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ITERATIVE SOLUTION OF LINEAR PROGRAMS
: , by :

0. l:. Mangasarian
Abstract
By perturbing a ~1inearAprogram to a quadratic program, it is possible
to solve the latter in its dual variable space by iterative tech'm'ques

such as successive over-relaxation (SOR) methods. This provides a

solution to the original linear program.

iv



1. "Introduction

We shall be concerned here With itefative methods for solving the

linear program
Minimize pTx subject_to Ax > b - - (1)

where -p and b are giyen vectors in R" and Rm, respecti?e]y, and
A is a given mxn real matrix-with no rows that are identically

zero. The most popular methods for so]vihg this problem are direct
pivotal methodsvsuch as the simplex method and'its variants (Refs. 1-2).
However, mdre recently there have been a number of iterative procedures
proposed (Refs. 3-8). Some of these (Refs. 3-5) consist of an

iterative method for finding a feasible point of the Karush-Kuhn-Tucker
inequalities that constitute the optimality conditions of the linear
program (1). Others (Refs. 6 and‘8) consist of minimizing a nonsmooth
reformulated problem or (Ref. 7) finding stationary points of an
‘augmented Lagrangian. Our approach Here is different, We consider

the following quadratic programming perturbation of (1):

Minimize %—xTx + pT - subject to Ax > b : (2)

It has been_ shown (Rgf° 9) that (2) has a unique solution x, for
all € in (O,Ej for some € > 0, which is independent of € and
which also solves the linear program (1). By working in the dual
variable space of (2), we can utilize the iterative teéhniques
deve]oped in (Ref. 10) for solving the symmetric linear comp]emen-

tarity.problem to solve (2). It turns out that a sufficient condition



for the iterative method to lead to a solution is that the constraints
of the Tinear program (1) be stable (Ref. 11), which in this case
means that they satisfy the Slater consfraint‘qualification (Ref, 12).
It is interesting to note that in order to obtain convergence of the
| present iterative metﬁod, use is made of various recent results con-
.cerning.]inear programs, namely (a) nonlinear perturbation of'linear
programs (Ref. 9) which originaied with the uniqueness characterization
of linear prbgramming solutions (Ref, 13), (b) stability of systems
of linear inequalities (Ref. 11) and (c) generé] sﬁfficient conditions
for the convergence of.iterative techniques for the sd]ution'of the
symmetric 1inear.comp1eméntérity problem (Ref. 10).

The outline of the paper is.as follows. In Section 2 we
describe how our proposed}iterativé procedure is applied to a general
quadratic program with a positive definite Hessian. This procedure
may be used also in finding the projection of a point on a polytope.
In Section 3 we adapt the prdcedure of Section 2 specffica]]y for
solving the linear program (1) by solving the perturbed quadratic
program (2). In Section 4‘we give an algorithm for the solution of
" more general linear programs. In Section 5 we present some numerical
results which show thét'when the perturbation and'rélaxation parameters
are properly chosen our proposed iterative method is COmpetitive with
the revised simplex method {Refs. 1-2) and may even be more robust in
that it can solve prqb]ems for which a revised simplex code fails.,

We briefly describe}now the notation used in this paper. All

‘matrices and vectors are real. For an mxn matrix A, row 1 is



dgnoted by Ai aﬁd,the e]ement in row i and co]umn j by Aij'.
For x in the real n-dimensional Euc]idéah space Rn, element J
is denoted by xj. The superscript T denotes the.transpose. Al
veétors are column vectors unless transposéd° SUperscripts»suCh as
Ki, ui refer to specific matrices and vectors and usually denote
m

iteration numbers. If wu 1is in .Rm’ u, denotes the vector in R

with elements
(u+)-i _= max {O’U'i}’ ‘i'-"l,“..,m

The vector e w111 denote a vector of ones in R" or Rn, and 1

denotes the mxm identity matrix, The Euclidean norm (xTx)%' of a

vector x in R" will be denoted by lIxlil. .



2. Iterative Solution of the Quadratic Programming Problem

We shall consider in this section the quadratic program

Minimize %—xTQx +<pTx - subject to Ax > b . —(3)
where p, b, Q and A are resggctive]y a vector in Rn, a vector
in Rm, a real symmetric positive definite nxn matrix énd a real
mxn matrix. We shall develop an iterative algorithm for solving

the dual of (3) (Ref. 12);

Maximize -;—xTQx + bTu’ subject to Qx - ATu +tp=0,u>0" (4)

X5U
which under the positive definite assumption on Q -1is, upon elimi-

nating x, equivalent to

Minimize & uTAQ" ATy - (b+aQ" )T . | (5)
2 : }
u>0
_fhe proposed iterative procedure will solve (5), and from thc

solution u the solution x of (3) is then obtained from
x = QN (ATwp) B ()

Because the proposed procedure involves the inversion of the'matrix _
Q, it is not, in general, a suitable procedure for solving (3) with

a génera] Q. However, for certain applications such as those
requiring the solution of (2); Q is the diagonai mafrix el, which
is easily inverted. Anather such problem is that of projecting a
point ¢ in Rh on the polytope {xle;p} using the Euclidean

norm, in which caée Q=1 and p = -C.



We are now ready to apply the results of Ref. 10 to solve (5)

iteratively once we realize that, since AQ"]AT is positive semi-. :

definite, (5) is equivalent to the following symmetric linear

complementarity problem :

v=AQATu - (b+AQ""p) > 0, u> 0, ulv =0

= (7)
We shall use the following specﬁa] case of Algorithm 2.1 and
Remark 2.4 of Ref. 10.
Algorithm 2.1 Let uO be an arbitrary nonnegative vector in R™,
Having u' compute W'tV as follows:
W= (e (AT AT -b-Ag T pek (W4T, (8)
where E 1is a positive diagonal matrix, K' is either the strict
lower triangular part L or the strict upper triangular part U of
AQ']AT,- G is the diagonal of AQ']AT and
0 cw<zfmx Gfyy | (9)
33 ‘

Note that for computing purposes u1+]
. 4 SN .
}+1, u; 1,9.....,u; L when K' = L and in the reverse of that
order when K' = U.

is computed in the order

The following theorem is a direct consequence of Theorem 2.1 of
Ref. 10.. |
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Theorem 2;1 Vget Q be symmetric and positive definfte; Then, each
accumulation point . u of the sequence {ui} _generated by Algorithm 2.1
solves (5) and the corresponding x determinéd by (6) is the unique
solution of (3). | |

This theorem does not guarantee the existencé of an accumulation
of the sequence {ui}, wtheas the following one does under the

siight]y;more demanding condition of a cohstraint qualification..

Thcorem 2.2 Lét Q be symmeli-ic and pusitive definité, and let the
constraints of (3) satisfy the Slater constraint yualification, that
‘is, AX > b for some X in R". Then the sequence {ui} generated by

Algorithm 2.1 is bounded and has at least one accumulation point.
Each accumulation point u of '{ui} golves (5), and the corresponding

x determined by (6) is the unique solution of (3).. -

Proof Because AX > b, there exists a & > 0 such that the set
{x|Ax>b+&e] 1is nonempty. Let X be the solution of the quadratic
program

Minimize %-XTQX + pTx - subject to Ax > b + Se

A solution X to this problem exists because Q is positive definite
and together with a T in R" satisfies the following Karush-Kuhn-Tucker |

conditions (Ref. 12):

> b + e, ﬁT(A%-b-Se) =0



Hence
(A'AT)a - (b+AQ7Tp) 2.6 > 0.

By Theorem 2.2 and condition (10) of Ref. 10 , the sequence {ui} is
bounded and has at Teast one accumulation point. By Theorem 201
above, each accumulation of {u’}' solves (5), and the corresponding

x determined by (6) is the unique solution of-(3); a

Remark 2.1 The S]afer constraint qualification is equivalent to

the stability condition (Ref. 11) that for each d in R™ there

+1

exists (x,e) in R" satisfying

Ax > b +ed, e >0



- 3. Iterative Solution of the Linear Programming Problem

We now turn our attention back to the linear program (1) and

state a result which is a direct consequence of Theorem 1 of Ref. 9.

Theorem 3.1 Let the Tinear program (l)lhave a so1ution.~ Then there

exists a real positive number € such that fof each € 1in the interval
(0,€] - the unique solution X of (2) is independent of € and is also
a solution of the linear program (1). |

From the prouvf of Theorem 1 of Ref. 9 we can obtain an

b

<1 |-

a posteriori upper bound on € of the above theorem, namely , € <
where Yy 1is the positive optimal Lagrange multiplier associated

with the last constraint of the problem

Minimize %—xTx subject to Ax > b, p'x <®

and where 8 is the minimum of problem (1). If y =0,then ¢ cah
be any nonnegative number. There is alsc another interesting
interpretation of ¢ (Ref. 14). If we take Lhe dual (Ref. 12) of

the convex quadratic program (2), we obtain the problem

T

Maximize b'u - g& HATu~pH2 ~ subject to u >0

"~ This is precisely the exterior penalty problem associated with the

dual linear program of (1):

Maximize bTu subject to ATu =p,u>0

. Results of ordinary exterior péna]ty.

o |-

with penalty parameter a =



methods. (Ref. 15) require that o -~ and hence € - 0. However,
sharper results that take advantage of Tineafityfof the problem
(Ref. 16) require merely that o > o for some o > 0 or equivalently
e <€ for some € > 0. These sharper results correspond to the cited
results of (Ref. 9).

We can now combine Theorem 3.1 with Algorithm 2.1 to solve
problem (2) with any € in (0,e] and thus obtain a solution to
the linear program (1). In particular we set in Algorithm 2.1,

Q=el, E=eD”, where D is the diagonal of AAl, and obtain the

b

following.

Algorithm 3.1 Choose a positive number € and any nonnegative vector

| vuo in R". Having u' compute Ml

as follows :
ui+] = (ui-mD-]( Tui‘Ap-€b+Ki(u1+]"ui)))+ . | . (]0)

where D is the diagona] of,.AAT,»that is,

_ T . _
Djj AJ(Aj) s 3= ,0000,M
' is either the strict lower triangular part L or the strict

upper triangular part U of AAT, and 0 <w< 2,

K

Combining Theorems 3.1, 2.1 and 2.2 , we obtain the fol]oWing two

convergence theorcms for Algorithm 3.1.

Theorem 3.2 There exists a real positive number € such that for

each e 1in the interval (0,€], each accumulation point u of the
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sequence (") generated by Algorithm 3.1 solves

Minimize %—uTAATu = (eb+Ap)Tu o - - (11)
u>0 : . ’
and the corresponding x which is independent of ¢ and deter-

mined by
x = ¢ (ATu-p) | | (12)

is the unique solution of (2) and is alsn a solution of the linéar
program (1).

We again note that Theorem 3.2 does ﬁot guarantee the existence
of an accumulation point whereas the following theorem does under

the additional assumption that the constraints are stable.

Theorem 3.3 Let AX >b for some X “in R". There exists a real
positive number € such that for each e in the intervél (0,€],
the sequencé {ui}7.genefated by Algorithm 3.1 is bounded and has at
lleast one accumulation point. Each accumulation point u of {ui}
solves (11), and the corresponding x, which fs‘jndependent of €

and determined by (12), is the unique'so1ut10n of (2) and is also a

solution of the linear program (1).
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4, More General Linear Programs

| We outline in this part of the paper the corkesponding results
for the case of more general constraints and omit the proofs which
are similar to those of Ref. 10 and of Section 3 of this paper. In

particular we consider here instead of (1) the linear program
Minimize p'x  subject to Ax > b, Cx = d - (13)

where the additional equality constraint is specified through the

kxn matrix C and the vector d in Rk. We'hotekthat this problem
“encompasses linear programs of a very general type. We shall again
assume, for simplicity, tﬁat no rows of A or C are identically
zero and associate with (13) the.following quadratic program for some

positive € :

Minimizelg XTx + pTx subject to Ax > b, Cx =d - (14)

and the corresponding dual»prob1em
T T (T T N
e . 1{u A\ (A" C") {u) _ (Ap+cb) (u . _
R O R R ) [ NS
u>0
where the re]ation between x, U and v is given by
X = e'l(ATu+CTV-p) C : ' - (16)

The iterative procedure associated with (15) is as follows.
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"Algorithm 4.1 Choose a positive number €, an arbitrary non-

. 0 . m
negative vector u in R"

k | ui uitl ' - | '
~in R". Having vi compute vi+1 as follows
4] i ' LT T i ; uiﬂ—ui \
u, S ({usy o=V [(AY(ATCT) fus) _(Ap) _ (b)), K[ .
$ *

| TTy i . i |
‘where D is the diagonal of (é)(A C'), K 1is the strictly lower or

and an -arbitrary vector vg

upber triangular part of the same matrix, 0 < w < 2, and

0.

v v,

*

Theorem 4.1 _There exists a real positive number € such that for

each € 1in the interval (0,e], each accumulation point (;) of the
sequence {(31)} generated by Algorithm 4.1 snlves:(15), and the

E corresponding x determined by (16), which is independent of e, is
the unique solution of (14) and in addition is a solution of the linear

program (13).

constraints of (13) are stable -- that js,.there exists an’ x in R"

such that A% > b, CX = d, and the rows of C are linearly independent --
. / ]. )
then for ¢ in (0,¢] the sequence {\31)} of Algorithm 4.1 is

bounded and hence has at least one accumulation (3) . Each such

accumulation point solves (15), and the corresponding x , which is
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independent of € and determined by (16), is the unique solution

of (14) and is also a solution of the linear hbogram (13).
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5. Numerical Results.

Some fest results were obtained using the iterative SOR Algorithm

3.1 starting with u0

= 0 to solve the linear program (1) on the

Aréonne National Laboratory IBM 3033 computer runhjng under VM.Eeieaée

5 PLC 11 and the Conversational Monitoring System. For comparative
purposes a revised simplex code was also used (Ref. 17). The teét

' }prbb]ems vere generated as follows., The matrix A was a fully dense

matrix with random elements hAij uhiformly distributed in the interval

[-100,400]. The vectors b and p were chosen such that

and

p; = ) Aj; where J={i] J A,

>0}, J=T,000.5n
VR 5 I j=1 a

These choices fur b and p made the point x = 2e satisfy the

constraint qualification A(2e) > b and the point x = e primal

n .
optimal with a minimum value of J I A,.. A dual optimal.
SEIERPORRS

variable is gfven by u; = 1 for ied and u; = 0 for i#J. Results

for six cases are summarized in Table 1. Note that for cases 1, 2, 3

and 5, because n > m, the linear program (1) does not have a unique
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‘solution (Ref.-13). Cases 4 and 6 have a unique solution if and
only if the»matrix'with rdws Ai;AieJ, has linearly independent
columns (Ref. 13). Thus the accuracy of’the solutions described
in Table 1 is measured by (a) the number of figures in agreement

between the calculated objective function and the theoretical

. n
minimum ]} Aij’ and (b) the w-norm of the infeasibility of

J=1 ied

the calculated primal solution x, that is, the maximum } (b,-A,.x.)..
. . ]§1§m J:] 1 1 )7+

We now make the following observations regarding Table 1:

(i) Except for cases 4 and 6, thé computing tines for the |
two ﬁethods*are quite éimi]ar. For éase 6, the revised
simplex method failed, and for case 4 the iterative method
took 2.5 times as long as the revised simplex method.

(i1) The revised simplex solutions, when obtained, are more
accurate than those of the iteratfve method. |

(iii)'The iterative method is more fobust in the sense that it:
nevér fails tolprovide some answer when the constraints
are stable.

(iv) The values of the pertﬁrbation parameter e and the
re]axation‘parameter'WEre.obtained after some experimenting,
but are not necessarily optfma].f_Tab]e 2 gives a typical range
of answers obtained by the iterati?e method fof}various values
of € and w which led to the va1ues“e = 105 and w = 0.5

given in Table 1 for the case of m = 250 and n = 100.



TAELE 1

Numerical Results for Min pTx s.t. Ax 2 b where A is an mxn matrix

-Declared Unbounded

- Revised Simplax Method Iteretive Method
lcasel m | n Secgnds of Accuracy Secqnés of Accuracy
x;g;?il‘ Mo. of Cerrect |[~-Norm of Itzgétggns %;fﬁ?ﬁl No. of Correct [«-Norm of
Time Figures in Ob- (Primal In- E | W f%ne Figures in Ob- ([Primal In-
jective Function|feasibility jective Function|feasibility|
1| 10|100 <2 15 0.324<10" 11| [10%|0.8] - 136 2 14 0.374x10710
I “19) |y a8 ' ) ia-h
2 | 50]200 6 14 0.902x107 17| |10 |0.8| 862 <2 9 0.365x10
3 | 50{850 20 14 0 [10°lo.1] 642 20 12 0.257x107°
4 |io0| e8|| 28 15 0.218x10™% |{10%]0.5| 1300 70 4 0.400x10™°
5 100|850 9 16 0.144x10°8 [110%]0.1] - 915 106 13 0.969x1077
iTed: ' : -
6 |250]100]| 700 paited: Problem 10%|0.5] 1114 130 10 0.484x107°

-9‘[_
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TABLE 2
Numerical Results for Iterative Method for Min pTx‘ s.t. Ax>b, m=250, n=100
' : . - Accuracy
e | w No, of Seconds. of Virtual _
Iterations Machine Time No. of Figures in | «-Norm of Primal
Objective Function| Infeasibility
4 . -2
107]0.5 ‘ 500 62 5 0.860x 10
108y - 1p-]
107 |0.2 500 64 4 0,196 x 10
104j0.8| 500 62 4 0.436x 107" .
514 -2
110710.5- 500 64 5 0.725x 10
10°/0.5] 500 64 4 0.164 -
10°(0.2 500 64 4 0.116
: 105 0.8 500 62 4 " 0.859xw,‘]
5 | -6
10710.5 1114 130 10 0.484 x10
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(v) The values of e in Table 1 lie in the range mn'::e é=]2mn.
(vi) Even though-tﬁe relaxation factors w -in Table 1 are all
less than 1, We still (Ref. 18, b. 215) refer to our iterative
‘method as an over-rélaxation rather than an under-re]a*ation
method.
The above numerical results indicate that the proposed iterative
method is a viable one and, when ¢ and are properly chosen, it iz
-compétitivé'with the revised simplex method. These parametérs may be

chosen experimentally by making a few short test runs starting with
)

n

e T6mn ~and w 2 0.5 and picking those values for which IIx
approach zero fastest. The main advantages of the method are its

robustness, simplicity and ability to handle large problems.
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