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AN EFFICIENT EXACT ALGORITHM FOR THE
“LEAST-SQUARES” IMAGE REGISTRATION PROBLEM

Karel ZIKAN
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STANFORD UNIVERSITY
Stanford, CA 94305

and

Hughes Artificial Intelligence Center
Hughes Research Laboratories
3011 Malibu Canyon Rd., Malibu, Ca 90265

Abstract

Image registration involves estimating how one set of n-dimensional points is rotated, scaled, and
translated into a second set of n-dimensional points. In practice, n is usually 2 or 3. We give an exact
algorithm to solve the “least-squares” formulation of the two-dimensional registration problem. The
algorithm, which is based on parametric linear programming, can be viewed as a refinement of the
O(k®) approximation method proposed by Zikan and Silberberg [13]. The approach can be extended

to handle registration of images of different cardinalities.



1. Background of the Problem

The basic image registration problem is stated in ZIKAN and SILBERBERG [13]: “Assume that a
collection of n-dimensional points undergoes an affine transformation made up of a rotation, a scale
change, and a translation; moreover, assume that noise (random and/or systematic) is added to
each transformed point. Knowing the positions of the original and transformed points, but not their

identities, can the transformation, the noise, and the point-to-point matching be recovered?”

The image registration problem is fundamental in robotics, as the ability to “register” images is a
necessary prerequisite for “on-board” automated visual reasoning of mobile agents. Many research
papers have been written on the subject. Henry S. Baird [4] (ACM Distinguished Thesis Series,
1984) outlines some of the older, mostly heuristic approaches. Many of the methods employ the
so-called pruned tree approach; see e.g., GENNERY [6] and WONG and sALAY [12], where the tree of
partial matchings is searched for the desired solution. All permutations of the image points are
connected into a tree via the partial matches. The full matches (permutations) form the leaves of
the tree. The hope is that, although the tree contains k! leaves, most of the branches can be pruned
(removed from further consideration) early. The elegant approach of Baird also employs the tree-
pruning technique and claims to be computationally superior to the other methods. The inherent

problems associated with the tree-pruning methods are explained in [13].

Image registration is often formulated as a “least-squares” problem. Partial results toward the
solution of the general problem have been discovered and rediscovered several times. Perhaps the
oldest paper on the subject is GREEN [8], 1952. Long before various computer vision problems became
the most pressing open problems of the robotics-computer science of today, B. Green gave a solution
to the optimal rotation subproblem. Green’s result was later improved by sHoNEMANN [11]. Both
papers appeared in Psychometrica as the research focused on factor analysis rather then on image
registration. Clearly unaware of the classical results, FAUGERAS and HEBERT [5] (in a more general
work) gave solutions to the two- and three-dimensional rotation subproblems by a method different
from that of Green and Shonemann. Still later, ARUN, HUANG, and BLOSTEIN [3] rediscovered the
original method in the image registration setting. The latter two papers also give partial results
on the optimal translation subproblem. All these results implicitly or explicitly assume that the
one-to-one matching of points is either fixed or known. These and other aspects of the general
least-squares problem are treated in ZIKAN and SILBERBERG [13]. An O(k®) approximation solution

method to the general problem is also there given.

For other formulations of the image registration problem, see BAIRD [4], ALT, MEHLHORN, WAGENER,
and WELZL (1], and ARKIN, MITCHELL, and ZIKAN [2]. A strongly polynomial algorithm which solves
the Baird’s formulation can be (essentially) found in [1]. In [2] a strongly polynomial algorithm to a

more general problem is given. Most natural formulations of the image registration problem can be
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at least approximately cast within this framework; the “least-squares” and Baird formulations are
no exceptions. If we can extrapolate from the experience of other branches of applied mathematics,
however, then we can see that a good specialized algorithm for the “least-squares” registration
formulation is likely to be computationally superior to other serious image registration approaches.

We utilize parametric linear programming to provide such an algorithm here.

The following notions (and the associated notation) from complex plane geometry, mathematical pro-
gramming, and metric space theory provide a convenient formal framework for the two-dimensional

image registration problem.

fz= (:;) is a two-dimensional vector, then let x = z; + iz3 = [||x]|, ;] be the corresponding
complex number, where ||x]| = ||z||2 is the magnitude (two-norm), 8, is the argument, and [||x||,8.]
is the polar representation. Let X denote the complex conjugate of x and recall that in polar
coordinates xy = {||x|| - |ly}l, 0= + 6,] and x¥ = [||x|| - }ly|l, 0= — 8y))- The scalar product of x and y
isxoy = 21y + 222 = ||x|||ly]| cos(d: — 8 ), the “cross” product is x x y = ||x|}|ly||sin(f: — 6y).
Recall that xX¥ = xoy +ix x y and that 27y = x o y. The scalar product is also called the “inner”
or the “dot” product. To prevent possible ambiguity in mathematical formulas, let the notation
(-,-) denote the inner product. Therefore (x,y) = x oy for complex numbers, (z,y) = 2y for real
k-dimensional vectors, and if A and B are real n x k matrices, then let (A, B) = trace(ABT).

Assume that A and B are k-dimensional vectors of complex numbers and define

k
(A,B) =) _ajb;, (1-1)

j=1

where a; and by are the j-th components of the vectors A and B, respectively. This is the complex

inner product.

Consider the complex number €% = cos(6) + i sin(d). Counterclockwise rotation of two-dimensional
vectors by the angle 0 can be represented by multiplication of the corresponding complex numbers
by e'®. If r = [s,,0,], then the multiplication by r corresponds to the counterclockwise rotation by
6, and scaling by s, > 0. Let a; denote the argument of the complex number a; and 8; be the
argument of b;. Define

dij(r) = llas — rbjl13 = [lall® + |Ix]I*|Ibgl* — 2(as,rby)

(1-2)
= llall? + 71{bs [ — 2s,lasl|1bs]| cos(es — B; — 0;)

for all k2 distinct {i, 5} pairs.



Consider the parametric linear programs

k Ok
min min d;;(r) - x4
min min 3~ Y di(r) - 2

i=1j=1

k
subject to Ez;j =1, forall j=1,2,...,k

i=1 (1 - 3)
k
doay=1, forall i=1,2,...,k
i=1
:l!,'jZO, for all i,j=1,2,...,k,
and
k k
min minzz:d,-j(r) - &ij
rll=1 = i=1j=1
k
subject to Zx;j =1, forall j=1,2,...,k
i=1 (1 - 4)

k

Y wij=1, forall i=1,2,...,k
i=1

z;; 20, forall i,j=1,2,...,k

These problems arise naturally in the context of “least-squares” image registration, ZIKAN and
SILBERBERG [13]. If (r*,z*) is an optimal solution of (1-3), then point-to-point matching can be

recovered from z*, and rotation and scaling from r*

It is natural to view an n-dimensional image consisting of k points as a k X n matrix with rows
corresponding to the appropriate image points. If the image is two-dimensional, then it is also
convenient to associate with the image a k-dimensional complex vector A where each coordinate a;
corresponds to one image point. In this paper we choose the latter formalism. The association of
a vector (matrix) to an image is not unique; it depends on the ordering of the points. In general,
consider the complex k-dimensional vector space C¥. Assume that r and t are complex numbers. The
image associated with the vector A € C* can be translated by A® t = {a; + t,az +t,...,ax + t}

and rotated and scaled by rA. Affine transformation of image A can then be written as:
(r,6)(A) = r(A @ 1). (1-5)

A relabeling of image points by permutation # acts on the image by v(A) = Px A, where Py is the
permutation matrix corresponding to . Two images are to be considered as being equivalent if and

only if they differ by a registration and relabeling only,

A~B— A=(r,m,t)B=rP,(Bot). (1-6)
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Recall that ||A|| = (A,A)* is the euclidean (Frobenius) norm of the vector A.t Assume that
vector A corresponds to an image which has been translated rotated and scaled. Assume also that
noise has been added to each point. Denote the original image by B. If we predict the unknown
transformation from the optimal solution of the problem

min ||A — =, %, B (1-7)
then we have the “least-squares” estimate, in spirit analogous to least-squares estimates in other
branches of science. The matching and transformation give the least sum of the squared distances
between the matched points. In [13] we show that (1-7) essentially reduces to (1-3) or (1-4). Thus

these parametric programs are important from the practical standpoint.

2. On Frobenius Norm Image Registration

Many practical aspects of using the Frobenius norm based criteria for n-dimensional image regis-
tration were addressed in ZIKAN and SILBERBERG [13]. Most importantly, the issue of missing and
spurious points was discussed.} In this paper we restrict our discussion to the case where no missing
or spurious points occur. The extension of our results to the unequal cardinality case would be done

analogously to the development in [13].

On the theoretical side, it is shown in [13] that the optimal translation, independent of rotation,
permutation or scaling, always translates the center of mass (centroid) of B to the center of mass of
A. Let A and B be n x k real or complex matrices, and o and 8 be the respective centers of mass

(centroids) of their row vectors. (For us, n = 1 and the coordinates are viewed as image points.)

Theorem 1. If A and B are n x k matrices over the real or complex field V, then o — 3 solves the

translation problem
min ||4 - (Bt)llr- (2-1)

Proof: A simple proof from first principles can be found in [13, Section 3.1]. ©
The centroids of the images can be superimposed and conveniently identified with the origin of the
cartesian coordinate system.

It is also argued in [13] that the scaling parameter can be, and perhaps should be, estimated before

one begins the computation of the optimal rotation and matching. This result is enhanced later in

t In the case of n-dimensional images, where the k x n real matrices take the place of vector A,

we use the Frobenius matrix norm ||M||r = (trace(M MT))¥ = (M,M)%. The Frobenius metric is
the same as the euclidean norm when M is viewed as a kn-dimensional vector. If M is a complex
=T

matrix, then ||[M||2. = trace(M M*), where M* =M .

1t The presence of (missing and) spurious points leads to the problem of registering images of different
cardinalities.



this paper, when it is shown that positive scaling has no effect on optimal rotation and matching.
If the matching is fixed, then the optimal rotation and scaling of a two-dimensional registration

problem can be recovered with the help of the following theorem.

Theorem 2. Let A and B be k-dimensional complex vectors, such that (A,B) # 0. If

i0 (AvB)
= e 2-2
A, BN 2-2)
and
lICA, B)]|
s = W 2 2-3
TP 29
then e'® solves the problem minge ||A — e¥B||, and
r=se = (4,B) (2-4)

solves min, ||A — rB]|.

Proof: For a proof of the theorem consult [13, Section 4.1 and Appendix 1]. o

Analogous results for rotation and scaling in higher dimensions can be obtained, [13, Section 4]. The
three-dimensional problem can be solved with the help of the “algebra” of quaternions, FAUGERAS and
HEBERT [5], and the general n-dimensional problem with the help of the singular value decomposi-
tion, GREEN [8], and SHONEMANN [11]. The optimal rotation problem is known in literature as the

orthogonal Procrustes problem, GOLUB and VAN LOAN [7], after the villainous son of Poseidon.*

The case that is not explicitly covered by the theorem, i.e. (A,B) = 0, may be treated by one of

the standard lexicographical methods, ZIKAN and SILBERBERG [13].

In [13] one finds an approximation scheme, based on parametric linear programming, which solves
(1-4) (and consequently (1-3)) within a specified error in O(k®) worst-case computational complexity.
The availability of “hot start” at each step of the parametric “sweep” makes the approach practically
attractive. In this paper we enhance the parametric algorithm. The new algorithm enables us to
solve (1-3) and (1-4) exactly and (in fact) faster than by the original approximation method. In the
process of developing the algorithm we also enrich the theory of the least-squares formulation of the

image registration problem.

In Greek mythology, Procrustes forced travelers to fit into his bed by stretching their bodies or
cutting off their legs.



3. Bilinear Functionals and the Parametric Linear Programming Problems

Define

j=t i=1

E k
X= {05 z€RY:Y z;=1,and Y z;=Lforallij= 1,2,...,k} . (3-1)
Recall the classical result due to Birkhoff (1946) that the vertices of X correspond to permutations
of k elements. The vector z is a vertex of X if and only if there exists a permutation » such that

zij = 1 whenever i = 7(j), and z;; = 0 otherwise. The bases of X correspond to the spanning trees

of the (complete) bipartite graph Bi;.

Recall the definition (1-2) of d;j(r). Assume a lexicographic ordering of the {i,j} pairs and let
d(r) = (d;;j(r)) denote the resulting real k-dimensional vector. Note, that (1-3) and (1-4) can now

be written as

min min(d(r).2), (3-2)
and

[in, min{d(r),z). (3-3)
Define the natural functionals,

F(r,z) = (d(r),z) (3-4
and

F(r) = ;!él}l F(r,z), (3-5)

associated with (3-2) and (3-3). In addition to X, it is convenient to introduce analogues of d(r),
F(r,z), and F(r). Thus, let us define the auxiliary functions

8 (xr) = —(ay,rby), (3-6)

G(r,z) = (b(r),z), 3-7
and

G({r) = ;Iélxn G(r, z). 3-8

Note that G(-,) is a bilinear functional. Also note that

&ij(r) = lalf? + Il ?1ibsli? + 2645 (), (3-9)

and
F(r,z) = [|A]? + || P1IBIf? + 2G(x, 2). (3-10)

Lemma 1. Functions F(r) and G(r) are related by

F(r) = JAI? + liclPIBI? + 2G(x). (3-11)

7



Proof: Equation (3-11) results from these identities:

F(r) = rmn F(r,z) = mi}r‘l'(d(r),z)
k

= min 37 {llaill® + 1lrllIbgl? + 2655()} 25
=1

J_
k k k k
ZZ lasl*zs; + mi ZZ bel1? 11725 + 2 min Z §i()z;  (3-12)

..71

k k
= mlnz ||as |} Zzu + mlnz [Iel1211bs)1? Zzu + 2m1n(6(r) z)
j =1

= i=1
= ||A||2 + ||r||2||13||2 +2G(r),
where the first three identities follow from (3-5), (3-4), and (3-9) respectively, and the last relation
holds since 3%, Tij = Z;___l z;j = 1, (3-1). Simple algebraic manipulations complete the proof. o

io*

Theorem 2. The complex number se'®  solves minyjy|=, G(r) if and only if it solves minyjy =, F(r).

Proof: If the norm of r is fixed, then by Lemma 1, F(r) and 2G(r) differ by a constant only. o

Above all, we are interested in the case s = 1. Theorem 2 implies that if the scaling factor is
known, then the least-squares problem associated with the penalty function d is equivalent to the

“maximal-projection” problem associated with the penalty function §.

Lemma 3. Assume that s > 0 is a nonnegative scalar. If z* € X solves the linear program (3-8)
associated with G(r), then it solves the linear program associated with G(sr). The optimal solutions
are related by

G(sr) = sG(r). (3-13)

Proof: Since G(r, z) is a bilinear functional,
(6(s5),2) = (s6(x),2) = s(6(x).2).

If s = 0, then the result is immediate. If s > 0, then the lemma readily follows because positive

scaling of the objective function of a linear program does not change its optimal solution set. ©



Theorem 4. Assume that z* € X is a vertex solution to

min min G(r, z)
lirll=s z€X

for some positive 8. Assume that n* is the permutation associated with z*, and let

k
ol — Ej:l aj‘;’r‘(.i))

TP e TTh

. I abegll
IBIP?

and

k —
. ‘alt” Ej:lajb"(.i)

r —se

I1BI|?

Then {e\*",z*} solves the problems

(a) [min, min G(r,z),

and

(b) [min, min F(r,z),

while {r*,z*} solves the problem

(c) min min F(r,z).

Proof: We assume that there exists e!®’ such that
G, 7*) < G(e¥,x)
for all €' and 7. Consequently, by Theorem 3.2,
F(e"’, x*) < F(eV,x)

for all €'’ and x. But we know from Theorem 2.2 that

F(e,x") < F(e¥,x*),

for all e'. It follows from (3-20) and (3-21) that

F(e*" ,x*) < (e, x*) < F(e¥, )

(3-14)
(3-15)
(3-16)
(3-17)
(3-18)
(3-19)
(3 —20)
(3-21)
(3-22)

for all e! and 7. This establishes that {el’",z*} solves the problem (b). Invoke the Theorem 3.2

(again) and from (3-22) obtain
(e 1) < G(e¥, 7)

9
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for all €' and , which establishes that {e'’", z*} solves the problem (a). Finally, for all nonnegative

s > 0 we have
G(se!®”,7*) = sG(e!", 7*) < sG(eV, x) = G(s€, 7) (3-24)

by Lemma 3.3. Invoke Theorems 2.2 and 3.2 together and obtain
F(s*el 1) < F(se!" ,1*) < F(se'?, ). (3-25)

Since s is arbitrary, we have completed the proof that {r*,z*} solves the problem (c). o

Let least-squares registration problems be a generic name for the three problems of (3-18). We
have established a strong relation between the functionals G(-,-) and F(-,-). The bilinear structure
of G(-,-) provides us with another special property of the optimal solution sets. After we establish
this last nontrivial theoretical property, we can give the promised algorithm. For a fixed G, define

the corresponding complex plane equivalence relation by

r) ~g r3) if and only if

GxW,2*) < G(rM,z) for all z € X <= G(rP,2*) < G(rP,z) for all 7 € X. (3-29)
Theorem 5. Relation “~g” induces a convex conical subdivision of the complex plane.
Proof: Assume, that (3-26) holds for some pair r{?) and r(®). Then by Lemma 3.3
G(stV, 2*) = sG(rV), 2*) < sG(xV, z) = G(srV, z) (3-27)

for all s > 0, and

GO, 2") + G((1 = Mr@®,z*) =
AGED, 2 + (1 — NGEP, 2*) < AGED, 2) + (1 - NG (P, 2) (3 —28)
=GO, 2) + G((1 = N, z),

forall0<A<1. o

The subdivision induced by F is, of course, identical to the one induced by G and consists of a finite
number of cells. Thus the subdivision is the union of closures of its “two-dimensional” cells. (If we
view C as a two-dimensional real plane.) For each two-dimensional cell, o, we arbitrarily choose a
representative z{o) from the vertices of the associated solution set of minge x G(r,,z), where r, is

any element of o. Let #(c) be the permutation corresponding to z(o).
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Proposition 6. The set of representatives contains at least one optimal matching associated with

the least-squares registration problems (3-18).

Proof: The result follows from the fact that the relation G(r,z*) < G(r, z) for all r € o extends by

continuity to the boundary of . o

Figure 3.1 exhibits a finite conical subdivision of the plane.

S\\\\\\ :

Figure 3.1 A conical subdivision of C and a piecewise-linear path closed around origin

Note, that any closed curve around the origin intersects all two-dimensional regions of the subdivi-

sion. In particular, this is true of all piecewise-linear curves around the origin.
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4. The Algorithm

The algorithm to solve the least-squares registration problems (3-18) has four basic steps:

ALGORITHM

STEP 1: Choose a closed piecewise-linear curve in the plane (y), which contains origin in its

interior.
STEP 2: Choose a starting point xr© € v and solve the assignment problem associated with G(r%).

STEP 3: Parametrically compute the optlimal solutions of the assignment problems associated with

G(7(t)) and collect all distinct locally optimal permutations.

STEP 4: Use Theorem 2.2 to find the optimal rotation and scaling corresponding to each permu-

tation obtained in Step 3. The best overall solution solves the registration problems (3-18).

Let us briefly remark on each individual step.
Step 1. The unit square of Figure 3.1 is a convenient choice for 7. Note, that
8;j(1) = a0 by (4-1)

and that
6.'j(i) =8 X Ej, (4 - 2)

the “dot” and “cross” products of a; and Bj respectively. If r = r; + iry, then
6,']' (r) = 1'16,',' (1) + 1‘26,‘j(i). (4 - 3)
Consequently, the costs on the unit square of Figure 3.1 are easy to construct.

Step 2. 1t is convenient to choose a cornerpoint of the unit square as a starting point, for instance,

r® = 1 4 i. The Hungarian method can be used to solve G(1 + i) in O(k®) worst-case “time”.

Step 3. The parametric version of the simplex algorithm specialized to the transportation problem
can be used to perform this step. Since the vertices of X (3-1) are degenerate, few blocked pivots
may be performed between successive permutations. It is believed that the overall number of pivots

is quadratic in k, however, this question is still open.}

1 Consider the conical subdivision of RG-1)? generated by the nonnegativity constraints in the circu-
lations subspace, PAPADIMITRIOU and STEIGLITZ [10], KENNINGTON and HELGASON [9]. The complexity
of our algorithm directly depends on the number of cones intersected by a line through this conical
subdivision.
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Step 4. In practice, Steps 3 and 4 are merged so that not all relevant matchings need be stored
in memory. Note (Theorem 2.2) that for each permutation we mainly need to compute (A, #(B)),

(1-1). This requires O(k) arithmetic operations.
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