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ITERATIVE SOLUTION OF LINEAR PROGRAMS 

by 

· 0. L. Mangasarian 

Abstract 

By perturbing a linear program to a quadratic program, it is possible 

to solve the latter in its dual variable space by iterative techniques 

such as successive over-relaxation (SOR) methods. This provides a 

solution to the original linear program. 

iV 

., 
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1 • · Introduction 

We shall be concerned here with iterative methods for s.olving the 

linear program 

subject to Ax > b = 
( 1 ) 

where · p and b are given vectors in Rn and Rm, respectively, and 

A is a given mxn real matrix with no rows that are identically 

zero. The most popular methods for solving this problem are direct 

pivotal methods such as the simplex method and its variants (Refs. 1-2). 

However, more recently there have. been a numb~r of iterative procedures 

proposed (Refs. 3~8). Some of these (Refs. 3-5) consist of an 

iterative method for finding a feasible point of the Karush-Kuhn-Tucker 

inequalities that constitute the optimality conditions of the linear 

program (1). Others (Refs. 6 and 8) consist of ·minimizing a nonsmooth 

reformulated problem or (Ref. 7) finding stationary points of an 

augmented Lagrangian. Our approach here is different. We consider 

the following quadratic programming perturbation of (1)': 

M • ·• • £ T T 
••1nlm1Ze f X X + p X subject to Ax > b (2) 

It has been shown (Ref. 9) that (2) has a unique· solution x, for· 

all £ in (O,E] for some £ > 0, which is independent of £ and 

which also solves the linear program (1). By working in the dual 

variable space of (2), we can util;ze the iterative techniques 

developed in (Ref. 10) for solving the symmetric linear complemen­

tarity .problem to solve (2). It turns out that a sufficient condition 
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for the iterative method to lead to a solution is that the constraints 

of the linear program (l) be stable (Ref. 11), which in this case 

means that they satisfy the Slater constraint qualification (Refo 12)o 

It is interesting to note that in order to obtain convergence of the 

present iterative methods use is made of various recent results con­

cerning linear programs, namely (a) nonlinear perturbation of linear 

programs· (Refo 9) which originated with the uniqueness chnracterization 

of linear programming solutions (Ref. 13), {b) stability of systems 

of linear inequalities (Ref. 11) and (c) general sufficient conditions 

for·the convergence of iterative techniques for the solution of the 

symmetric linear complementarity problem (Ref. 10). 

The outline of the paper is.as followso In Section 2 we· 

descfibe how our proposed iterativ~ procedure is applied to a general 

quadratic program with a positive definite Hessiano This procedure 

may be used also in finding the projection of a point on a polytopeo 

In Section 3 we adapt the procedure of Section 2 specifically for 

solving the linear program {1) by solving the perturbed quadratic 

program {2). In Section 4 we give an algorithm for the solution ~f 

more general 1 inear programso In Section 5 \'/e present somP. numerical 

results which show that when the perturbation and relaxation parameters 

are properly ch6sen our prqposed iterative method is ~ompetitive with 

the revis~d simplex method (Refs. 1-2) and may even be more robust in 

that it can solve problems for which a revised simplex code failso 

We briefly describe now the notation used in this papero All 

matrices and vectors are real. For an mxn matrix A, row i is 

·• 

•, 
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d~noted by A; and. the element in row i and column j by Aij". 

For x in the real n-dimensional Euclidean space Rn, element j 

is denoted by X· o 
J 

the superscript T denotes the transpose. All 

vectors are column vectors unless transposedo Superscripts such as 

Ki i 
' u refer to specific m·atri ces and vectors and usually denote 

iteration numb,ers. If . u is in Rm, u+ denotes the vector in Rm 

with elements 

The vector e \'li 11 denote a vector of ones in Rm or Rn, and I 
. T !.z 

denotes the mxm identity matrixo The Euclidean norm (x x) of a 

vector x in Rn will be denoted by llxll •. 
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2.· Iterative Solution of the Quadratic Programrning Problem 

We shall consider in this section the quadratic program 

M. . . 1 TQ T 1n1m1ze l x x + p x subject to Ax > b 

where p, b, Q and A are respectively a vector in Rn, a vector 

in Rm, a real S.YJTUTletric positive definite nxn matrix and a real 

mxn matrix. We shall develop an iterative algorithm for solving 

the dua 1 of ( 3) (Ref. 12) i 

subject to Qx - AT u + p = 0, u > 0 

which under the positi·ve definite a~sumption on Q ·is, upon elimi-

nating x, equivalent to 

Minimize 1
2 

uTAQ-lATu - (b+AQ-1p)Tu 
u >0 . 

;;.;,..,;.; 

-
The proposed iterative pror.edurP. will solve (5}, and from the .. 
solution u the solution x of (3) is then obtained from 

Because the proposed procedure 1nvolves the inversion of the matrix 

Q, it is not, in general, a suitablP. procedure for solving {3) with 

a general Q. However, for certain applications such as those 

requiring the solution of (2}, Q is the diagQnal matrix £1, which 

is easily inverted. Another such problem is that of projecting a 

point c in Rn on the polytope {x!Ax>b} using the Euclidean 

norm, in which case Q = I and p = -c. 

(3) 

(4} 

(5) 
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We are now ready to apply the results of Ref. 10 to· solve (5} 

iteratively once we realize that, since AQ~lAT is positive semi-. 

definite, (5} is equivalent to the following symmetric linear 

complementarity problem : 

We shall use the following special case of Algorithm 2.1 and 

Remark 2.4 of Ref. 10. 

Algorithm 2.1 Let u0 be an arbitrary nonnegative vector in Rm. 

Having ui compute ui+l as follows: 

where E is a positive diagonal matrix, Ki i~ either the strict 

lower triangular part L or the strict upper triangular part U of 

AQ-lAT, G is the diagonal of AQ-lAT and 

(7} 

(8} 

0 < w < 2 I max G .. E. · (9} 
G .. >0 JJ JJ 
JJ . 

i+l Note that for computing purposes u is computed in the order 
i+l i+l . i+l . 

u1 u2 , ••••• .,urn ·when K1 
= L and in the reverse of that 

order when Ki = U. 

The following theorem is a direct consequence of Theorem 2.1 of 

Ref. 1 o .. 

. .<~· 
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Theorem 2.1 Let Q be symmetric and positive d.efinite. Then, each 
i . 

accumulation .point . u of the sequence {u } generated by Algorithm 2.1 

solves (5) and the corresponding x determined by (6) is the unique 

solution of (3). 

This theorem does not guarantee the existence of an accumulation 

of the sequence {ui}, whereas the following one does under the 

slightly,more demanding condition of a constraint qualification •. 

Theorem 2.2 Let Q be synuueLi·i~.; dud pus1t1ve def1n1te, and ·Jet the 

con~traint$ of (3) su.tisfy the Slater constniiut qualification, that 

is, Ax> b for some x in Rn. Then the sequence {ui} generated by 

Algorithm 2.1 is bounded and has at least one accumulation point. 

Each accumulation point u of {ui} solves (5), and the corresponding 

x determined by {6) is the unique solution of (3) •. 

Proof Because Ax > b, there exists a o > 0 such that the set 

{x!Ax~b+oe) is nonempty~ Let x be the solut1on of the quadratic 

program 

· subject to Ax > b + oe 

A solution x to this problem exists because Q is positive definite 

and together with a u in Rm satisfies the follm>~ing .Karush-Kuhn-Tucker 

conditions (Ref • .-12):. 

Qx + p - ATu = 0, ti 2:, 0, Ax~ b + oe, tiT(Ax-b-oe) = 0 
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Hence 

By Theorem 2.2 and condition (10) of Ref. 10, the sequence {ui} is 

bounded and has at least one accumulation point. By Theorem 2.1 

above, each accumulation of {ui} solves (5), and the corresponding 

x determined by (6) is the unique solution of (3). 0 

Remark 2.1 The Slater constraint qualification is equivalent to 

the stability condition (Ref. 11) that for each d in Rm there 

exists (x,e:) in Rm+l satisfying 

Ax ~ b + e:d, e: > 0 
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· 3. Iterative Solution of the Linear Programming Problem 

We no~J turn our attention back to the 1 inear program (1) and 

state a result which is a direct consequence of Theorem 1 of Refo 9. 

Theorem 3.1 Let the linear program (1) have a solution. Then there 

exists a real positive number £ such that for each £ in the interval 

(O~~J · th~ unique solution i of (2) is independent of £ and is also 

a solution of the linear program (1). 

Fr·om the pruuf of Th~orem ·1 of Ref. 9 we can obtain an 

- - 1 !. posteriori upper bound on ·£ of the above theorem~ namely ~ £ < Y , 

where ~ is the positive optimal Lagrange multiplier ~ssociated 

with the last constraint of the problem 

subject to Ax~ b, pTx < 8 

and where e is the minimum of problem (l)o If y = 0, then E can 

be any nonnegative number. There is also another in~erestin~ 

interpretation of c (Ref. 14). If we tltke Lh~ dual (Ref. 12) of 

the convex quadratic program (2), we obt~in the problem 

subject to u > 0 
= 

This is precisely the exterior penalty problem associated v1ith the 

dual linear program of (1): 

M • • bT ax1m1Ze u subject to ATu = p, u ~ 0 

with penalty parameter· a=!. Results of ordinary exterior penalty. 

,., 
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methods (Ref. 15) require that a +oo and hence· E +·0. However, 

sharper results that take advantage Qf line~~ity:of the problem 

(Ref. 16) require merely that a > & for some & > 0 · o~ equivalently 

E ~ £ for some £ > 0. These sharper results correspond to the cited 

results of (Ref. 9). 

We can now combine Theorem 3.1 with Algorithm 2.1 to solve 

problem (2) with any E in (0,£] and thus obtain a solution to 

the linear program (1); In particular we set in Algorithm 2.1, 
-1 T Q = £1, E = ED , where D is the diagonal of AA , and obtain the 

following. 

Algorithm 3.1 Choose a positive number E and any nonnegative vector 

UO . Rm 
1 n • 

. .+1 
Having u1 compute u1 as fol1ows 

( i -1 ( T i i ( i +1 i ) ) ) = u -wD AA u -Ap-Eb+K u -u + 

where D is the diagonal of .AAT, that is, 

. T . 
= Aj (Aj) , .J = 1, •••• ,m 

Ki is either the strict lower triangular part L or the strict 

upper triangular part U of AAT, and 0 < w < 2. 

Combining Theorems 3.1, 291 and 2.2 , we obtain the followiflg two 

convergence theorems for Algorithm 3.1. 

Theorem 3.2 ·There exists a.real positive number £ such that for 

each E in the interval (0,£], each accumulation point u of the 

( 10) 
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sequence {ui} generated by Algorithm 3.1 solves 

~1inimize ~ uTAATu;.; (Eb+Ap}Tu 
u >0 = 

and the corresponding x which i~ independent of E and deter­

mined by 

-1 ( T } x = E A u-p 

is the unique solution of (2} and is ~lsn a solution of the linear 

program (1). 

We again note.that Theorem 3.2 does not guarantee the existence 

of an accumulation point whereas the following theorem does under 

the additional assumption that the constraints are stable. 

Theorem 3.3 Let Ax> b for some x ·in Rn. There exists a real 

positive number € such that for each E in the interval (0,€], 

the sequence {ui} · generated by Algorithm 3.1 is bounded and hus at 

least one accumulation pointo Each accumulation· point u of {ui} 

solves (11}, and the corresponding x, which is independent of E 

and determined by {12}, is the unique solution of (2) and is also a 

solution of the linear program (1}o 

( 11 } 

. (12} 
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4. More General Linear Programs ' · · 

We outline i"n this part of the paper the corresponding results 

for the case of more general constraints and omit the proofs which 

are similar to those of Ref. 10 and of Section 3 of this paper. In 

particular we consider here instead of (1). the linear program 

subject to Ax > b, Cx = d 

where the additional equality constraint is specified through the 

kxn matrix C and ·t"he vector d in Rk. We note that this problem 

·encompasses linear programs of a very general type. \~e shall again 

assume, for simplicity, that no rows of A or C are identically· 

zero· and associate with (13) the following quadratic program for some 

positive e: : 

(13) 

M• • • e: T T 1n1m1ze 2 x x + p x subject to Ax > b, Cx = d . (14) 

and the corresponding dual problem 

Minimize l(u)T (A) (ATCT) (u'\- (Ap+cb'\Tfu) 
(u,V)ERm+k 2 V \_C , \_vj \.Cp+e:d) \v 

u > 0 

where the relation between x, u and v i.s g:iven by 

-1( T T ) x = e: A u+C v-p 

The iterative procedure associated with (15) is as follo\'IS. 

(15) 

(16) 
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·Algorithm 4.1 Choose a positive number £, an arbitrary non­

negative vector u0 in Rm and an -arbitra.ry vector v0 

in Rk. Having 0j ( u "+~' compute ~ ~ + V as follm'ls 

,. 

~::9 = (0~ -wo-1 ((~)(AT CT) ~v _ ~~ 0 (~) + Ki~::;~~l 
where o 1s the diagonal of (~)(ATCT), Ki is the strictly lower or 

upper triangular part of the same matrix, 0 < w < 2 , and 

Theorem 4.1 .There exists a real 

each £ in the interval (0,8], 

positive number 8 such that for 

each accumulation point (~) of the 

sequence generated by Algorithm 4al snlves.(lS) ~ and the 

corresponding x determi.ned by (16), which is .independent of c, is 

the unique solution of (14) and in addition is a solution of the linear 

program (13)o 

Theorem 4.2 If in addition to the assumptions of Theorem 4.1 the 

constraints of (13) are stable --that is. there exists an· ; in Rn 

su~t• that AR > b, cR ~ d, ~nd the rows of C are linear1y independent 

then for £ in (0,£] the sequence {(~~)} of Algorithm 4.1 is 

bounded and hence has at least one accumulation (~). Each such 

accumulation point solves (15), and the corresponding x , which is 



• 
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independent of £ and determined by (16), is the u~ique .solution. 

of (14) ~nd is Blso a sdlution of the linear program (13) • 
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5.· Numerical Results-

Some test results were obtained using the iterative SOR Algorithm 

3.1 starting with u0 
= 0 to solve the linear program (1) on the 

Argonne National Laboratory IB~1 3033 computer running under VM release 

5 PLC 11 and the Conversational Monitoring System. For comparative 

purposes a revised simplex code was also used (Ref. 17). The test 

problems were generated as follows. The matrix A was a fully dense 

matrix Hith random elements Aij uniformly distributed in the interval 

[-100,400]. The vectors b and p were chosen such that 

and . 

b. 
1 

I~ A._. 
( J•l lJ 

""_, + 2 I 
~ j=l 

n 
if }: 

j=l 

A •• 
lJ_ 

A .. > 0 
lJ 

n 
if }: 

j=l 

n 

A •. < 0 
lJ = 

pJ. = .L A;J· where J ={ill AiJ. > 0}, j =l,ooo.,n 
'I €J j=l 

These choices fur b and p made the point X = 2e satisfy the 

constraint qualification A{2e) > b and the point x = e prim~l 

n 
optimal with a minimum value of }: 

j=l 
i A... A dual optimal · 

i~J lJ 

variable is given by ui = 1 for ieJ and ui = 0 for ilJo Results 

for six cases are summarized in Table lo Note that for cases 1, 2, 3 

an~ 5, because n > m, the linear program (1) does not have a unique 

·~ 

" . 

• 
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·solution (Ref. 13). Cases 4 and 6 have a unique solution if and 

only if the matrix with rows A1, ieJ, has linearly independent 

columns (Ref. 13). Thus the accuracy of the solutions described 

in Table 1 is measured by (a) the number of figures in agreement 

between the calculated objective function and the theoretical 

minimum 
n 
I I A .. , and (b) the 

j=l ieJ ~J 
oo-norm of the infeasibility of 

the calculated primal solution x, that is, the maximum i (b~-A .. x.) . 
1 ; i ;m j = 1 1 1 J J + 

We now make the following observations regarding Table 1: 

(i) Except for cases 4 and 6, the computing times for the 

two methods are quite similar. For case 6, the revised 

simplex method failed and for case 4 the iterative method 
. ' 

took-2.5 times as long as the revised simplex method. 

(ii) The revised simplex solutions, \'/hen obtained, are more 

accurate than those of the iterative method. 

(iii) The iterative method is more robust in the sense that it 

never fails to provide some answer when the constraints 

are stable. 

(iv) The values of the perturbation parameter E · and the 

relaxation parameter_were obtained after some experimenting, 

but are not necessarily optimal.· Table 2 gives a typical range 

of answers obtained by the· iterative method for various values 

Of E and w which led to the values E = 105 and w = 0.5 

given in Table 1 for the case o{ m = 250 and n = 100. 



TAE.LE 1 

Numerical Results for Min p Tx ~ .. t. hX ~ b where A is an n:xn m.:1trix 

Revised Simplex Method Iterctive Method 
' 

· Case m n Seconds of Jkcuracy Seconcs of Accuracy 
Vi rtua1· No. of Correct oo-:Nonn of No. of Vi rtua 1 No. of Correct oo.,..Norm of l1achine Iterations Ma::hine 

Time Figures in Ob- Primal. In-· e: w Tine Figures in Ob- Primal In-
- jective Function feasibility jective Function feas i bi 1 ity 

1 10 100 <2 15 o. 324><·1 o-11 103 0.8 136 <2' 14 0.374Xlo-10 

2 50 200 6 14 0.902xlo-l-J 104 0.8 862 <2 9 0.365~10-4 
I 

....... .. 
"' ' I 

3 50 850 20 14 0 1 o5 0.1 642 20 12 ·o. 2si><1 o-5 
' ! 

4 100 98 28 15 0.218xl0-9 105 0.5 1300 ;o 4 0.40Qxlo-5 

I 5 100 850 94 16 0.144><10-8 ;106 0.1 915 106 13 0.969Xl0-] 
i 

6 250 100 700 
Faned: Problem 
Declared Unbounded 105 0.5 1114 130 10 0.484xl0-6 

. . 
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TABLE 2 

Numerical Results for Iterative Method for Min pTx s.t. Ax>b, m=250, n=lOO 

Accuracy 
No. of Seconds of Virtual e: w Iterations Machine Time No. of Figures in oo-Norm of Primal 

Objective Function Infeasibility 
.. 

104 0.5 500 62 5 0,86QX10- 2 

104 0.2 500 64 4 0,196xl0-l 

104 0.8 . 500 62 4 
. -1 

0,436 X 10 · 

10~ 0.5 500 64 5 0.725xl0-:-2 

106 0.5 500 64 4 0.164 . 

1 o5 0.2 500 64 4 0.116 

105 0.8 500 62 4 0.859xl0:-1 

1 o5 0.5 1114 130· 10 0.484xl0-6 . 
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(v) The values of E in Table 1 lie in the range mn < E < 12mn. 

(vi) Even though the relaxatioh factors w ·in Table 1 are all 

less than 1, we still (Ref. 18, p. 215) refer to our iterative 

method as an over-relaxation rather than an under-relaxation 

method. 

The above numerical results indicate that the proposed iterative 

method is a viable one and,. when F. and w are properly chosen, 'it ·1::: 

competitive with the revised simplex method. These parameters may be 

chosen experimentally by making a few short test runs starting with 

E = 5mn ·and w = 0.5 and picking those values for which .llxi+l_xill 

approach zero fastest. The main advantages of the method are its 

robustness, simplicity and ability to handle large problemso 
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