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INTRODUCTION

Knowledge representation for process diagnosis sxpert systems has evolved from
simple rule-based systems, known as shallow knowledge, to more complex model-based
systems, or deep knowledge [Xiang and Srihari]. Shallow knowledge represents the
domain information through a set of "if ... then" rules. These rules are generally acquired
from a domain expert based on experience and judgmental knowledge with no functional
representation of the underlying phenomena. The weakness of rule-based systems is one
of verification and validation. Procedures can not be developed to test heuristically
generated rules for correctness and completeness. Even if the diagnostic rules are
generated in a systematic fashion [Reifman], diagnostic event-based rules can not guarantee
functional completeness. It is simply not possible to anticipate and formulate rules to cover
every conceivable plant situation. Deep knowledge represents the domain information .
through mathematical models of the process under consideration. This model-based
system in the form of quantitative and qualitative simulation algorithms describe the
underlying phenomena of the physical system.

To alleviate the limitations of rule-based systems, attempts have been made to
combine both shallow and deep knowledge as the knowledge structure of a process
diagnostic expert system [Yoshida et al., Venkatasubramanian and Rich]. One approach is
to use shallow rules to hypothesize about the possible failures first, then follow with deep



knowledge reasoning to test each one of the hypotheses. The success of this approach is
highly dependent on the ability of the shallow rules, which can not in general be verified
and validated [Kirk and Murray], to hypothesize correct faulty candidates. By
incorporating basic physical principles into the shallow knowledge, the focus of this paper,
the rules could be verified and validated. Verificatior and validation would require proving
only that the knowledge is represented correctly, not tiat the knowledge itseif is correct.

In this paper we present a methodology for identifying faulty component candidates
of process malfunctions through basic physical principles of conservation, functional
classification of components and information from the process schematics. The basic
principles of macroscopic balance of mass, momentum and energy in thermal hydraulic
control volumes are applied in a novel approach to incorporate deep knowledge into the
knowledge base. Additional deep knowledge is incorporated through the functional
classification of process components according to their influence in disturbing the
macroscopic balance equations. Information from the process schematics is applied 1o
identify the faulty component candidates after the type of imbalance in the control volumes
is matched against the functional classification of the components. Except for the
information from the process schematics, this approach is completely general and
indepencent of the process under consideration. The use of basic first-principles, which
are physically correct, and the process-independent architecture of the diagnosis procedure
allow for the verification and validation of the system. A prototype process diagnosis
expert system is developed and a test problem is presénted to identify faulty component
candidates in the presence of a single failure in a hypothetical balance of plant of a liquid

metal nuclear reactor plant.
FIRST-PRINCIPLES KNOWLEDGE

The diagnostic methodology presented in this paper utilizes basic physical
principles and process-based knowledge. Basic physical principles are used both for
analysis of macroscopic mass, energy and momentum balances in thermal hydraulic control
volumes and for the physical functional classification of the process components. Process-
based knowledge is used to represent the structural arrangement of the various components
and systems of the process and corresponding connectivity relations. In this section, we
describe the framework for development of the balance equations, the functional
classification of components and the process structural information that form a first-

principles knowledge base.



The Macroscopic P alance Method
In this work, the analysis of macroscopic mass, energy and momentum imbalances

in thermal-hydraulic control volumes is characterized by the effect of the variations of
thermal-hydraulic and therrmodynamic macroscopic properties in the equations of state.
The equations of state, which describe the relations among macroscopic properties, can be
used to relate the variations of properties such as fluid velocity v, pressure P and
temperature T to the total mass M, energy U and momentum M inventories for a give'ﬁ

control volume V

M=p®T)V, (1
U=MhPT)-PV, )
M=My, 3

where p(P,T) is the fluid density and h(P,T) is the fluid specific enthalpy. Imbalances in
the mass, energy and momentumn inventories are characterized by analyzing the changes in
fluid velocity, pressure and temperature in Egs. (1) through (3). The process of evaluating
these imbalances is divided into three categories: (A) Single-phase mass and energy
balances, (B) Two-phase mass and energy balances, and (C) Momentum balance.

A. Single-Phase Treatment of Mass and Energy Balances

For control volumes containing single-phase fluid, pressure and temperature are
two independent thermodynamic properties which are readily available and can be used to
specify the state of a substance in both subcooled liquid and superheated steam conditions.
Changes in pressure P and/or temperature T of a single-phase fluid would cause changes in
the fluid density p(P,'1) and specific enthalpy h(P,T), which in tum would cause variations
in mass M and energy U inventories of Egs. (1) and (2), respectively. Analysis of the
variations of M and U as a function of changes in P and T can be obtained through the
analysis of the differentials dM and dU of Egs. (1) and (2), for a fixed volume V

_yldp - op }
mw_v{aTdr+anP .and @
_wvial1[dp . dp ]l[o”h oh i
dU—Vhp{p[———ardT-}———anP ol ST+ 5P | ()



where the term P V in Eq. (2) has been neglected.
With the use of tables that represent the equations of state, €.g., steam tables for

water, the variations of p and h as a function of P and T can be directly obtained and used
to analyze dM and dU. The analysis can be quantitative or qualitative. Quantitative
analysis consists of a table lookup, where values for p and h are obtained from
measvrements of P and T and are then compared with the expected values of pg and hg 10

determine dM and dU as .

dM = M(p) - M(pg), and
dU = U(p,h) - U(po.ho)-

Quantitative analysis requires the storage of the equation-of-state tables in a program
routine and is performed on-line for each diagrosis operaton. On the other hand,
qualitative analysis requires no storage of tables, needs to be performed only once and can
be incorporated in the knowledge base of a diagnosis system as a set of precompiled first-
principles rules. These rules are physically correct and are completely general in that the
rules are independent of the process under consideration. However, qualitative analysis
may generate ambiguous results due to some loss of information [De Kleer and Brown].
For instance, the addition of quantities of opposite sigﬁ results in ambiguity, since relative
maguitudes are not known. Hence, a hybrid utilization of qualitative and quantitative
analysis of the balance equations is a feasible alternative. Quantitative analysis can be used
when qualitative reasoning results in ambiguity.
Qualitative analysis of Eqs. (4) and (5) is performed in the equivalent equations
P
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through qualitative algebraic operations with the trends of the quantities inside the bracket
[.J. Given the signs or trends (increasing, decreasing, constant) in the partal derivatives
and differentials of the right-hand-side of the equations, analysis is performed by applying
the operations of qualitative algebra of product (.) and addition (+) among the brackets.
The trends in the differentials dT and dP are readily available from the variations in T and
P, respectively. The trends in the partial derivatives, dp/dT, 3p/aP, ah/oT, oh/oP, are




directly obtained from the equation-of-state tables and are illustrated in Table I for the steam
tables. From this point on, the steam tables are used as an example of the equation-of-
state, but the presented methodology is general and is not limited to water properties. All
eight partial derivatives in Table I present a monotonic behavior with the exception of dh/oP

for subcooled liquid after about 523 K. After 523 K oh/0P becomes slightly negative. The
monotonic behavior of the partial derivatives is fundamental in the qualitative analysis of

the balance equations.

Table 1. Trends in the Partial Derivatives.

op /oT | op /dP oh /oT ch /P

Subcooled l T a T ?b
Liquid
Superheated

2 negligible changes due to water imcompressibility
b until 523K

The operations of qualitative algebra of product and addition of a change AX in
variable X and a change AY in variable Y are represented in Tables II and 111, respectively.
The trends in AX and AY can yield either increasing (T), decreasing ({), constant (~) or

indeterminate (7) qualitative inferences. For instance, Table II shows that the product of an
increasing trend in AX (T) and a decreasing trend in AY ({) yields a decreasing ({) trend.

The addition of similar trends in AX and AY, illustrated in Table III, results in an

indeterminate (?) or ambiguous inference.



Table I. Qualitative Product [AX] . [AY].

J~14]+4

AX

Table . Qualitative Addition [AX] + [AY].

The qualitative analysis of the mass inventory of Eq. (6), for single-phase fluid, is
illustrated in Table IV. The rows of Table IV correspond to the nine possible combinations
in the trends of T and P, which are represented in the first and second columns of the table.
The third and fourth columns correspond to the qualitative behavior of the mass inventory
for subcooled liquid and superheated steam, respectively, as a function of the trends in T
and P of the associated row. The qualitative behavior of the mass inventory for the first
seven rows of the table are uniquely obtained by applying the information of Tables I, II
and III into Eq. (6). For example, in the case of AT T and AP |, represented by the sixth
row of Table IV, the decreasing ({) behavior of the mass inventory in both subcooled
liquid and superheated steam conditions is obtained by substituting the trends of Table I
into Eg. (6) and applying the qualitative operations of Tables I and III
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Table IV. Qualitative Analysis of Single-Phase Mass Inventory.

Variations Mass Inventory (AM)
Temperamre A T ;' Pressure (AP) | Subcooled Liquid | Superheated Steam

1 ~ - ~ ~
2| 4 - y !
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| - 4 $ 4
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5| 4 ¢ v ?
ol v | ¢ ?

3 Negligible changes due to water imcompressibility
bFor |AP ] < 100| AT |
P T




For the last two rows of Table IV, ambiguities in qualitative operations prevent a unique
characterization of the behavior in the mass inventory for both subcooled liquid and
superheated steam conditions. For instance, for the eighth row where AT T and AP | we

obtain:
_[]ary.[%
[aM]= [ J].[ﬂ] + { 8P} [aP],
= [{1.[T) + [T1.[T)
M——Y——J \_V—J

The qualitative addition of a decreasing first term with an increasing second term results in
the indeterminate (?) behavior of dM. Hence, the net result depends on the relative
magnitude of the two terms. For subcooled liquid, parametric studies show that for
reasonable changes in T and P the first term of Eq. (6) is the dominant one, due to the
negligible compressibility of water, causing dM to decrease. An exception to this tendency
would occur only when the relative change in P is about two orders of magnitude larger
than the relative change in T. For superheated steam, a general trend cannot be obtained for
the last two rows of Table IV. The net result of Eq. (6) oscillates between the two terms
depending on the relative variations of T and P. In this case, quantitative analysis needs to
be used to unambiguously determine the trend in dM.

A similar approach could be used to obtain the qualitative behavior of the energy
inventory dU of Eq. (7). The problem with this approach is that the large number of
qualitative addition operations generally results in an ambiguous inference. Instead, the
analysis of the qualitative behavior of the energy inventory is obtained directly through
parametric studies of T and P with the steam tables. The resuits of the analysis are
presented in Table V, wk:ch has the same layout as that of Table IV. The table shows that
a general qualitative behavior of the energy inventory can be obtained for almost all
possible combinations of the variations of T and P. However, as in the analysis of the
mass inventory, the last two rows of Table V for superheated steam are also indeterminate.
In this case, as in Table I'V, the ambiguity can be resolved only for specific changes of T
and P, and quantitative analysis needs to used.



Table V. Qualitative Analysis of Single-Phase Energy Inventory.

Variations Energy Inventory (AU )

Temperature A T)] Pressure (AP) | Subcooled Liguid Superheated Steam
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B. Two-Phase Treatment of Mass and Energy Balances

The analysis of mass and energy balances for a control volume containing two-
phase fluid is restricted to components in which the liquid f and the vapor g phases are
separable and assumed to be at their corresponding saturation conditions. Since under
saturation conditions pressure and temperature are not independent thermodynamic
properties, the trend in the measurable liquid level L is used in addition to the saturation
pressure P, to determine the behavior of the total mass M and energy U inventories. As an



extension to Eqgs. (1) and (2), P and L can be related to the total M and U inventories of a
given control volume V through the equations of state

M =Mr+ Mg,
= pf(P) VH(L) + pg(P) Vg(L), @®)
= A {pf(P) L +pg(P) (H - L)},

U =Us+ Ug,
= pf(P) he(P) V(L) + pg(P) hg(P) Vg(L), &)
= A {pf(P) hf(P) L + pg(P) hg(P) (H - L)},

where the P V term in Eq. {2) has been neglected, and A is the cross-sectional area and H is
the total height of the control volume V, pf is the saturated-liquid density, pg is the
saturated-vapor density, bf is the saturated-liquid enthalpy and hg is the saturated-vapor
enthalpy. :

The qualitative analysis of M and U in Eqgs. (8) and (9), or the differential
counterparts dM and dU, requires the utilizaiion of the steam tables for extraction of the
values of pf, Pg, hf and hg as functions of the variations in P and L, plus the knowledge of
the component total height H. The latter requirement stipulates a geometiic dependency in
the analysis of both equations and prevents the precompiled construction of the physical
first-principles rules. Since our approach is intended to be generic and independent of the
process being diagnosed, the physical rules describing mass and enesgy imbalances for
two-phase fluid are generated on-line, through table lookup, as the process experiences a

malfunction.

C. The Momentum Balance
The analysis of momentum balance in a control volume requires more information

than does that of mass and energy . In addition to the knowledge of temperature and
pressure for the rontrol volume under consideration, momentum balance also requires
information about the fluid velocity. The product of the fluid velocity v and the total mass

M defines momentum M., as described in Eq. (3). Since the fluid velocity v is generally
obtained through measurements of the mass flow raie W, where W = v p A, with A being

the cross-sectional area of the control volume, Eq. (3) can be rewritten in terms of W, with

the use of Eq. (1),

10



M=LW, (10)

where L is the length of the control volume. Since L is fixed for a given volume, the
analysis of momentum balance is directly obtained through the differential

dM =L dW. (11)

Hence, momentum is added to a control volume if the associated measured flow rate W is
increasing and it is subtracted from a control volume if the associated measured flow rate is

decreasing.

Functional Classification of Components
The methodology for process diagnosis presented in this paper relies on the

characterization of imbalances in the process components, as described in the foregoing
paragraphs, along with the functional classification of the components. Each component
t;}'pe, e.g., pipe, pump and electric heater, is functionally classified according to the
component influence in causing an imbalance in the conservation equations if and when the
component fails. For example, a pump should be functionally classified as a source or sink
of momentum because a pump failure causes an ir:balance in the momentum conservation
equation. This method differs from other approaches to functional characterization of
components [Finch and Kramer] in that each component type is classified only once and
that the classification is based on physical laws, as opposed to multiple and judgmental
classification based on the importance of the component in a given context.

Table VI illustrates the functional classification of some of the most common
components present in industrial processes. For instance, the last component in the table, a
valve, functions both as a sink or source of momentum. A valve leak or unexpected
closure would cause a negative balance in the momentum conservation equation, yielding a
functional classification for the valve as a momentum sink. On the other hand, an
unexpected valve opening would cause a positive balance in the momentum equation,
yielding classification as a momentum source. The classification presented in Table VI
represents the major.influence of a component in one of the three (mass, energy and
momentum) balance equations. Each component type can, hiowever, be hierarchically
classified according to the component capability in disturbing each one of the three
balances. A hierarchical component classification would increase the comprehensiveness
of the diagnosis but it would, most likely, depend on the phase of the substance, e.g.,
liquid or vapor, being transported through the component.

11



Table V1. Functional Classification of Components.

sy

Component | Functional Classification

Pump Momentum Source or Sink

Pipe Momentum Source and Sink .

Electric Heater | Energy Source or Sink

Valve Momentum Source or Sink

Process Structural Representation
In addition to the functional behavior of the various systems and components of a

process plant, plant operators also use their understanding of the structural arrangement of
these components when faced with unexpected scenarios and being forced to diagnose the
unfolding event and make corrective control actions. The operator's structural
understanding of the process relates to graphical or schematic representations of the plant in
the form of piping and instrumentation diagrams (P&IDs). Since the information content
of a P&ID is essential for diagnosing process malfunctions and it is readily available, yor a
given process, it has been constantly used as part of the knowledge base of a process
diagnosis expert system. In the first generation of expert systems, the information content
of the P&IDs was embeded 1n the production rules. More recently, the P&IDs have been
represented in a separate knowledge base [Hashemi] which allows for complete
independence between the diagnosis methodology and the plant process. The following
paragraphs describe the representation of schematic diagrams within the context of the
proposed diagnosis methodology.

In this work, the structural domain knowledge of schematic diagrams of a process
is represented through directed graph structures and is compiled in a separate knowledge
base. The description of a schematic diagram by a graph structure is achieved through a
straightforward nodalization process. Each component or component part in a schematic
diagram is a node of the graph, while each connection between two components
corresponds to an edge. When the edges are directed, i.e., represented by ordered pairs,

12



the graph is a directed graph. Furthermore, a graph structure can be decomposed into
loops, i.e., sub-graphs, just as one defines loops or circuits in a schematic diagram.

Figure 1 illustrates the schematic diagram of a balance of plant (BOP) for a liquid
metal nuclear reactor (LMR) plant. The nodalization of the components in Figure 1 that fall
inside the dashed lines is represented in Figure 2. Each component or component part
surrounded by the dashed lines in Figure 1 corresponds to a node in Figure 2, while the
physical connections between components, i.e., the pipings, are represented by the directed
edges or arcs of the graph structure in Figure 2. The possible paths between two
components and the distinction between heater tube and shell sides in the schematic
diagram are characterized in the graph structure as distinct loops.

The knowledge base corresponding to the directed graph structure representation of
a schematic diagram describes three kinds of informaticn: component specific, intra-loop

and inter-loop.

(i) Component specific information - describes the characteristics of
each component including: component name, type, fluid phase, value and
trend of four plant parameters (temperature, pressure, liquid level and
flows), and behavior (source or sink of mass, momentum and energy).

(ii) Intra-loop information - describes ail possible paths between
any two components in a given loop.

(iii) Inter-loop - describes which components of a loop are adjacent
to components of another loop and all possible paths between any two
components of distinct loops.

This knowledge base is the only process-dependent data of the proposed diagnosis
methodology, and it can be easily improved or modified to accommodate any changes in

the process.
DIAGNOSIS PROCEDURE

After the methods for estimating macroscopic imbalances, classifying components
and describing the process schematics have been developed, diagnostic rules and
procedures can be applied to identify the possible faulty components. In essence, the
diagnostic procedure first identifies a component malfunction with respect to violations in
the conservation equations and then relates unusual changes in these factors with
appropriate component functionality and location. The diagnostic procedure assumes the
occurrence of single faults and availability of validated sensor measurements in the process

13



components. In addition, knowledge of the correct state of the process at the onset of the
malfunction is also assumed to be known. The single-fault assumption, and that of
complete availability of sensor measurements are noi constrained by the proposed
methodology and may be relaxed in future developments and implementations of the
algorithm.

MOISTURE
SEPARATOR A
VALVE : R
TURBINE
() ‘M— Pl !
—————— _J ]
[ R
| |
i DEAERATOR -
| ’ |
STEAM | f
ENERATOR' |
] £ -
] | HEATER #3
-
: |
I | CONDENSER
l 1 l A4
i LﬁEATER #2  EEATER #) ; i
RIVER RIVER
WATER WATER
- " CONDENSATE ™ -

. Pump

Figure 1. Schematic Diagram of a Balance of Plant for a Liquid Metal
Nuclear Reactor Plant.
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Figure 2. Directed Graph Structure Representation.
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The initiating process fault will cause one or more of the four monitored sensor
measurements (temperature, pressure, liquid level and flow) to deviate from the expected
state in one or more components. The diagnosis procedure for these misbehaving

components involves the following four steps:

1. State deviations and corresponding increasing or decreasing trends are defined
by establishing threshold values {Finch and Kramer] for each one of the four sensor
measurements and comparing the expected component state with associated measurements,

2. Based on the trends of the varying measurements and the condition of thé
components (subcooled liquid, saturated, superheated steam), the precompiled physical
rules of Tables IV and V and/or table lookup through the steam tables are used 1o
characterize mass and energy imbalances in the components. Momentum imbalances are
characterized through direct measurements of mass flow rates. The increasing or
decreasing imbalance directions characterize the behavior of each component as a source or
sink, respectively, of mass, energy and momentum.

3. A set of possible faulty component types, e.g., pump, pipe and electric heater,
is generated by matching the type (mass, momentum or energy) and direction (source or
sink) of estimated imbalances against a component functional database such as the one
described in Table VI

4. Faulty component candidates are hypothesized if the type of the misbehaving
components matches one of the component types generated by step 3. The matching
process is implemented through the knowledge base that describes the schematic diagrams

of the process.

The diagnosis procedure can be better understood through an example. An
unexpected reduction of the pump motor torque of the feedwater pump in Figure 1 would
cause a slight pressure increase upstream of the pump, a pressure decrease downstream and
a decrease of the mass flow rate both up and downstream of the malfunctioning pump.
These deviations cause the components up and downstream of the pump, which are
transporting subcooled liquid, to behave as momentum sinks. The functional classification
of pumps and vaives as sources o1 sinks of momentum and the existence of these two
componunt types in the group of misbehaving components flag the feedwater pump and
check valve as possible faulty components. Detailed diagnosis, to distinguish between a

pump and a valve failure, can now be applied.

16



TEST PROBLEM

The methodology presented in the last two sections has been incorporated in a
prototype expert system for on-line process diagnosis. The diagnosis system is written in
Prolog and consists of three distinct knowledge bases and an inference engine. The
knowledge bases for estimating the macroscopic imbalances in mass, momentum and
energy and that describing the functional classification of components are based on physica—l
principles and so are process-independent and are constructed once for analysis of any
process. The third knowledge base, describing the process schematics, is created through
a query session with the user that automatically generates Prolog procedures representing
the process. This knowledge base is process-specific; however, it is isolated from the rest
cf the system and can be easily modified or reconstructed for different processes. The
inference engine is also general and process-independent and consists of the diagnosis
procedures of the previous section and rules for controling the search.

To test the prototype expert system, a test case representing the BOP for a LMR
plant illustrated in Figure 1 has teen selected. The BOP contains subcooled water with the
excepticn of the shell side of all heaters and in the line beyond the saturation point inside
the steam generator. The entire LMR plant, from the reactor core (not shown in Figure 1)
to the waterside condenser, is modeled with the SASSYS-1 system analysis code [Dunn et

al., Briggs, Ku] to simulate four maifunctions:
1. Reduction of the feedwater pump motor torque by 50%,

2. Closure of the feedwater check valve area to 10% of nominal,

3. Rupture of the piping connecting the tube side of heaters #1 and
#2 at a constant rate of 30 kgfs, and

4. Rupture of the piping connecting the shell side of heaters #1 and
#2 at an increasing rate of 0.2 kg/s.

All four process malfunctions are correctly hypothesized by the expert system within 11s
into the transient. In the first two cases, however, both feedwater check valve and pump
are selected as possible faulty component candidates. This is due to the fact that the two
comvonents, valve and pump, are functionally classified as source or sink of momentum,
and the failure of either one would cause the components of the tube-side loop, from the
deaerator to the steam generator, to behave as a momentum sink. In this case, a more

17



detailed diagnosis, perhaps involving quantitative simulation, is required to distinguish
between the two faults. The last two events characterizing pipe ruptures in the the tube and
shell sides, respectively, are uniquely hypothesized by the expert system. A tube rupture
causes the upstream components to behave as momentum sources while causing the
downstream components to behave as momentum sinks. Hence, by classifying a pipe as a
sink and source of momentum and knowing which components are behaving as sources of
momentum and which are behaving as sinks of momentum, the type and location of the

malfunction is uniquely determined.

b4

CONCLUSIONS AND FUTURE WORK

The presented methodology appears to provide a powerful and effective approach
for incorporating basic first-principles into the knowledge base of a general process
diagnosis system. The methodology identifies faulty component candidates which can then
be singled ouvt with deep-knowledge reasoning. The use of basic physical principles
produces a small, general and comprehensive set of diagnostic rules and methods which are
physically correct. The generality of this approach is achieved through the clear separation
of the process-dependent schematics representation from the remaining process-
independent knowledge bases and inference engine. These factors produce a robust
process diagnosis methodology which can be effectively verified and validated through
standard techniques.

Several different areas are currently being investigated to expand the
comprehensiveness of the method and relax some assumptions. In order to increase the
comprehensiveness of the method, a hierarchical functional classification of the
components to each one of the three (mass, energy and momentum) balance equations is
being investigated. In addition, the proposed methodology needs to handle the propagation
of secondary or side effects caused by the initiating malfunction. Studies of qualitative
modeling through causal reasoning are being investigated to account for the propagating
effects. The assumption of complete availability of certain sensor measurements could be
relaxed, in favor of a more realistic situation of limited instrumentation, through a set of
physically-based rules that extrapolate data based on the existing instrumentation. The
single-fault assumption can be relaxed, for the faults that cause non-masking effects on the
measurements, by expanding the inference engine to represent multiple failures.
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