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I. INTRODUCTION DE89 013674

The continuous symmetries of classical field theories along with the equations of
motion for the fields imply the existence of conserved currents from which one can construct
conserved charges. This is usually called Noether’s theorem,!™!! which in both its classical
and operator forms is very important for classifying the general physical characteristics of
quantum field theories.>~1! A brief review of the theorem is given in Sec. II. Nevertheless,

the theorem does not seem to apply in a straightforward manner when the symmetry of

interest is local gauge invariance.”1!?

Why this is so is not explored in any of the standard texts on field theory which al-
most exclusively confine themselves to global gauge transformations when applying Noether’s
theorem.’® Brandt!* and Jackiw!! , e.g., have determined the Noether currents for Abelian
and non-Abelian local gauge transformations, but their treatments are not readily accessible
to students at the introductory level of field theory. In the present article we present a simple
and self-contained discussion of the implications of Noether’s theorem for local gauge trans-
formations associated with Abelian and non-Abelian internal symmetries. This is intended
to supplement the standard expositions available in introductory works on quantum field
theory. Several unusual features of the general Noether currents and charges corresponding
to local gauge transformations are pointed out in Sec. III that are of interest even though
the physics implicit in a gauge theory can be extracted only after introducing constraints

which destroy the gauge symmetry.

In the classical case gauge-fixing is required in order to integrate the equations of
motion for the electromagnetic potentials. The quantization of a gauge field theory can only
be achieved after the gauge degrees of freedom are suitably restrained. In this last instance,
however, a remarkable residual local gauge symmetry'® has been a useful technical device
for the analysis of the physical content of such theories. Noether’s theorem will, of course,

yield the current and charge corresponding to what is referred to as Becchi, Rouet, Stora,

and Tyutin (BRST) symmetry.!®

The implications of Noether’s theorem in the case of BRST symmetry are certainly
well known.!>141¢ However, the application of the relevant formalism in this case is suffi-
ciently subtle as to warrant the introductory expositions we carry out in Sec. IV and Sec. V.
We point out several unusual, but important aspects of both the Noether and Lagrangian

formalisms in this case. We also compare the BRST current with the usual current result-
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ing from gauge symmetry and the source current in the field-tensor equation of motion. A

summary is presented in Sec. VI.

II. NOETHER’S THEOREM

Let us consider a classical field theory characterized by a Lagrangian density
L[da(z), 0.da(z)) involving the fields ¢,(z) at the space-time point z = (2% Z) and their
first-order space-time derivatives. For the sake of simplicity we ignore any explicit depen-
dence of £ on z. Here the index a enumerates the different field types including reference
to their transformation properties with respect to the Lorentz group (scalar, spinor, vector,
etc.). Also 9, = 8/0z#, where u = 0,1,2,3 and we employ the metric goo = —gj; = +1,
7 =1,2,3 to raise and lower the vector index .

A signature of the symmetry of a classical field theory is the invariance of the action

integral
Suldl = [ d'aL18a(2), B, (2.1)

taken between two space-like surfaces under the associated transformations of the fields.
Hamilton’s principle then implies that the equations of motion are also invariant under these
transformations. Noether’s theorem refers to the local implications of a symmetry and these

are determined by exploring the consequences of the invariance
65n[¢} =0, . (22)
under the infinitesimal transformations
$a(z) = Ba(2) + 644(). (2.3)
}The variations are assumed to vanish on the boundary surfaces 1 and 2.

Corresponding to (2.3) we have the variation in the Lagrangian density

oL oL
L=> e )6¢a(z)+———3 @ ¢u(z))6 [Buda(2)], (24)

where summation over any repeated index is implied. If we suppose that we can interchange

the 6 and J, operations, (2.2) and (2.4) together with the equations of motion

oL oL
% [aama(z)] (w0 (2.5)
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imply that

0 (0uda(z))

Since the integrand of (2.6) vanishes on the boundary surfaces and involves otherwise arbi-

0= /1 * 20, [—-—ac———wa(z)] . (2.6)

trary variations of the fields induced by the symmetry transformations, it follows that
3*ju(z) =0, (2.7)

where!”
oL

Ju(z) = m6¢a($) (2.8)

is the conserved Noether current. Evidently we can always define a Noether current corre-
sponding to (2.3) whether or not (2.2), and therefore (2.7), is realized.

Actually since arbitrary variations of the fields are involved Eq. (2.8) defines an entire

family of currents as well as the charges

Qlao) = [ Pajofa), (29)
which are also conserved,
dQ(z0) _
dog - 0, (2.10)

as a consequence of (2.7) provided j,(z) vanishes sufficiently quickly in space-like directions at
infinity.’® This uninteresting diversity is usually eliminated by parametrizing the variations

8¢.(z) by a space-time independent infinitesimal parameter € so that

69a() = efuld(2)], (2.11)

where f,[¢] is some function of all the ¢4(z)’s. The content of Noether’s theorem can then be
stated in a form that reflects the intrinsic character of the symmetry transformation rather
than factoring in irrelevant information about the parameters that particularize it. That is
equations of the same form as (2.7), (2.8), and (2.10) hold as before but now in terms of

what may be called the intrinsic Noether current:

. ec
Ju(z)n = mfa [¢(=)], (2.12)
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with which is associated the Noether charge

Qo) = [ dzjola)n. (2.13)

If j.(z)n is conserved the time-independent charge @ n given by (2.13) can be regarded
as an intrinsic observable of the system. On the other hand, given any tensor field R, (z)

that falls off sufficiently rapidly in space-like directions the conserved current
Jul@)n = ju(z)N + 0" (Ru — Ruy) (2.14)
determines the same charge @n because

/ 29" (Ro, — Ruo) = / &2 (Ro; — Rio)

=0

This device of adding the divergence of an antisymmetric tensor'® can be used to “improve”
the original canonical Noether current so as to attain some other property, such as the indicial

symmetry of the energy-momentum tensor while maintaining current conservation and the

same value of the Noether charge.’®!

We will see in the next section that local gauge transformations are unusual in two
respects with regard to Noether’s theorem. Generally one cannot disentangle the parameters
that define the transformations from the local gauge Noether current. Furthermore, we find
that the canonical Noether current in this case is itself the divergence of an antisymmetric

tensor and so meaningful Noether charges can arise only from long-ranged contributions in

space-like directions.

ITII. LOCAL GAUGE TRANSFORMATIONS

By definition gauge transformations of any sort do not represent physical symmetry
operations. Rather they probe the phase relationships within the model space of a physical
theory. The intrinsic conserved charges that accompany the gauge invariance of a theory
generally are observable provided they are themselves gauge invariant. These two aspects do
not conflict because the range of values of the charges do not represent different possible states

of a particular system, as would be the case for angular momentum or energy, for example.
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Rather, the values of the charges define different classes of possible systems, namnely all those

with definite values of the c arges.

A. Abelian Gauge Groups

Several propertics of general gauge theories in regard to Noether’s theorem are already

present in the trivial example of a free electromagnetic field with
1 »
L= _ZF""F ) (3.1)

where the antisymmetric electromagnetic field tensor F,,, is expressed in terms of the gauge

fields A,(z) in the usual manner
F,, =0,A, — 0,A,. (3.2)

Evidently (32) and thus (3.1) are invariant under the U(1) group of Abelian gauge trans-

formations

Au(z) = Ay(z) + 0,.0(z). (3.3)
For infinitesimal 8(z) the Noether current (2.8) is
iu(@n = 0 [Fou(@)8(c)], (34)

which is manifestly conserved by virtue of the antisymmetry of F,, (z).

We see that because of the derivative operation on the gauge parameterizing function
f(z) we generally cannot factor out the incidental attributes of the transformation. For
constant #(x), namely global, or rigid, gauge transformations, we see that (3.4) vanishes by
the equations of motion and we always have zero intrinsic charge. The charges one would

try to infer from (3.4) are not defined except for special gauge functions 6.

The point is that the time-independent charge integral
Q6] = jf P28 [Fiob(2)] (3.5)

will not exist for an arbitrary free field tensor Fo unless 6(z) is suitably well-bechaved. Then
the three-dimensional spatial integral (3.5) can be converted into a surface integral whose
value depends upon 0(z). If 8 is a constant then obviously Q(0) = 0, but otherwise the value

of Q[0] depends both on the particular gauge and field functions that enter into (3.5). Thus
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the infinity of conserved charges (3.5) do not represent useful observables of the system. This
is because they fail in what is the signal function of a conserved charge, namely, to provide
a labeling of equivalence classes of systems governed by the same underlying dynamics. The

explicit gauge dependence of (3.5) is of course a direct reflection of this failure.

Another way of looking at the failure of local gauge invariance to provide any new
observables is to realize that one has introduced into the problem redundant degrees of
freedom by treating all tour components of A, as independent fields in the variations. In
classical field theory one is able to specify uniquely the functional form of the gauge field
only after this arbitrariness is removed by some gauge-fixing condition. Imposing such a
condition is equivalent to adding a gauge-fixing term to the Lagrangian, a type of term
which is not locally gauge invariant. Therefore when one wishes to solve the equations of
motion describing the gauge field, the local gauge invariance of the Lagrangian, and so the
action, is destroyed along with the possibility of additional observables. On the other hand,
global gauge invariance still holds and one is left with the corresponding intrinsic conserved
current and charge. So while the demand for local gauge invariance motivates both the
introduction of the gauge fields and their coupling to matter, it yields no new observable
since one must eventually break the symmetry to solve for the gauge field uniquely. This is

consistent with the requirement that all observables be gauge invariant.

In order to see that the situation is the same when minimally charged matter fields

are included let us consider the Lagrangian

L = Loauge + [(8u +ieA,) ¢ [(9* + ieA¥) ] + m?|g|?
+P (i — ep —m) .

(3.6)

Here Lgauge is given by the free electromagnetic Lagrangian (3.1}. The complex scalar field
#(z) represents charged scalar particles while the four-component spinor ¥(z) corresponds
to charged Dirac particles. The slash notation designates a contraction with respeci to the
gamma matrices v*, for example A = A,v*. Also ¢ = ¥'4°, where the Hermitian adjoint
operation includes a transposition with respect to the spinor indices, a = 1,2, 3,4, in addition

to complex conjugation, where we keep in mind that we are dealing with classical fields.

It should be noted that because of the asymmetrical structure of the Dirac term in
(3.6), £ is not real. Symmetrization leads to a real Lagrangian which differs from (3.6)

by an action-preserving total divergence. One subtlety in this occurs in connection with
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calculations of variations such as (2.4) where all of the independent fields enter. When using
(3.6), in effect, only the ¥,(z) are regarded as independent fields. If the symmetrized £
were to be used then the ¥ (z) fields as well would have to be taken to be independent.

In the first case one obtains a real contribution to 6L that is identical to the sum of the
contributions in the second instance. Another subtlety concerns the Grassmann character

of ¥ in the quantized case; we remark about this in Sec. IV.

Local gauge transformations now entail phase changes in the charged fields to accom-

pany (3.3), namely, _
$(z) — e o(z) (3.7a)

P(z) — e p(a) (3.7b)

One easily sees that for infinitesimal 8(z), the Noether current is

jule) = 0(2)J,(2) — Fiu(2)8"0(z), (3.8)
where
J#(2) = ie [¢* T ¢ + 2ieA*|9*] + ePy*v (3.9)
is the gauge-invariant source current in the equation of motion for the electromagnetic field
O F* (z) = J*(x). (3.10)
We can then rewrite (3.8) as _
Ju(z) = 8" [Fu(z)0(z)], (3.11)

which is just (3.4) again.
For constant gauge functions, 6,
jul®) = 0J,(2), (3.12)

so that J,(z) is the intrinsic Noether current. In contrast to the discussion of the free

electromagnetic field, the Noether charge
Q= [ &z dofz) (3.13)

is a useful observable because it does provide a means of classifying equivalence classes of

systems. It is important to note that
Q= / &2 & Fy(z), (3.14)
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o that for fields gencrated by localized charges and currents (3.14) can be converted into
a surface integral at infinity which is finite and nonzero in general (Gauss’ Law). As in
the non-interacting case, the infinite family of conserved charges associated with the general

current (3.11) represents, in essence, redundant observables and serves no practical purpose.

We note that any infinitesimal fum\:tion 0(z) can be written in the form
0(z) = €[l + f(z)], (3.15)
where € is an infinitesimal parameter and f(z) is an arbitrary e-independent function. Then
Iu(z) = e{Ju(z) + & [Fu f(z)]}, (3.16)

so that the terms within the curly brackets resemble what we referred to as an intrinsic
Noether current.” The form (3.16), while it seems to show explicitly the form of the redun-
dancy in the Noether currents that exists for local gauge transformations actually provides
little insight over (3.11) as may be seen by taking f(z) to be a constant. Equation (3.16)
is, perhaps, more incisive if f(z) is restricted to those functions that vanish at infinity in all

space-like directions.

It is due to the very special properties of minimally coupled gauge theories in generat-
ing interactions that the Noether current associated with a gauge symmetry transformation
of all the fields can be expressed in terms of the field strengths with no explicit reference to
the matter fields. In the electromagnetic case the underlying reason for this to happen is

the validity of identities such as

aX(¢a¢-vAu)_. M‘M_“ . M
i " ted(z) T0,0(2)] ed*(x) 30,0 (2) (3.17)

where X is any function which involves only the matter fields ¢(z) and ¢°(z) minimally
coupled electromagnetically. Equation (3.17) is a variational differential foim of the minimal
coupling prescription. It is Eq. (3.17) and a similar one involving ¢, ¢*, and %, that are
responsible for the connection between the source current of the gauge fields and the Noether

current assoclated.

B. Non-Abelian Gauge Group

Non-Abelian gauge theories are distinguished from the Abelian ones by a multiplicity

of gauge fields, self-interactions, and gauge transformations that involve the gauge fields in
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addition to the functions that parameterize them. This adds to the techitical complexity of
determining the consequences of gauge invariance. Nonetheless, for the Noether currents and
charges the results are essentially identical to the Abelian case except for trivial multiplicities
produced by the group indices so long as any matter fields that enter into the theory are

coupled to the gauge fields minimally.

It is convenient to follow Cheng and Li?® in their conventions for the phases and
coupling constants for the gauge fields A%(z) as well as the gauge transformations that
characterize them. We consider the least complicated situation corresponding to a gauge
group G generated by a compact, simple Lie group with N Hermitian generators 7%, a =
1,..., N that satisfly

[T, T*] = iCuseT". (3.18)

The structure constants C,;. are completely antisymmetric in their indices.

The gauge fields transform globally according to the adjoinf representation of G and

so are enumerated in the same manner as the generators. In the absence of matter fields the

dynamics of the gauge fields are generated by the Lagrangian

1

Lonsge = =7 FLFL, (3.19)
where
Fp, = 8,A} — 8,A5 + gCuc AL A (3.20)
is the field strength. Since
0Lga .
By ~ e (3.21a)
0L,
T;E‘E = —gF*Craa A} (3.21b)
the equations of motion are
O, FM = gFPChaa Al (3.22)

Under an infinitesimal local gauge transformation parameterized by the (infinitesimal)

functions °(z) the change in Aj is
a v b pc 1 a
8A} = Copcl’ A, — 5(?,‘0 . (3.23)
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With (3.19a) and (3.21) it is now straightforward to show that the Noether current corre-

sponding ts an infinitesimal local gauge transformation is
jul@)n = (—;) & (Fa,(2)0%(2)).. (3.24)

This diffe:s from our Abelian result (cf. Eq. (3.4)) only in the appearance of the factor (-—- %)

which results from the different phiase and coupling constant conventions used in the two
instances. If we make the transformations ¢ — —g and # — g0 in Eqs. (3.20)-(3.24) we

obtain a convention cousistent with the one used in the Abelian case.

We next show that (3.24) is still valid when matter fields are introduced provided

that their coupling to the gauge fields is minimal. The scalar (¢) and fermion (3') matter
fields are presumed to transform globally according to arbitrary finite-dimensional irreducible
representations of G that correspond to matrix realizations, L?, of the generators 7. The
matrix elements L{; as well as the field components ¢; and t; are labeled by indices with
ranges appropriate to the individual representations; the spinor indices are suppressed. It is
only necessary to suppose that there is one scalar and one spinor multiplet and that they
both transform according to the same representation of G. Then the complications entailed
in the generalizations to arbitrary numbers of multiplets of either Lorentz types are trivially
indicial. -

Generally we have a Lagrangian

L= Egauge + Ematter, (3'25)
where Lgauge is given by (3.19) and
Lunatter = (D*$)' (Dyg) + Piv*Dyp — V. (3.26)

The potential V (qS",qS, ¥, qb) includes all mass terms and the non-gauge couplings of the

scalar and fermion fields. The minimal gauge coupling is manifested by the covariant deriva-

tive
D,=8,—- z'gL"A;, (3.27)

which is a matrix in the finite-dimensional representation space.
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The Noether current corresponding to local gauge transformations for the system

represented by £ is

. oL . oL
M =50 508
(3.28)
+ oL ¢ + oL &
a(an¢:) ' 3(3,,1!);) "
Here 6 A2 is given by (3.23) as before while
5¢; = ~iL3u0%s (3.20)
and
§Y; = —iLj 0% (3.30)

are the infinitesimal changes of the matter fields. We have suppressed the spinor indices in

the last term on the right-hand side of (3.28).

The demonstration that (3.28) reduces to (3.24) follows immediately from the follow-

ing two identities. The first merely generalizes the calculation employed in the pure gauge

case:

a£ 1 a£mat.t.er (ea)
o542 = [—=] 0, (Furer) - meuer () 3.31
56,43 " ( g) FE) ~ s \g (3.31)

The second corresponds to (3.17) and is a variational differential manifestation of minimal

gauge coupling in the present context:

a ™ a A a _ aﬁmatter 0_0'
{545.-5(3”4,{) + 64; 36,8 6:,/).————3(3”{)} L= __?AZ (g ) . (3.32)

IV. BRST SYMMETRY

In order to facilitate our discussions we ignore matter fields and employ a well-known
compact index-free notation with respect to the adjoint representation of the simple group
G similar to that employed by Frampton,'® e.g., whose treatment we loosely follow. The

field strength is written as -
F,=0,A—0,A,+gA,NA, (4.1)
where the cross product is defined as
(BA K)o =CopeBpis, - (4.2)

11



where B, and K, are any two objects (“vectors™) that transform according to the regular

representation of G. Then if a dot is used to denote the scalar product of vectors, the gauge

Lagrangian (3.19) becomes

1
Lgauge = _ZF#II o (4.3)

We will need only the covariant derivative Dzb in the regular representation:
D¢ =6,‘£+gA,‘A£, (4-4)

where £ is a vector.

One method for quantizing the classical theory based on (4.3) leads to a (covariantly)
gauge-fixed Lagrangian which contains so-called Faddeev-Popov ghosts which are denoted by

¢, and ¢ and are regarded as independent mutually anticommuting (Grassmann) variables:

L = Lgauge + LaF + LFra, (4.5)
where ,
1 oy
Lor = =5 (0*4,)", (4.6)
-CFPG = al‘c+ . D”C, | (4.7)

and « is a fixed parameter whose significance is immaterial for our considerations.
Obviously no statement can be made about the behavior of £ under an infinitesimal
local gauge transformation,

§A, = —=D,0, (4.8)

unless the transformation properties of ¢ and ¢t are defined and the gauge parameters 6%(z)

suitably restricted. This is indeed the case for the BRST transformation appropriate to £
defined by choosing

oBrsTd = gcéA, (4.9a)
SO
éprsT A, = —(D,c)é), (4.98)
with
—— —g-(c A )6, (4.9¢)
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Sprsct = —%(a“  A,)6). (4.9d)
Here 6 is an infinitesimal Grassmann parameter which satisfies the anticommutive relations
{8X,¢} = {6)\,ct} =0. {4.10)

Otherwise 6 behaves like an ordinary number, namely,

0.6\ =0,
(A4, 87] = 0.

A
The role of 6 is to render égrst a bosonic variation which satisfies the usual form of the

Liebnitz rule when acting on a product:

' 6BRST(0102) = (501)02 + 01(502) (4.11)

The calculation of égrsTL is simplified with the aid of vector identities that are
straightforward generalizations of those of vector analysis in three-dimensional Euclidean

space.

A. Vector Identities

The structure constants of the Lie algebra, C,p. are totally antisymmetric with respect

to permutations cf their indices. This attribute along with the fact that they also satisfy the

group algebra (regular representation) implies that
CabkClpk = 6al6bp - 6ap6bl- (412)

Antisymmetry and (4.12) suffice for the proof of all of the identities listed next in terms of

the arbitrary vectors A, B, K.

Clearly
AAB=3FBAA | < (4.13)

with the upper (lower) sign if all the components of A and B are commuting (anticommuting).

There are three independent types of triple-scalar products:

(i) All components of A, B, K commute:
A-(BAK)=K-(AAB). (4.14)
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(ii) [A° BY] = [4%, K*] = 0; {B, %} = O:

A-(BAK)=-K-(AAB). (4.15)

(iii) All components of A, B, K anticommute:

A - (B A K) is independent of ordering. (4.16)
There are two independent triple-vector products:

(i) [B®, K*] = 0:
AAN(BAK)=(A-K)B-(A-B)K, (4.17)

(i) {B®, K*} =0
AAN(BAK)=—-(A-K)-B-(A-B)-K. (4.18)

Two further identities that are repeatedly used in subsequent calculations are'®

AA(BAB)=2AAB)AB (4.19)

and
d.(BAB)=2(0,B)A B, (4.20)

~ where B is a Grassmann vector,

{B*,B*}=0. (4.21)

Equation (4.19) follows trivially from (4.18), (4.13) and (4.17). Only (4.13) and the fact that
J, obeys the usual Liebnitz rule suffice to prove (4.20). We use (4.14)-(4.21) repeatedly in

what follows.
B. égrstL

Since (4.9b) is a local gauge transformation we must hav+
6BRST£gauge =0, (422)
as can be seen from

&BRSTF}HI =0 A Fuv
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and

OBRST (F,w . F“") = =0 (F,w A F‘w)
= (.

The remainder of the calculation is straightforward and one finds
SerstL = 0" [% (@ A,)- (Duc)] 8, (4.23)

namely the BRST variation of £ is a total divergence which is transformed into a surface
term in the action and so has no effect on the dynamics which are BRST-invariant. We
demonstrate this in a more direct manner in the Appendix. Another implication of the
nonvanishing of the right-hand side of (4.23) is that the BRST-Noether current derived from
L is not conserved, but one that is can be constructed simply by subtracting the square-

bracketed term in (4.23) from the original current.

In the course of establishing (4.23) one exploits the fact, which follows from (4.9),

that
orsT(Dyc) = 0, (4.24)

which is just one of the nilpotency relations that characterize the BRST transformation:

é8rsT(Au) =0, (4.25a)
62nsrc =0, (4.250)
82nspct = 0. (4.25¢)

We remark that (4.25¢) follows using the equations of motion for ¢; it is interesting to note

however that §3gspct vanishes independently ¢! the equations of motion. Since

6£ auge
6.BRSTﬁgauge = m : au(éBRSTAu)
or (4.26)
+ —Bizse - 6prsTA,,
it is seen that (4.22) follows from the validity of the useful identity
Fu -0*(D*c) =g (A*AFy,) - D¥c. " (4.27)
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Of course (4.27) is valid independently of (4.22), (4.9) or the equations of motion which have
as yet to be exploited. It should be possible to use instead of £ a Lagrangian which is BRST

invariant. It is easily shown that
dprstL; = 0, (4.28)

where the invariant (i) Lagrangian,
1
Li= E‘sauSe - % (3“ : Au)z -ct. (BMDMC) 3 (4-29)

differs from £ by a total divergence. The problem with (4.29) is that it contains second
derivatives which we examine in more detail within the next section since it then requires a

modification of the usual Noecther formalism.

Recall, however, that we have demonstrated here only one quite conventional method
of gauge-fixing the Lagrangian, and that one may also consider other prescriptions. At the
expense of introducing auxiliary scalar commuting bosonic fields f,, for example, one may
define a covariant gauge-fixing prescription which automatically leads to a vanishing BRST

variation of £. We thank the anonymous referee of this work for pointing out to us that for
Lor =a,,f-A“+§f-f (4.30)
Lrpg = d,ct - D*c (4.31)
one finds that the Lagrangian
L = Lgauge + LcF + LrpPa

is invariant under the following set of transformations:

SprsTd = gcbA (4.32a)
dprstAy = —(Dyc)bA (4.32b)
dprsTC = —%(c Ac)bA (4.32¢)
dgrsret = —~f6A (4.324d)
dprstf = 0. (4.32¢)

This Lagrangian, we note, suffers from no higher derivative problem, and moreover that the
nilpotency relations ot the BRST transformations, Eq. (4.25) plus 84551 f = 0, formulated

in this way are found to be satisfied without recourse to the ghost equations of motion.
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V. BRST NOETHER CURRENTS

The Noether formalism for the particular realizations of BRST symmetry considered
in Sec. IV has two complications not encountered previously. One is the higher-derivative
problem pointed out at the end of the last section. The other has to do with the fact that ¢

and c* are anticommuting Grassmann quantities. So that for any variation, é, of the fields

we have, e.g.,

6L =6c+--a-a-c—£;+6c-aa—€+“-, (5.1a)
L ac
=g;-6c++a-6c+---, (5.1b)

where dL/0c and JL/0c, e.g., denote the left and right-handed variational derivatives,?
respectively, of £ with respect to the Grassmann quantity c¢. Consequently, the relevant

Noether currents are given by

oL ac
y =6ct . . ves
@) =8¢ Fa T s T

5e 3
= 506G ¢ " 3.9

(5.2a)

cbet---. (5.2b)

The Lagrangian formalism holds as usual with respect to c¢* and c so long as either only right

or only left variational derivatives are employed; evidently the same equations of motion are

obtained either way.

Since
ac _ oc
(0uct) —  0(8uct)
= —D#c, (5.3e)
ac _ ac
0(0.c) - 0(9,¢)
= 48%c*, (5.3b)

it follows that the BRST Noether current associated with £ is??
g v 2 174
[7u(z)]BRsT = F - DYe— g(auc+) “(ehe)+ ;(3 Ay) - Dye, (5.4)
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where we have dropped an overall éA factor on the right side of (5.4). A conserved BRST
current is obtained from (5.4) by subtracting the divergence (4.23) yielding (again without
the overall A factor)

Ju(z)BRST = Flt - DV — g‘(aﬂc+) “(eAc)+ 'al'(avAV) * (Dyc). (5.5)

The verification that one also obtains (5.5) from the BRST-invariant Lagrangian L;
requires the use of a higher-derivative Lagrangian and Noether formalisms which we quote,

for simplicity, in terms of a scalar, non-Grassmann field ¢(z). If
L = L(¢,0,¢,0%9), (5.6)

then the action principle implies the equations of motion

OLL =0, (5.7)
where
a 7] 0 ‘
oum - (o) 0 (525) -2,
L= \oww) t O \o@d) " 96 (58)
is the Lagrangian operator for this case. For any variation, é, the Noether current is
. oL oL oL
Julz) = [5(8_"_4:5 -0, (W)] 56 + Wa"(6¢)’ (5.9)

which is conserved if 6 = 0. The adaptation of (5.6)—(5.9) to the Grassmann situation
encountered in connection with £ and the BRST transformation (4.9) is clear from our
treatment of ordering questious earlier in this section. One finds, for example, that

oc;

Ju(2)BRST = BoA) erst Ay + J5(z), (5.10)

where
K Jc
Ju(m) = {a(auc) - au (a(agc))] . 5BRSTC

ac;
+ W . a“(ﬁgRSTc).

(5.11)
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One then obtains (5.5), with the aid of some of our previously quoted identities, which

demonstrates the consistency of the two approaches.

As a further check on the validity of our result (5.5) it is instructive to directly verify
that
3" ju(z)BRsT = 0 (5.12)

using the explicit equations of motion:??

9 F,, = J(2), (5.13a)
9*(Dyc) =0, (5.130)
d%ct = g(d,ct) A A~ (5.13¢)

The conserved source current for the field strength,
1
J.(z) = -—;6‘,(6 +A)+g(8,c)ANc+gA* A F,, (5.14)

is evidently quite distinct from the Noether current {5.5). Both of these currents, in turn,

are each different from the conserved Noether current that is associated with the invariance

Sl = 8L; =0 (5.15)

under the global (rigid) gauge transformation

SoA, = gA, NG, (5.16a)
Ssc = g(cA9), (5.168)
Soct =g(ct A 9), (5.16¢)
namely
J(2) = Fu A A” + i-(a"Au) A A, — Bt Actct A Dy (5.17)

Now J,(z) corresponds to the conservation of “charge”, although J,(z) and the conserved

charge

Q= [&au(a) (5.18)
are generally gauge variant.

VI. SUMMARY
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We have elaborated upon the customary pedagogical treatments of Noether’s theorem
when it is applied to local gauge transformations. We have shown for both Abelian and non-
Abelian gauge groups that the Noether currents associated with local gauge symmetry are
expressed solely in terms of field strengths and are trivially conserved. The same form for
the current is obtained whether or not the gange fields al'e"coupled to matter so long as that
coupling is minimal. The resultant currents and their associated charges do not generally
correspond to physical observables except for constant gauge parameters in which case they
reduce to the currents and charges implied by global (or rigid) gauge symmetry. This is

reflective of the lack of gauge fixing.

When the gauge fields are constrained, as is necessary to obtain unique solutions
of the classical equations or to quantize the theory, the local symmetry is destroyed and
the consequences of Noether’s theorem are much more limited. A particularly interesting
case is when the quantization is carried out using the device of anticommuting Faddeev-
Popov ghosts. The gauge-fixed Lagrangian still possesses a restricted iocal gauge symmetry,
BRST invariance. The application of Noether’s theorem in this case involves subtleties in
Grassmann calculus and the higher-derivative Lagrangian formalism not usually explicated
in introductory treatments of gauge theories. We have given a self-contained treatment that
considers these points in detail and also considers the differences among the source current,
and the two Noether gauge symmetry currents (global and BRST) that arise in a quantized
gauge field theory. Two theorems concerning the nonuniqueness in the choice of field theory

Lagrangians are proven in the Appendix.

APPENDIX

It is often stated that Lagrangians that differ by total divergences yield equivalent
equations of motion because such terms are converted to surface terms in the action principle
which can be discarded. The result, of course, is actually independent of the consideration
of surface integrals. We explore this question here because it takes on a slightly different

form for Lagrangians containing higher derivatives such as £;.

The usual result is that if we have

£ = L($,0.9) + 8./*(9), (A.1)
then, because
0u(9) = 0.8, (a2)
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we have

OLL = OLL, (A.3)
where
] ]
o= (55) - 3% .

From (A.3) we see that the equations of motion will be the same for both £ and L.

A number of generalizations of the preceding nonuniqueness (of the choice of La-
grangian) theorem to higher derivative Lagrangians are possible. The one we require, how-

ever, is where

lf = Z(¢a au¢$ at\aplﬁ)
(A.5)
= £(¢1 6“45) + auf“(‘ﬁ’ a"¢)'
Then since .
afe afe ‘
f -
Ouf* =3 r Oud + 50, ¢)a,,au¢, (A.6)
one finds, after a somewhat lengthy calculation, that
OLL =0O.L, (A7)
where
OL = 0,0 9 = 9 (A.8)

*00r0,0) | 0(0up) 09
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