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ALTERNATE INTERPRETATION OF THE SUBGRID SCALE EDDY VISCOSITY

by

John D. Ramshaw

ABSTRACT

It is shown that the subgrid scale (SGS) eddy viscos­
ity for numerical calculations of turbulent flow has the 
effect of artificially enlarging the Kolmogorov microscale 
until it becomes comparable to the finite-difference mesh 
spacing. The SGS eddy viscosity is therefore closely an­
alogous to the von Neumann-Richtmyer artificial viscosity 
for shock waves.

1-3Deardorff and others (see references cited by Deardorff) have discussed 
a subgrid scale (SGS) eddy viscosity method for the numerical simulation of tur­
bulent flows. The SGS eddy viscosity is introduced to represent the Reynolds 
stresses which arise due to spatial averaging over the cells of a finite-differ­
ence mesh. We wish to point out that the SGS eddy viscosity may alternatively
be regarded as an artificial viscosity closely analogous to that introduced by

4
von Neumann and Richtmyer for the numerical treatment of shock waves. This in­
terpretation lends useful insight into the SGS eddy viscosity method and the 
conditions for its validity.

In both turbulent flows and shock waves there exist physical length scales 
too small to be represented in practice in a finite-difference calculation. For 
shock waves, von Neumann and Richtmyer dealt with this problem by introducing an 
artificial viscosity designed to increase the thickness of a shock of arbitrary 
strength to a length of the order of the mesh spacing Ax. We show below that 
the same approach is reasonable for turbulence calculations; an artificial vis­
cosity can readily be defined by requiring that the smallest turbulent eddies be 
enlarged to a size of order Ax. The resulting artificial viscosity has exactly 
the form of the SGS eddy viscosity.
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In the inertial subrange, the velocity gradient characteristic of an eddy
1/3 -2/3of size X is of order c X , where e is the energy dissipated per unit time 

5
per unit mass. The velocity gradient increases with decreasing X, and ulti­
mately becomes so large that molecular viscosity can no longer be neglected.
This happens when X ~ n> where n = (v^/e)^^ is the Kolmogorov microscale^ (v is 

the kinematic viscosity), o is the size of the smallest eddies in the flow, in 
which the viscous dissipation takes place. The velocity gradient 8u./8x. in the* J
smallest eddies must be of the magnitude necessary to dissipate energy at the 
rate e: 2vS. - ~e = v'Vn^, where S. . = (1/2) (3u ./3x. + 3u./9x.). In order

I J * O * J 1 J vJ 1

to ensure that n is of order Ax, we artificially set n = C ax (where C is a di­
mensionless constant of order unity) and thereby obtain an artificial viscosity

-k
v defined by

v* = (Cax)2 (2SijSij)1/2 . 0)

★
The artificial viscosity v arrived at in this manner is seen to be identical in
form to the SGS eddy viscosity of Deardorff. However, the interpretation is

★
different: conventionally v is regarded as representing the effect of turbu­
lent motions occurring on length scales smaller than Ax, while the present view- ★
point regards v as enlarging the smallest eddies until they are large enough
(~Ax) to be resolved by the finite-difference mesh.

★
The interpretation of v as an artificial viscosity provides an alternative

"theoretical" basis for evaluating the constant C. It is known^ that viscous

dissipation is a maximum at wavenumber k = 0.2/ri, or wavelength L = 31.4 n.
The smallest wavelength which can be represented in the mesh is 2ax; if this is
equated to L^, the value C = 0.064 results. Larger values of C correspond to
spreading Lm over a larger number of zones. Indeed, there will always be some
viscous dissipation at wavelengths less than in order to represent these
shorter wavelengths in the mesh, it is necessary to use a value of C somewhat
greater than 0.064. This consideration may partially explain why values of C

1-3between 0.10 and 0.20 have given the best results in practice.
The rate of energy dissipation in a turbulent flow is primarily determined 

by the (essentially inviscid) large-scale motions. The rate of energy dissipa­
tion in the smallest eddies is v2/n^, which must continually adjust itself to 

the rate at which energy is supplied by the larger eddies. In a real turbulent
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flow, v is constant and this adjustment occurs through a variation in the eddy
Jc

size t). The use of v reverses the situation by keeping n constant at the value
Cax while v varies as required to maintain the relation e = (v ) /n .

★
The use of v is clearly legitimate only if it has a negligible effect on 

the structure of the larger eddies. Consider a large-scale motion with length 
scale a >> ax and (relative) velocity scale u. Then v ~ (Cax) u/sl, so that

* ★ 9

R = ut/v ~ (ji/Cax) >> 1. In general, therefore, the large-scale motions re-
★

main essentially inviscid in the presence of v . However, the actual value of
•k

R may still be of interest, since the effective Reynolds number of the calcula­
tion is

R e (2)

where R is the true Reynolds number u£/v. (We neglect here the possibility that
an additional "numerical viscosity" is inherent in the difference scheme, an ef-

o
feet which must be carefully considered in practice. ) If it happens that 
★ ★

R << R then Re = R so that Rg will also be << R. This may or may not affect
the calculation, depending on the values involved and the sensitivity of the

★
particular problem to Reynolds number. If R is found to be too small, then it

★
must be increased by refining the zoning; the minimum acceptable value of R may 
be regarded as providing a zoning constraint via the relation R ~ (£/Cax) .
This constraint will not ordinarily be overly restrictive, as indicated by the 
fact that R ~ 40,000 for the typical values C = 0.1 and £/ax = 20.
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