploit nested
concurrency effectively if we are to successfully use
large numbers of processors on general purpose appli-
cations.

The sections of this paper are as follows. The BBN

bbb vl boan st s o LS N T
v e L e o A e - -~ o



o

TC2000 hardware and capabilities are presented in
Section 2. The split-join model, its memory model
and the message passing model are described in Sec-
tions 3, 4, and 5. Specifics on how the implemen-
tation of these models take advantage of the archi-
tecture are included. The synchronization primitives
offered in PCP and PFP are discussed in Section 6.
Section 7 is on the debugging and performance mon-
itoring abilities within the models. Finally the time
and space scheduling mechanism used on our machine
is described in section 8.

2 TC2000 architecture

The BBN TC2000 [5] is a scalable multiprocessor ar-
chitecture which can support up to 512 computational
nodes. The Motorola 88100 microprocessor is used in
conjunction with three Motorola MC88200 chips to
provide for a 32K byte code cache and a 16K byte
data cache. The data caches are under programmer
control with no hardware assistance for maintaining
the coherence of shared data.

The processors are operated at clock speed 20 MHZ,
providing a manufacturer’s rating of 17 MIPS and
a peak single precision floating point speed of 20
MFLOPS. Double precision floating point computa-
tion runs at a peak speed of 10 MFLOPS, because all
data busses in the architecture are 32 bits wide. The
size of the main memory on each computational node
in our machine is 18 megabytes, although some earlier
produced machines only have 4 megabytes.

The processors, with their 16 megabyte memories,
are interconnected to each other in a PE-to-PE model
by a variant of a multistage cube network [6] which
BBN refers to as the “butterfly switch.” In the
TC2000, 8x8 switch no’es are used to construct the
network. The 512 node configuration requires only
three stages of switch nodes in the network, leading
to a latency of about 2 microseconds for comraunica-
tion between arbitrary processors. This low latency
is directly accessible to the programmer, through the
shared memory paradigm that the machine provides.
The network connections are 8 bits wide and are
clocked at 38 MHZ.

The BBN TC2000 supports local memory, shared
memory wherein successive cache lines reside on one
card, and interleaved shared memory wherein succes-
sive cache lines are placed on successive cards and
wrap around the machine. The contribution of each
node to the interleaved shared memory pool is made
at boot time, set via device registers in the interface to
the switch which connects the processors. Any num-

ber of processors can be configured to contribute to
the interleaved shared memory pool and it is useful
and convenient to set the number of contributing pro-
cessors to a prime number to avoid hot spot problems.
The rest of the memory in each node can be used for ei-
ther local memory or non-interleaved shared memory.
This division is enforced by the memory management
unit attached to the processor and is set at the time
an application is run in a completely flexible way.

As noted above, the data caches in the TC2000 are
under programmer control. The cacheability of sec-
tions of virtual address space can be adjusted at run
time with system calls. System calls are also provided
to flush regions of virtual address space from the data
cache as required. This facility is used in the “data
mover” routines of the message passing package to im-
prove transfer rates, but the system call mechanism
has too high an overhead to be used for fine grained
concurrency control of specific variables. In general,
local data is left cacheable and shared data is left not
cacheable, with the possible exception of “write once
- read many” variables (hot spots) that are efficiently
handled as write through cacheable shared memory
variables.

Unlike the message passing and SIMD machines
which tend to restrict the user to a single program-
ming model, the BBN TC2000 offers a rich architec-
tural structure presenting many possibilities for the
language developer. BBN offers their Uniform System
[7] for C and Fortran, carried over from earlier ma-
chines which lacked hardware support for interleaved
shared memory. They also offer a parallel extensicn
of FORTRAN (8] which is a snapshot of the Parallel
Computing Forum specification at some point in the
past, this specification is still undergoing evolution at
the current time, In addition to the BBN supplied
programming models, we have made a substantial ef-
fort in developing programming models which fit the
TC2000 architecture well and are implemented in a
manner that preserves portability to scalable archi-
tectures possessing shared memory that we expect to
see in the future.

3 The split-join model

In the traditional fork-join parallel programmirg
model, a single processor starts the execution of the
program and acquires mare processors as Concurrency
is encountered in the code. The fork-join program-
ming model has been quite useful on tightly coupled
shared memory machines with relatively few proces-
sors, and some architectures such as the Alliant FX /8



il

il W oo i e woalb e

and the Convex C2 provide special hardware to make
the dispatch of slave processors happen as quickly as
possible. Scalable machine architectures are not as
tightly coupled and the cost of communication be-
tween processors, heavily used in the process of dis-
patching processors in the fork-join model, is relatively
high. The BBN TC2000 is a realistic example of what
one might expect in this regard, the latency of a cache
hit on local memory is 3 clocks (pipelined at a rate of
one per clock) where as the latency of a remote mem-
ory reference is roughly 40 clocks (not pipelined). If
one must deal with a 40 clock iatency for every mem-
ory reference required in the code used to dispatch
processors, even an efficient spanning tree implemen-
tation can have substantial overhead.

In the split-join paradigm we deal with the high
cost of processor dispatch, and the high cost of com-
munication between processors, by minimizing their
occurrence in the fundamental constructs of the pro-
gramming model. Ali of the processors the job will
ever acquire are dispatched at the start of the pro-
gram and are immediately placed under the control
of the programmer. This bunch of processors which
loosely follow each other through the code is referred
to as a feam of processors. At this level, the program-
ming model is quite similar to Harry Jordan’s Force or
the IBM SPMD model, except perhaps for the deter-
minism which the user can establish with respect to
which processors do what in the split-join paradigm.

Nested concurrency is exploited by the user through
the construct called team splitting. In this construct,
the user explicitly marks off separate blocks of work
which can be executed independently of each other
(it is assumed that each block of work is itself a job
consisting of subtasks which can be executed in paral-
lel), and possibly indicates the relative total amount of
work in each block of code. When the team encounters
the split blocks, it divides into a number of subteams
matching the number of blocks of code and tackles
each block of work with new teams having smaller
numbers of processors. If the user has provided ac-
curate loading information the processors finish their
work at the same time and join back up into the parent
team neatrly simultaneously. The total number of pro-
cessors is conserved in the team splitting process, an
accurate analogy is that the processors “change sides”
becoming members of a new team.

Splitting the size of the team into smaller subteams
as nested concurrency is encountered is counter intu-
itive. The goal, however, in exploiting nested con-
currency is to use a fized number of processors more
efficiently, not to use more processors. The split-join

programming model is in some sense the dual of the
fork-join model. One finds that one can usually ac-
complish the task at hand with either programming
model. The advantage of the split-join programming
model is its full featured, bottleneck free, implemen-
tation through a highly portable preprocessor.

4 The memory model

In the split-join programming paradigm, threc types
of memory are required to fully exploit the notion of
team splitting. These are:

¢ memory which is private to a processor, private
memory,

e memory which is shared among all processors,
shared memory,

¢ and memory which is shared among the members
of a given team or grouping of processors, but
private to it, teamprivaie memory.

Private memory is implemented on the processor
which has access to it. Shared memory is implemented
in the interleaved shared memory facility of the BBN
TC2000. Teamprivate memory is allocated as an array
in the interleaved shared memory, indexed by a team
descriptor which is unique to a given team.

Team splitting is handled in a block structured way.
Each time a processor “changes sides” and becomes a
member of a new subteam, it computes a new team
descriptor and its position in the new team without
accessing any shared memory or synchronization re-
sources. This leads to an efficient bottleneck free im-
plementation of team splitting, the cost of which is
completely independent of the number of processors
in the team. As the processor computes a new team
descriptor, it pushes the old one or a private stack for
recovery when it reaches the end of its share of the
work in the split block. Since a processor carries the
teamn descriptors of all its antecedent teams on a stack,
it has access to the team private memory of a parent
team. This can be very useful in a situation where
the tasks in the split blocks are to compute some re-
sults required by all the members of the parent team,
but for which the use of the top level shared memory
would pose an access hazard due to nested use of team
splitting in a reentrant way.

5 Message passiug

There is good deal of interest in message passing
machines such as those offered by Intel or NCUBE.



To enable the use of message passing library code
within the split-join programming model, and to pro-
vide for portability to message passing machines for
those users who want to use a strict message pass-
ing paradigm, we have developed a message passing
library which runs within the PCP/PFP run time en-
vironment.

The message calls are patterned after the Argonne
message passing package [9], with the addition of
broadcast support. The message passing library cur-
rently functions at the top most level in the split-join
environment, but will be extended so that it can L
used at any nesting level of team splitting. This will
be useful for those applications which would like to use
a message passing library routine deep in the bowels
of some highly concurrent application.

6 Synchronization

Barrier synchronization and the notion of locks are
provided in the PCP and PFP implementations of the
split-join programming model. In barrier synchroniza-
tion, all of the processors in a given team are forced
to wait at the barrier until the last straggler has ar-
rived. A bottleneck free software implementation [10]
is used, requiring 30 to 40 microseconds to synchro-
nize 32 processors. The execution time of the barrier
scales as the log of the processor count. Each team
has its own unique barrier.

The notion of a lock is also provided. A processor
attempting to acquire a lock spin-waits until the the
lock is unlocked and then indivisibly locks it. It then
unlocks the lock, making it available to others when
done with the critical region the lock was being used to
protect. Locks may be loecated in the top level shared
memoty, or teamprivate memory, depending on the
scope of the critical region which is being protected.

In the addition to the use of barriers and locks, the
user may implement an event by simply spin-waiting
on a location in shared, or teamprivate, memory to
change. On a machine supporting coherent shared
memory caches this is particularly effective and has
no negative impact. If the machine lacks this sup-
port, as is the case for the BBN TC2000, one must
be careful about tie possibility of generating adverse
impact on available memory bandwidth through the
introduction of a hot spoi.

7 Debugging and Performance
Monitoring

Debugging a parallel program is typically the hardest
problem faced by a programmer. Simple tools such
as dbx are just not effective in displaying the state of
execution. Reproducing complex timings under these
conditions makes it very hard to debug.

The models presented here fit transparently on top
of the system tools provided by BBN [11]. The to-
talview debugger gives the programmer a view of his
PCP/PFP or LMPS source code. Running under the
X Window System, the debugger shows each separate
paralle] stream with its own window and execution
control. The programmer may debug a stream by it-
self or easily control the parallel program in a global
manner.

The PCP, PFP, and LMPS programming models
also allow a programmer to work with the BBN sup-
plied performance monitoring tool gist. With gist,
trigger points are inserted within the source, the pro-
gram executed, and the results post analyzed with a
graphical analysis tool. The user can view the result-
ing data from various time scaleg, from a global timing
presentation down to a fine grained specific event tim-
ing.

8 Time sharing support

The BBN TC2000, as it arrives from the factory, sup-
porte only the notion of space sharing by dividing the
processors into clusters as users request them. Once
all of the free processors are allocated, a new user must
wait until a cluster is relinquished before being able
to run a parallel program. This is a cominon situa-
tion which occurs on all of the scalable parallel ma-
chines commercially available today. It leads to “sign
up sheets” to allocate computer time, a throwback to
the days we scheduled people onto supercomputers us-
ing similar mechanisms in the 50’s. This is completely
unworkable for a large institutional machine with hun-
dreds of users.

Fortunately, the UNIX operating system runs in ev-
ery node of the TC2000 and this provides an oppor-
tunity for the system support stafl to create a gang
scheduler which runs as a daemon outside of the op-
erating system. When a parallel program starts up
it communicates with the gang scheduler to inform it
with regard to the number of processors required. The
gang scheduler reserves a spatial slot in the machine
for the job to run in, attempting to optimally fill any



holes which exist within its schedule. The gang sched-
uler then proceeds to collectively start and stop jobs
which contend for processor resources in a way which
avoids live lock. The scheduler maintains a notion
of fair share delivery of processor resources, and the
length of time slices can be adjusted to optimize for
interactive response or production throughput as the
~case may be.

9 Discussion

We have described the BBN TC2000 architecture and
the programming models we have developed for use
on it by research staff participants in the Massively
Parallel Computing Initiative at Lawrence Livermore
National Laboratory. These programming models are
routinely used by the research stafl in a wide range of
efforts in computational physics, chemistry, engineer-
ing, and graphics applications. These applications in-
clude, but are not limited to:

¢ 3-D finite element neutron transport,
o cold matter Monte Carlo photonics,
e linear algebra,

e hot matter Monte Carlo photonics,

e the solution of Maxwell’s curl equations,
¢ molecular dynamics for tool cutting,
¢ mixed-zone Eulerian hydrodynamics,
o geophysical fluid dynamics,

o parallelized image rendering,

o lattice-gas hydrodynamics,

¢ quantum mechanics,

o and plasma simulations for fusion energy devices.

The programming support is highly portable, having
its roots in language support developed for earlier bus
based shared memory multiprocessors such as the Se-
quent, Silicon Graphics, Stellar, and Alliant machines.

The key to high performance on the BBN TC2000,
and any future scalable system supporting shared
memory, is the efficient exploitation of data locality.
The split-join parallel programming paradigm imple-
mented via PCP and PFP support the user in pursu-
ing data locality by providing explicit local memory in
the programming model and a predictable execution
environment wherein processors can be tiled onto a
data set in a way which makes maximum use of data
locality.

References

(1] G. F. Pfister, et al, “The IBM Research Paral-
lel Processor Prototype (RP3): Introduction and
Architecture,” Proc. of the 1985 International
Conference on Parallel Processing, pp. T64-771,
August 20-23, 1985.

[2] E. D. Brooks 111, PCP: A Parallel Eztension of
C that is 99% Fat Free, UCRL-99673, Lawrence
Livermore National Laboratory, 1988.

(3] H. F. Jordan, The Force: A Highly Portable Par-
alle! Programming Language, Proceeding of the

International Conference on Parallel Processing,
August, 1989.

[4] F. Darema, D. A. George, V. A. Norton and G.
F. Pfister, A single-program-maultiple data com-
putatioaal mode! for EPEX/FORTRAN, Parallel
Computing, April, 1988.

[5]) BBN Advanced Computers Inc., Inside the
TC2000, Cambridge, MA, 1989.

(6] H. J. Siegel, Interconnection Networks for Large-
Scale Parallel Processing, 2nd edition, McGraw
Hill, New York, 1990.

(7} BBN Advanced Computers Inc., Uniform System
Programming in C, Cambridge, MA, 1990.

[8) BBN Advanced Computers Inc., TC2000 Fortran
Reference, Cambridge, MA, 1989.

[9] Ewing Lusk, et al., Portable Programs for Paral-
lel Processars, Holt, Rinehart and Winston, Inc.,
San Fransisco, 1987.

[10] D. Hensgen, R. Finkel, U. Manber, “Two Al-
gorithms for Barrier Synchronization,” Inter-
national Journal of Parallel Programming, vol.
17(1), pp. 1-17, 1988.

(11} BBN Advanced Computers Inc., Debugging with
the Xtra Tools, Camnbridge, MA, 1990.

U R IR

g



e o .

‘ w LR} v Y " " - " Moy






