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1. INTRODUCTION

Let T(t), t > 0, be a_strong]y continuous semigroup of bounded
1ineér operators in the Banach space X with infinitesimal generator A
and let f be a continuous X-valued function on (0, w);‘ It is well-known
'fhat without some restrictions on the semigroup T(t), t = 0, or the
continuous function f, the weak solution '

() = T(t)x +J’3 T(t-s)f(s)ds, - (1.1)
need not be a strong solution of the inhomogeneous linear differential
- equation
du(t)/dt = Au(t) + f(t) ,
u(0) = x. ‘ (1.2)

R. Phillips [6] has shown that if x e D(A) and f is continﬁodélyi‘w
differentiable, then the weak solution (1.1) is'the unique strong solution
of (1.2). The condition that f be continuously differentiable can be
weakened by requiring further conditions on the strong]y continuous: semi-
Cgroup T(t), t > O."For example, it is known [4] that (1.1) is a strong
solution of (1.2) for every Holder continuous function fif T(t), t 2 0,
is holomorphic. Webb [8] has established that T(t) X C D(A) for t > 0 is
a sufficient condition for a weak solution to be a stfong soTutidn for
every continuous function of bounded variation. Beirao Da Veiga has
recently shown [1] that in a reflexive Banach spaceAX, the condition T(t)X

C D(A) for t:> 0 is -not heeded.  That is, if x € D(A) and f is a continuous
function of bounded variation, then the weak solution (1.1) is a strong

solution of (1.2). o o
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Our objective in this paper is to characterize the class of strongly
continuous semigroups for which a weak solution of‘equation.(1.2) is a
strong solution when f e C([o,r]sX). We demonstrate that (1.1) is a
strong solution of (1.1) for every continuous fuhction fif aﬁd only if

the semigroup T(t), t = 0, is of bounded semivariation.
2. OPERATORS OF BOUNDED SEMIVARIATION

“Givgn a closed 1ntervai [a,b] of the rea1‘]ine, a subdivision af
[a,b] is a finite sequence d: o =dg < dj < e < dﬁ = b, Let D[a,b]
denote the set of all subdivisions of [a,b], and X and Y be Banach spaces.
For a: [a,b] » L(X;Y) and d e D[a,b], define

~

n _
Svdpg] = sup[u 121 [a(di) - u(di—1)]xi I X; € X, Hxiu < ]}

and

SV[a] = SLlp{SVd[CJ,] | d ¢ D[a,b]} .

We say o« is of bounded semivariation (see [3]) if SVla] < .

It follows from

- n
- SVyle] = sup{u 121 [a(qi) f od;_1)Ixj ljxg e X, lxgh < 1}

<
i

[ R o}

]II&(di) - a(di_])ﬂ >




‘that the concept of bounded semivariation is an extension of the concept
of bbunded variation. For functions, the concepts .of bounded semivariation
and bounded variation are equivalent. In fact,'if f: [a,b] » X € L(X';C)

and (-, 1is the pairing between X and X', then

SVd[f] = sup{[ 121 <f(dj) - f(di—])’ x1> | Ixj € X'f . < ]}

UE) - #d, ;I

.

i

1]
e~

~ The following proposition is stated without proof.
Proposition 2.1 (Honig)

If a: [a,b] = L(X;Y) is. of bounded semivariation and f: [a,b] -~ X is

continuous, then the Riemann-Stieltjes integral }f da(s)f(s) exists.
. _ ! J, |

Lemma 2.1

If a: [o,r] » L(X;Y) is of bounded semivariation, a(t) is strongly
continuous at t = 0, and f:[o,r]»+ X is continuous, then
t

Tim [ dols) f(s) =0
t->-0 o




3. REGULARITY OF SOLUTIONS

Hhen F 1§ the class of Holder continuou5~funct1qns, Crandall and
Pazy [2] demonstrate that

(i) T(t)Xx cD(A) for t>0

(ii) Vim tPUAT(t) <~ forallp>1,
t>ot :

are necessary and sufficient conditions on the semigroup T(t)‘to assure
that the function (1.1) is a strong.solution of the Cauchy problem (1.2)
fof every f € F. Our principal result will be to estab]ish bounded
semivariation as .a necessary and sufficient condition on the semigroup

T(t), t > 0, to assure that (1.1) is a strong solution of (1.2) when F

is the class of continuous functions. We first establish some necessary

Temmas.

Lemma 3.1

If f is continuous and T(-) is of bounded semivariation on [o,r],

then for t ¢ [d,r],

- | |
f T(t-5)F(s)ds & D(A)" L | B
0] : .

and




t t o
Afo T(t-s)f(s)ds = | 4,7 (t-5)7(s) | | (3.2)

Proof

Under the assumpt10ns on f and T(-), it fol]ows from Prop031t1on 2.1
that the Riemann-Stieltjes mteg‘*a]j~ d T (t-s)f(s) exists. For a fixed
positive 1nteger n, let d ;t, where i =0, 1, ..., n. Define |
gn(s) = (t-s)f(di) for di—] <§< d? ana gn(o)'= T(t)f(o). 'Since the

- -sequence {g } is uniformly bounded and converges to T(t-s)f(s) on [o,t],

t t A
14 ds = T(t-s)f(s)ds . ‘ 3.3
1m/;gn(s) s -/(; ( s') (s)ds | | (3.3)

N>

t |
Since.lh gn(s)ds.e D(A) and
A , ,

t ’ :
f d.T(-5)F(s) , (3.4)
0 )

(3.1) and (3.2) follow from the closedness of A.

Lemma 3.2

If £ is continuous and T(-) is of bounded semivariation on [o,r],

¢ S
then Jg d.T(t-s)f(s) is continuous in t on [o,r].

bo-



Proof

Assume 0 € t < r and 0 < o t, and observe that '

that t - t
[ 4T - [T atiesrs) = 1) - 13 [ g T1(es)f(s)
0 ‘ 0 : : . ()

At
+f d T(t-s)f(t+at-s) .
. Jo S :

Since“it fo]1ov)s from Lemma 2.1 that

At
lim | f d.T(t-s)f(t+at-s) =
0

At > 0

continuity of J[ d T(t-s)f (s) from the mght is a consequence of the . ract

that hm [T(h) - I]x = 0 for all x .e X.
h>o

| To show continuity from thé left, Tet 0 < t<r and 0 < 4 t. Thén

t t-at
fo AdST(t—s)f(s) ]2 0 T(t-at-5)f(s)

t . t .
ft - d T(t rt-s)(T ( t) - I)f(s) + f dST(t—s)f(s)
0 , t

v | At o
s o= ft -At (At) - I)f(t—At-s) + ( d T(S)f(t-—s) )
° -



Since

t-at A .
u[ 4 T(s)(T(at) = I)F(t-at-s)l < SYLT(-)Dsup  W(T(at) - DF()
A osss<t-at
.and
At e
- Tim +‘J/' - d T(s)f(t-s) = Q' ;

At > 0 o]

continuity from the left follows from the uniform continuity of f on fo,r]

-

“and the fact that Tim (T(h) - i)z =0 uniformly for z in a Eompact subset

h-ot
of X.

- Proposition 3.1

The function (1.1) is a strong solution of the Cauchy problem (1.2)
for every continuous function f if and only if T(-) is of bounded semi-

variation on [o,r].

Proof

It is easily shown (Pazy [5]) that the weak solution v defined by (1.1)
is a strong solution of'(1.2) if and only if v(t) ¢ D(A) and Av(t) is
continﬁous on [o,r]. If f is continuous and T(;)Aof bounded'sem{variaiion
on [o,r], then these conditions areisaiisfied by virtue of Lemmas 3.1 
and 3.2. |

To demonstrate the necessity of the assumption that T(-) be of bounded

semivariation on [o,r], assume SV[T(-)] = » on [o,r] and define the bounded

Tinear operator L: C{[o,r]; X) » X by L(f) =./‘ T(r-s)f(s)ds.
0 .



Since every weak solution is a strong solution, L(T) « D(A) for every
continuous‘f.' It follows from the closedness of A and the boundedness
of L that AL: C([o,r]; X).# X is bounded. Since SV[T(-)] = «», there

exists a Eeduence dn e D such that SVd [T(+)] > N and Adn < %u
: n

“.Define £, (t) = f(dj) if df_; <t <d] and define
i n

r
Ly(F) fo T(r-s)fy (s)ds -

Since ALn(f) + AL(f) for fixed f ¢ C([o,r]; %), it follows from the Banach-

Sfeinhaus theorem that there exists M such that HALnH < M for all n > 1.

" But

- Y‘ .
1AL (F)i = uAJg T(r-8)ty ()51
d"

L |

= || 121 Ajd”_».l (r s);(di)dsll :

_ n n' n 4, n
= || ]_Z] [T(r-d) T(r-d]._])]f(d].)n

Thus

1n

HAL;H sup{H § [T(r-d?) - T(r-d" )IF(d™) [FeC([o,r]; X)s5 I < 0.
! 5 i i-1 it . j

o

The proof will be complete if we show that for fixed d ='{si} e D, »



sup!
Pv

N~

S [T(r-s.) - T(,r—si;])_]f(si)li {fsC(.[Opr]; X); i< 1}

| |
i= !

= sup{”
B

[T(r-s.) - T(r‘—éi_])]x{ll x;eX; Xl < 1} = SV,[T(-)1 .

1 1

o~ 3

That

,§up{n E [T(t-sj) - T(t—s%;i)]f(si)n fsC([o,r];.X), Nl < T}

i=1

< sup{l!' E [T(t-5;) - T(t-s, ;). IX]-EX, Il < 1}
i=1

follows easily. To see the converse, for fixed but arbitrary X5 € Xy

=1, ..., n, ijH §‘],'define f(s) = (I—A)xi_] X, for

s (1fx)s%_]‘f xs5, 0 <A <. Then

n - . -
.n 121 [T(t-s;) = T(t-s;_Ix;h =1 12] U(t—si) - T(t-s; ) If(s i

o>

< sup{ﬁ . [T(t~si) - T(t—si_])]f(si)ﬂ feC([o,r]; X), kil < ]}
j : o ~

The'resu1t now follows.

1

The characterization of strongly continuous semigroups of bounded
~ semivariation remains an open question. However, we can establish some

partial results in this direction.

Lgmma 3.3

S

A necessary condition for a strongly continuous semigroup T(-)} to be of

bounded semivariation on [o,r] is that T(t)X ¢ D(A) for t > O.




Proof

It sufficesito prove that T(t)X D(A) for t e (o,r) since
T(tO)X C D(A) implies T(t)X c D(A) for t = t,- Suppose there exist
XO e X and t, e (0,r) such that T(to)x°¢ D(A) and consider the Cauchy

problem u'(t) = Au(t) + f(t), u(o) = 0, where f(s) = T(s)x

o The uniqge

weak solution of this equation given by u(t) tT(t)x0 is not a strong

solutijon since it is not differentiable at t 'to. This is in contraction

to Proposition 3.1 since f ¢ C([o,r]; X).

Lemna_3.4

If a strongly continuous semigroup is of bounded semivariation on

[o,r], ¥ > 0, then it is of bounded semivariation on [0,a] for any a > 0.

Proof .

~If a>r, then it is easily established that

Vo,a] [T < SVpg oy [TCIT + SYp o ‘[T(°)] :

As a consequence of Lemma 3.3, T(t), t = 0, is continuously differentiable

in the uniformly operator topology for t > 0, and, consequently, since
r> 0, there éxistsim > 0 such that IT' (s} <M for s ¢ [r,a]. Thus if

{di} is a subdivision of [r,a] and

Hxiﬂ <1,




Y T(dy) = Tdg_)Ix;0 T“(_s)xid.sll < H(a-r) .

i=1

1t
—
Wt~
—

i-1

It fo]]ows that sv[r a] [T(-)] < =, and validity of the ]eﬂma is established.
We can thus def1ne a strongly continuous sem1grouo to be of bounded
semivariation 1f it is of bounded semivariation on some, and hence all,

intervals of the form [o,r], r > 0. OQur next proposition characterizes

strongly continucus groups of bounded semivariation.

Proposition 3.2

- A strongly continuous group is of bounded semivariation if and only -

if its infinitesimal generator is bounded.

Proof

Let A denote the infinitesimal generator of a strongly continucus

group T(t), t e R, and assume A is bounded. Then for arbitrary d e D[-r,r],

. S.
n ‘ n i
Y ITsy) - Tlss_ ) Ixsh =0 ) ./T T (s)xdsli
i=1 Ci1s,
~ i-1
n > r
=1 J A f T(s)x;dsil < Al Mf e¥3ds ,
=] i1 ‘ -r .

implying that T(-) is of bounded semivariation on [-r,r].




To prove the converse, suppose T(t), t ¢ R, is of bounded semivariation.

By Lemma 3.3, T(t)X ¢ D(A) for t > 0. Thus for x e X and t, # 0,

x = T(o)x = T(tO)T(—t

O)x e D(A), implying that D(A) = X. The boundedness

of A now follows from the closed graph theorem.

Coro11ary'3.1

Suppose the operatok A in eqqation'(l.]) is the infinitesimal generator
of a strongly continuous group. Then a weak solution of (1.1) is a strong :'

solution for every continuous function f if and only if A is bounded.
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