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Berkeley, Ca l i f o rn ia  94720 

INTRODUCTION 

Pressure t ransient t es ts  are conducted on 
geothermal wel ls i n  order t o  obtain data that  
can be used t o  calculate the t ransmissiv i ty 
(permeebility-thickness product) and the skin 
factor o f  the w e l l .  Varioua tests  can be used 
t o  obtain pressure t ransient data, including 
pressure drawdown, build-up, i n jec t i on  and 
f a l l o f f  tests,  and interference tests. Here we 
are concerned w i t h  the analysis o f  nonisothermal 
i n j e c t i o n  and f a l l o f f  t e s t  data. 
data from pressure t ransient tests  are cOmOnly 
interpreted using conventional type-curve or 
graphical analysis, rh i ch  usually assclles 
isothermal f l u i d  flow i n  porous media. I n  
geothermal reservoirs, these tests  are c a p l i -  
cated by nonisothermal behavior, fractures, and 
the presence o f  mu l t i p le  f l u i d  phases. However, 
i n j e c t i o n  and f a l l o f f  tests  are O f t M  favored 
for the analysis o f  two-phase reservoirs, 
because they el iminate the need for assuninq 
r e l a t i v e  permeabi l i t ies fo r  vapor and l i q u i d  
phases; these factors are unknown at  present. 

I n jec t i on  

I i i j a c t i o n / f a l l o f f  data are af fected by 
nonisothermal behavior because o f  var ia t ions o f  
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The present paper extends the analysis o f  
nonisothermal pressure t ransient data t o  
f ractured reservoirs. Two cases are considered: 
reservoirs wi th  predominantly hor izontal  frac- 
tures and reservoirs w i t h  predominantly v e r t i c a l  
fractures. Ef fects  o f  conductive heat t ransfer 
between the fractures and the rock matrix are , 
modeled, and the resu l t i ng  pressure t ransients 
evaluated. Thermal conduction tends t o  re tard 
the movement o f  the thermal f ront  i n  the frac- 
tures, which s ign i f i can t l y  a f fects  the pressure 
t ransient data. 
simulation studies i s  t o  provide methods for 
analyzing nonisothermal in ject ion/  f a l l o f f  data 
fo r  fractured reservoirs. 

The purpose o f  the numerical 

APPROACH 

I n  our study, the computer program PT 
(Pressure-Temperature; Bodvarsson, 1982) was 
used t o  simulate pressure t ransients during 
nonisothermal i n jec t i on  and f a l l o f f  tests. 
The three-dimensional single-phase simulator 
employe the integrated f i n i t e  di f ference method 
t o  d iscret ize the md iun  and formulate the 
mass and energy transport equations i n  a l i q u i d  

tmerature-dependent f l u i d  propert ies (v iscosi ty,  saturated porous medim. PT allows for both 
density, expansivity, and co@essibi l i ty) .  Over 
a temperature range o f  20-J0U°C, some o f  these 
f l u i d  propert ies can vary by more then an 
order o f  magnitude (Figure 1 ) .  

Previous studies o f  nonisothemal pressure 
t ransients include those o f  Tsmq and Tsmq 
(19781, who developed an analy t ica l  model of 
the pressure response t o  nonisothermal in ject ion,  
and Bodvarsson and Tsmg (1980), rho studied 
pressure t ransients and migration o f  thermal 
f ronts  i n  f ractured reservoirs. Nonisothemal 
i n j e c t i o n  tests  in two-phase reservoirs have 
been analyzed by Carg (1978) and O 'Su l l i vm md 
Pruess (1980). 

The basic methodology fo r  the andya is  o f  
i n jec t i on  and f a l l o f f  t es t  data fo r  porous 
medim reservoirs has been provided by Bodvarsaon 
and Tsang (1980) and Benson and Bodvarsaon 
(1982); methods fo r  evaluating the sk in  factor  
have been developed by Benson (1982) and Benson 
and Bodvarsson (1983). Siqurdason e t  a l .  (1983) 
developed methods f o r  r e l a t i n g  the nonisothermal 
i n j e c t i v i t y  index t o  the isothermal i n j e c t i v i t y  
index. 

pressure-dependent and temperature-dependent 
f l u i d  properties, which are computed in te rna l l y  
t o  within 1% o f  the t rue  values. The simulator 
hea been val idated against many a n a l y t i c  solu- 
t i o n s  (Bodvarsson, 1982) and f i e l d  experiments 
(Buscheck e t  el., 1983). 

A reservo i r  wi th  predominantly hor izontal  
f ractures i s  modeled employing a r a d i a l  g r i d  t o  
reprosant the f racture elements. 
extends s u f f i c i e n t l y  f a r  from the w e l l  ths t  
boundary elements do not a f fec t  the resul ts.  
We assume that  the permeabil ity o f  the rock 
r o t r i x  i s  much lower than that  o f  the fractures; 
the f l u i d  mass exchange between the fractures 
m d  the rock matr ix i s  therefore negl ig ib le.  
Me model conductive heat t ransfer between the 
matrix and the f ractures using semi-analytic 
approximations developed by Vinsome and 
Westerfeld (1980). 
the work o f  Laumr ier  (19551, which considered 
the problem o f  conductive heat losses during 
in ject ion.  The semi-analytical epproach allows 
us t o  accurately model the conductive heat 
t ransfer without using volune elements for  the 
rock matrix, hence, reducing a two-dimensional 

The g r i d  

Their model i s  based upon 
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problem t o  one-dintension. 
heat-loss rout ine has been v e r i f i e d  by cmpar i -  
son w i t h  Laurmrier's analy t ica l  so lu t ion 
(C. H. Lei, personal communication, 1984). 

The ver t ica l ly - f ractured reservoir  i s  
modeled using a s ing le v e r t i c a l  fracture; cases 
are studied fo r  a f racture without grav i ty  
(single-layer), end w i t h  grav i ty  (multi- layered). 
We again assune that  the f racture i s  i n f i n i t e  
i n  extent, and that  the rock matr ix i s  imper- 
meable. Results are obtained both w i t h  and 
without conductive heat t ransfer w i t h  the rock 
matrix. 
f l u i d s  i n t o  a 2M'C reservoir  i s  considered. 
Figure 2 &OWE the qeanetriea considered fo r  
the reservoir  systems modeled. 

REINJECTION/FALLOFF TESTS I N  POROUS MDIUM 
RESERVOIRS 

The eccuracy o f  the 

For a l l  cases, i n j e c t i o n  o f  1OO'C 

I n  order t o  evaluate the resu l t s  o f  
i n j e c t i o n  tes ts  i n  fractured retmrvoirs, we 
f i r s t  need t o  consider e a r l i e r  resu l t s  f o r  
porous-mediun-type reservoirs. Figure 3 shows 
the semi-log p l o t  o f  pressure t ransients f r o m  
simulated n o n i s o t h e m l  i n j e c t i o n  i n t o  a porous 
medim w i t h  and without a co ld spot around the 
we l l  (Benson and Bodvarsson, 19e2). The cold 
spot can resu l t  e i t he r  from cool ing due t o  
d r i l l i ng  or from previous injection. In Figure 
3 we see the e f fec ts  o f  no co ld spot, and o f  
co ld spots w i t h  r a d i a l  distances o f  lm, Sm, and 
10m from the i n j e c t i o n  w e l l .  

the la tc- t ime slope ( a f t e r  1100 sac) i s  that  o f  
the l0O'C i n j e c t i o n  f lu id.  Therefore the f lu id  
propert ies (u ,P ) corresponding t o  the in jected 
f l u i d  are used t o  calculate the transmissi- 
v i t y  (permeability-thickness product), here 

I n  the came h e r e  there i s  no cold spot, 

2.303 qsI 
Ccr m P kH = 

When a co ld spot i s  present, the data 
i n i t i a l l y  fo l low a slope corresponding t o  the 
f l u i d  propert ies o f  the cold inner region. 
Later, rhen the pressure pulse propagates i n t o  
the hot wter region, the slope ChanqSS cor- 
responding t o  the f l u i d  propert ies o f  the hot 
outer region. A t  l a t e  times, the thermal front 
s t a r t s  t o  move away from the well and the slope 
changes again t o  thst r e f l e c t i n g  the co ld f l u i d  
properties. For i n j e c t i o n  perioda on the order 
o f  a feu hours, the pressure t ransient data 
w i l l  a t  a l l  times (except fo r  the f i r s t  
few seconds) fo l low the slope corresponding t o  
the f l u i d  propert ies o f  the hot reservoir  
f lu ids.  
Equation (1 )  should be calculated using the hot 
f l u i d  properties fo r  u and P. 

Therefore the t ransmissiv i ty (kt41 i n  

behaves l i k e  a composite system, wi th an inner 
co ld region o f  low f l u i d  mobi l i ty  and a hot 
outer region with high f l u i d  mobi l i ty .  
the radius o f  invest igat ion i s  greater than the 
s ize o f  the co ld spot, the slope re f l ec ts  the 
f l u i d  propert ies o f  the hot reservoir. 
o f  f a l l o f f  data i s  therefore for  most cases 
analogous t o  analysis o f  i n j e c t i o n  data 
w i t h  a pre-existing co ld spot. 

HORIZONTAL FRACTURE CASE 

Once 

Analysis 

The pressure t ransients resul t ing from 
nonisothermal i n j e c t i o n  i n t o  a hor izontal  
f racture are shown i n  Figure 4. 
t ransients mentioned above fo r  a porous mediun 
reservoir  are included fo r  comparison. 
resu l t s  show that pressure response depends on 
the value o f  the thermal conductivity. 
i s  no heat t ransfer  batmen the rock matrix and 
the fractures the so lut ion for  the hor izontal  
f racture case i s  i den t i ca l  t o  that  f o r  a porous 
mediun reservoir  (A = 0) .  On the other hand, 
i f  the thermal conduct iv i ty i s  very large (A = a) 
the thermal front cannot move away from the 
we l l  and the resu l t s  are i den t i ca l  t o  those fo r  
isothermal 2M'C i n j e c t i o n  i n  porous mediun 
reservoirs. 
4 represents the range o f  r e a l i s t i c  thermal 
conduct iv i ty values. 
ind icate that i t  i s  reasonable t o  use average 
f l u i d  propert ies t o  calculate kH; other simula- 
t i o n  studies have found t h i s  t o  be t rue  over a 
range o f  i n j e c t i o n  end reservoir  temperatures 
(Bodvarsson e t  al., 1984). 
accurate resu l t s  may be obtained using f l u i d  
propert ies which are more strongly weighted 
towards the co ld in jected f l u i d  (i.e., the band 
i s  s l i g h t l y  closer t o  the co ld slope), the use 
o f  average f l u i d  propert ies i s  reasonable 
when one considers the degree o f  mcer ta in t y  i n  
other parmeters. 

The pressure 

The 

I f  there 

The shaded region shown i n  Figure 

A l l  o f  our resu l t s  

Although more 

The d i f f e r e n t  slope o f  the hor izontal  
f racture case can be explained if one considers 
the ve loc i ty  o f  the thermal f ront  moving away 
from the well. The advancement o f  the thermal 
f ron t  i n  porous mediun reservoirs (or i n  horizon- 
t a l  f ractures without hest conduction)is given 
by : 

2 - ~ y C y  P t  
' t f -  pr C r  WH (2 )  

Equation (2) shows that  the thermal front moves 
w i t h  a ve loc i t y  proport ional  t o  ?/t. 
other hand, the m o v w n t  of the thermal f ront  i n  
hor izonta l  f ractures i s  given by (Bodvarsson and 
Tsmg, 1982): 

On the 

. 
( 3 )  i- 

4 (PJ.,) 2P2t 
2 4.396 Pr Cr 1. r t f  = 

In  the case o f  f a l l o f f  fo l lowing mn- 
isothermal i n jec t i on  i n t o  a porous mediun 
reservoir, Bodverseon and 1s- (1980) Benson 
and Bodvarsson (1982)  found that the f luid 
propert ies corresponding t o  the hot reservoir  
f l u i d s  must be used. After shut-in, i m d i a t e l y  therefore very e f fec t i ve  i n  retarding the 
fol lowing nonisothermal in ject ion,  the reaervoir  advancement o f  the Lliermal front. 

Inspection o f  Equation ( 3 )  shows that  i n  t h i s  
case the ve loc i ty  o f  the thermal f ront  i s  pro- 
po r t i one l  t o  r4/t. 
between the rock matr ix and the fracture i s  

The thermal conduction 

f 
. - 1  

2 



The sk in  factor can be calculated using 
the methods developed i n  Benson and Bodvarsson 
(19821, as long as average f l u i d  propertiea (u 
and p )  are used. However, addi t ional  s imulat ims 
have shown that, when ca lcu lat ing the skin factor, 
the cornpressiblity o f  the i n -s i t u  reservoir  
f l u i d s  must be used i n  a l l  cases. 

Hor izontal  Fracture w i t h  a Cold Spot 

The presaure t ransients fo r  nonisothermal 
i n j e c t i o n  i n t o  a hor izonta l  f racture w i t h  a co ld 
spot generally resu l t  i n  3 slopes, as i n  the 
porous mediun case. An  ear ly time co ld slope i s  
followed by a hot slope, but then by m i n te r -  
mediate slope at  l a t e  time instead o f  a co ld 
slope. The larger  the co ld spot, the larger  the 
pressure increase, because o f  the high v iscos i ty  
o f  the cooler f lu ids.  Thus, ue see a p a r a l l e l  
set o f  hot slopes fo r  the hor izonta l  f racture 
case, s imi lar  t o  those observed i n  the porous 
mediun case (Figure 3 ) .  

The ear ly  time slope r e f l e c t i n g  the 
propert ies o f  the near w e l l  co ld  spot seen f o r  
porous mediun reservoirs (Fig. 3)  may not be 
seen i n  the hor izonta l  f racture case (Figure 51, 
because of the high fracture permeabil ity 
compared t o  that  of porous mediun reservoirs. 
Comparison o f  Figures 3 and 5 also shows that  
the hot slope a t  intermediate time las ts  a much 
shorter time for the hor izonta l  f racture case 
than i n  the porous medim case. The reason i s  
the small f racture aperture compared t o  the 
large thickness o f  porous medim reservoirs. 
Therefore, one may expect t o  see the l a t e  time 
slope representing the average f l u i d  properties 
i n  i n j e c t i o n  tes t  data, even though a large 
i n i t i a l  cold spot i s  present. 

Horizontal Fracture Step-Rate Tests 

I n  many cases. a ser ies o f  in . iect ion/ fa l lo f f  

those obtained by Bodvarsson end Tsang (1980) 
md Benson and Bodvarsson (1982) fo r  porous 
a d i r n  f a l l o f f  tests. I n  the case o f  fractured 
reservoirs, however, the duration o f  the cold 
water slope i s  o f ten very short due t o  high 
f racture permeabil ity and the rapid heating 
through heat conduction from the rock matrix. 

using the mul t i - ra te theory o f  Earlougher 
(1977) i n  a manner s imi lar  t o  that  o f  Benson 
(1982). Figure 8 gives the resu l t s  on a semi- 
l o g  p lo t .  
t o  the hot f l u i d  properties and then, a t  l a t e r  
time, a slope corresponding t o  the average 
f l u i d  properties. The t r a n s i t i o n  occurs at 
less than 20 seconds a f te r  the s t a r t  o f  the 
second i n j e c t i o n  step. The resu l t s  shown i n  
Figure 8 ere qui te  d i f f e ren t  from those o f  
porous mediun reservoirs, h e r e ,  f o r  most 
p r a c t i c a l  purposes, one expects t o  see the ho t  
slope a t  l a t e  times (although at  very l a t e  t ime  
the co ld slope reappears). This di f ference i s  
because o f  heating up o f  the f racture f l u i d s  
during the f a l l o f f  period. However, i f  the 
t e s t  conditions are such that a cold zone o f  
s ign i f i can t  r a d i a l  extent develops and the 
f a l l o f f  i s  o f  short duration (90 that  heating 
of f racture f l u i d s  i s  small), the tes t  resu l t s  
for the second i n j e c t i o n  step should show 
pr imar i ly  the slope corresponding to  the hot 
reservoir  f lu ids.  

The second i n j e c t i o n  step i s  analyzed 

I t  shows an esr ly  slope corresponding 

VERTICAL FRACTURES 

Ver t ica l  fractures are modeled both wi th  
and without gravi ty.  Ver t ica l  fractures without 
grav i ty  are. modeled with a one-dimensional 
geometry, u t i l i z i n g  a s ing le layer o f  elements 
which f u l l y  penetrates and i s  penetrated by the 
w e l l .  The heat loss rout ine described above i s  
used t o  s i m l a t e  the thermal conduction between 
the fractures and the matrix. The v e r t i c a l  
f racture models which include arav i ty  have a 

tests  wi th  d i f f e ren t  flow rates (step-rate tests)  , two-dimensional planar geanetr; and penetrate 
are conducted instead o f  s ing le teats ( S i g u r d s s o n  
and Stefmsson, 1977; Sigurdsson, 1978). I n  our 
study, we simulate the hypothetical step-rate 
tes t  shown i n  Figure 6. We s t a r t  w i t h  an 11-day 
i n j e c t i o n  a t  a ra te  o f  0.2 kg/s followed by a 
1-day f a l l o f f .  This i s  followed by a second in- 
jec t i on  tes t  a t  the sme rate. 
t ransients and the locat ion o f  the thermal front 
(assuned t o  be the average o f  the i n j e c t i o n  and 
reservoir  tsnperatures) versus time are shown i n  
Figure 6. The pressure t ransients fo r  the f i r s t  
i n j e c t i o n  period show the sane character is t ics  a6 
before (Figure 4) w i t h  an early-time hot slope 
followed by an intermediate slope on the semi-loq 
p lo t .  

The pressure 

The f a l l o f f  data are p lo t ted  on a Horner 
p l o t  (Figure 7). The pressure t ransients for 
the f a l l o f f  i n  hor izontal  fractures exh ib i t  a 
t y p i c a l  composite reservoir  behaviour, w i t h  rn 
early-time slope corresponding t o  that  o f  the 
co ld f l u i d s  near the wel l  and then a slope 
corresponding t o  the hot reservoir  f l u i d s  at 
l a t e r  time. These resu l t s  are very s imi lar  t o  

3 

the w e l l  at e i ther  the top or bottom o f  the 
fracture. The length o f  ell intersected 
by the f racture i s  assumed t o  be 50 m, w h i l e  
the t o t a l  height of the f racture i s  500 m (see 
Figure 2) .  The i n i t i a l  pressure d i s t r i b u t i o n  
o f  the grav i ty  models corresponds t o  a hydro- 
s t a t i c  p ro f i l e .  The parameters used for the 
v e r t i c a l  f racture models are given i n  Table 1. 

In  the present w r k ,  ue are only interested 
i n  exrnining nonisothermal e f fec ts  during 
i n j e c t i o n  i n t o  s ingle v e r t i c a l  fractures. No 
leakage i n t o  the rock matrix i s  allowed, hence, 
the resu l t s  obtained are only v a l i d  fo r  short 
t e s t  periods or f o r  v e r t i c a l  fractures i n  very 
t ight format i one. 

i n f i n i t e  v e r t i c a l  f racture f u l l y  penetrated by 
a well i s  given i n  dimensionless form (Eerlouqher, 
1977) as: 

The pressure t ransient so lu t ion for  s ingle 

PD = 2@ ( 6 )  



where PD and to are dimensionless pressure and 
time, respectively. In  terms o f  r e a l  parmneters, 
Equation (4) becomes: 

(5) 

where H i s  height o f  the f racture and b the 
thickness o f  the fracture. Inspection o f  
Equation (5) shows that  i t  i s  not possible t o  
determine the tranamissiv i ty (I<+) o f  the 
f ractures alone, but the cunbersome parameter 
k+2H2. 
venient t o  determine t h i s  parmeter using 
e i the r  log-log p l o t s  o f  pressure versus time, 
or AP VS. fl. 

I f  the l og  o f  the pressure change versus 

Equation (5) shows that  i t  i s  con- 

the l og  o f  time i s  used, a h a l f  elope w i l l  
r e s u l t  as shown i n  Figure 9. 
100'C and 250'C fo r  isothermal i n j e c t i o n  are 
sh i f t ed  because o f  the d i f f e ren t  v iscos i ty  
values. 
a l l  cases w i t h  1W'C i n j e c t i o n  i n t o  a 250'C 
reservoir ,  the p l o t  f a l l s  along the isothermal 
250'C curve. 
i n t o  a l0O'C reservoir ,  the curve f a l l s  on the 
isothermal 1OO'C curve. In  other words, no 
matter what the i n j e c t i o n  temperature or whether 
or not conductive e f fec ts  are included, pressure 
t ransients fo r  the v e r t i c a l  f racture without 
grav i ty  fo l low a curve r e f l e c t i n g  the f l u i d  
propert ies o f  the hot reservoir  tasperature. 

the wel l  resu l t s  i n  the log-log p l o t  o f  pressure 
t ransients shown i n  Figure 10. 
the data i n i t i a l l y  fo l low the curve r e f l e c t i n g  
the temperature o f  the co ld spot, but  a f t e r  100 
seconds they fol low the curve denoting the hot 
reservoir  temperature. 

In p l o t s  o f  AP versus fl, the slope 
depends upon the f l u i d  v iscosi ty,  so that  
d i f f e r e n t  slopes merge fo r  these nonisothermal 
cases. Figure 11 shows a schematic sunmary of 
our resu l t s  p lo t ted  as AP versus fi. Tor 
most p rac t i ca l  purpoaes i t  i s  probable that  
conductive heat t ransfer w i l l  e f f ec t i ve l y  
re ta rd  the advancement o f  the thermal f ront  i n  
the fracture, so that  the e f fec ts  o f  the co ld 
spot w i l l  be rather small. 

The two curves of 

It i s  interest ing,  homver, t ha t  f o r  

For a l l  cases w i t h  250'C i n j e c t i o n  

The presence o f  a 100 m co ld spot around 

In t h i s  case, 

Ve r t i ca l  Fracture Case w i t h  Gravi ty --- 
I n  order t o  study the e f fec ts  o f  grav i ty  

on our resul ts  rn constructed a two-dimensional 
v e r t i c a l  model o f  a f racture as shown i n  Figure 
2. We conaider four cases: i n jec t i on  i n t o  the 
top o f  the fracture, both w i t h  and without heat 
conduction, and in jec t i on  i n t o  the bottom o f  the 
fracture, both w i t h  and without heat conduction. 
The r a t i o  o f  the i n te rva l  open t o  the w e l l  (50 m) 
and the t o t a l  f racture height (500 m) i a  0.1. 

The resu l t s  obtained are shown i n  the 6P 
v s f i  p l o t  i n  Figure 12. 
the ef fects o f  grav i ty  are very m a l l .  
cases show a slope s im i la r  t o  that  o f  the hot 

As the f igure showa, 
A l l  

reservoir ,  wi th deviations less than 10%. An 
exception i s  the rather un rea l i s t i c  case o f  no 
thermal conduction and i n j e c t i o n  at the bottom. 
I n  t h i s  case the co ld water basical ly flows 
along the bottom o f  the fracture, creat ing a 
rather large zone w i t h  h igh v iscos i ty  cold 
f lu ids.  Consequently, the pressure r i s e  i s  
somewhat higher than i n  the other cases. 

Figure 12 also shows some non-linear 
behavior i n  the curves a t  ear ly  times. This i s  
due t o  the p a r t i a l  penetration and shows up 
more c lea r l y  on the log-log p l o t  (Fig. 13). The 
pressure data f a l l  above the hot reservoir curve 
because o f  the resistance caused by the p a r t i a l  
penetration. It i a  in terest ing t o  note that  the 
early-time transients due t o  the p a r t i a l  pene- 
t r a t i o n  l a s t  f o r  several hundred seconds for  t h i s  
rather high penetration ra t i o .  
open i n t e r v a l  t o  the mll i s  perhaps 1 m, which 
would g ive much longer ear ly t ransients due t o  
the lower penetration ra t i o .  I f  a v e r t i c a l  
f racture case i s  auspected, these ear ly tran- 
s ienta would be detected because o f  the lack o f  
a 1/2 slope. 

A more r e a l i s t i c  

Although the pressure t ransients for 
nonisothermal i n j e c t i o n  i n t o  v e r t i c a l  fractures 
are not s i g n i f i c a n t l y  af fected by grav i ty  or 
thermal conduction, the temperature d i s t r i bu t i ons  
o f  the various models are qui te  d i f ferent .  
i s  i l l u s t r a t e d  i n  Figure 14 where the locat ion 
o f  the thermal f ront  i s  shown fo r  the two cases 
o f  upper and lower in ject ion.  Af ter  1 x lo6 
s (-- 12 days) the thermal f ront  i n  the case 
w i t h  upper i n j e c t i o n  has advanced 5.6 m while 
fo r  the case w i t h  lower i n j e c t i o n  the thermal 
f ron t  has advanced 12.1 m. The thermal f ront  
t rave ls  much far ther  i n  the case with lower 
i n j e c t i o n  because the co ld water i s  denser than 
the reservoir  f l u i d s  and cannot eas i ly  move 
upwards. I n  the case w i t h  i n j e c t i o n  at the top 
o f  the fracture, the co ld water descends 
rap id ly ,  80 that  a large surface area fo r  heat 
conduction develops (Fig. 14). 
w i t h  lower in ject ion,  a much smaller surface 
area for conductive heating resul ts.  

This 

In the case 

DISCUSSION AND SUHMARY 

The pressure t ransients fo r  nonisothermal 
i n j e c t i o n  i n t o  hor izontal  f ractures p lo t ted  on 
a semilog p l o t  r e f l e c t  the thermal properties 
o f  the reservoir  a t  ear ly times and the average 
propert ies at  l a t e r  t ines. A t  times a f t e r  the 
thermal front has moved past the well, the 
average f l u i d  propert ies should be used t o  
ca lcu late the t ransmissiv i ty and the sk in  
factor. The mason that the late-time slope 
l i e s  batmen the cold and hot slopes i s  that  
the advance o f  the thermal f ront  i s  slowed by 
conductive heat t ransfer between the reservoir  
and the fracture. For reaeonable values o f  
thermal conductivity, t h i s  i s  intermediate 
between the hot and cold slopes. Data obtained 
during i n j e c t i o n  i n t o  hor izontal  fractures w i t h  
co ld  spots can be analyzed, i n  most cases, l i k e  
data from porous mediun reservoirs, using the 
hot elope fo r  computing kH and akin fsctor. 
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This i s  also the case w i t h  f a l l o f f  data. Our 
simulations fo r  mul t i - ra te injection tes ts  
r e s u l t  i n  an intermediate slope, although fo r  
other conditions the hot slope m i g h t  be 
present. 

The v e r t i c a l  f racture geometry has very 
d i f f e r e n t  e f fec ts  on the nonisothermal pressure 
transients. 
change versus time and the l i nea r  p l o t  o f  
pressure change versusf l  both resu l t  i n  
curves which r e f l e c t  the temperature o f  the 
reservo i r  i n  a l l  cases. Neither g rav i t y  nor 
thermal conduction s i g n i f i c a n t l y  change th is 
resul t .  Therefore, the reservoir  propert ies 
should always be used t o  calculate reservoir  
parameters i n  cases w i t h  v e r t i c a l  fractures. 
The pressure transients r e f l e c t  the reservoir  
propert ies because, fo r  the v e r t i c a l  f racture 
geometry, pressure change i s  a funct ion o f  the 
distance from the w e l l  rather than a funct ion 
o f  the l og  o f  t h i s  distance. Therefore, Since 
pressure change i s  integrated over a large 
distance i n  the fracture, the hot outer part o f  
the f racture has a much greater e f f e c t  on the 
pressure t ransients than does the co ld region 
close t o  the w e l l .  I n  the hor izonta l  f racture 
case, where the pressure change i s  a ftmction 
o f  the log o f  the distance, the region near 
the wel l  has much more s ign i f i can t  effect 
once the thermal front advances beyond the 
w e l l .  

The log-log p l o t s  o f  pressure 

We find that  the elevat ion o f  the i n j e c t i o n  
point  i n  v e r t i c a l  f ractures great ly  a f fects  the 
migrat ion o f  the co ld water away from the well. 
I f  the w e l l  in tersects  the upper por t ion o f  the 
fracture, g rav i t y  w i l l  help spread the co ld 
water as i t  descends, causing a large surface 
area fo r  conductive heating. Thus, i f  migrat ion 
o f  the co ld water i s  a c r i t i c a l  conaideration 
when planning i n j e c t i o n  w e l l  locat ions i n  
v e r t i c a l l y  f ractured reservoirs, our reaul ts  
ind icate that  i t  may be prefereble t o  
i n t o  the upper par t  o f  the fractures, 
than the lower part. 

NOMENCLATURE 

b 

C 
H 

k 
m 

P 
q 
Q 
r 

C 

'tf 

tD 

t 

0 

A 
U 

aperture, m 
compressibi l i ty ,  Ps- l  
heat capacity, J/kg 'C 
reservo i r  thickneaa, or v e r t i c a l  

permeebility, m2 
&solute value o f  the alope on a 

pressure, Pa 
mass flow rate, kg/s 
volunetr ic  f l o w  rate, d / s  

height, m 

t p l o t  

i n j e c t  
rather 

f recture 

P va log 

radius t o  an observation paint, I 
r a d i a l  diatance t o  the thermal front, n 

time, s 
dimensionless time 

d i f ference 
thermal conductivity, J/s-n-.C 
viscosi ty,  Pa s 

P density, kg/n? 
0 porosi ty 

Subscripts 

D dimensionless 
i n  i n j e c t i o n  
r rock 
res reservoir  
t f  thermal front 
w water 
we w e l l  
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Table 1. Parge te rs  used i n  Simulations 

Horizont a1 Ver t ica l  Fracture Ver t ica l  Frac ture  
f racture - no Gravity w i t h  Gravity 

K f  2 x 10-l~ m2 2 x m2 1 x IO-' m2 

0 0 0 Kr  

b .01 m .01 m .01 m 

.999 .999 -999 

.2 kg/s 2 x kg/s 2 kg/s 

.1 m .1 m 5 m  

Ar 2.0 J/m s°C 2.0 J/m s O C  2.0 J/m s O C  

er 2650 kg/m3 2650 kg/m' 2650 kg/m3 

C 1000 J/kgo C 1000 J/kg'C 1000 J/kg°C 
'rock 

H - l m  500 m 

'res 2sooc 250'C 250'C 

'in l0O0C 100OC l0O0C 
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Figure 1 .  Variations in  f lu id  properties  of  
l iquid  water with temperature 
(from Bodvarsson et e l . ,  1984). 

Figure 2 .  Horizontal and ver t i ca l  fracture 
model geometries. 
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Figure 3. Pressure transient  data from 1OO'C i n j e c t i o n  i n t o  e 25O'C porous 
mediun reservoir  with a cold spot ( a f t e r  Benson and Bodversson,l982j. 

I 1 I I I I I 
10-1 lo 0  10' ld 1 0 3  l o 4  1 0 5  

Time (sec) 

Figure 4. Pressure transient  date for nonisothermal i n j e c t i o n  i n t o  
a hor izonta l  f racture.  

4.0 1 1 I I 1 1 I i 

Figure 5 .  Pressure transients for  non-isothermal i n j e c t i o n  i n t o  a horizontal  
f racture  with cold spots. 
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Figure 6 .  Step-rate non-isothermal inject ion test data 
for a horizontal fracture. 

f igure  7 .  Pressure transient  data for f a l l o f f  a f t e r  
o f  1OO'C inject ion into a 250'C horizonta 
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Figure 8. k l t i - r a t e  analysis o f  the pressure 
t ransient data fo r  the second 
i n j e c t i o n  step i n  a hor izontal  
f racture . 

vert14 fracture - no gravity 

I 10' 

X 

0 isothermal 100°C 
0 isothermal 250°C 
A 250'C inlection into lW0C rmewoir 
A 100°C inlectton into 250OC reservoir 

I 

I (cases with and without thermal 
conduction are identical) 

.-. 
10' l@ '" ld lo4 l o 5  10s 
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Figure 9. Pressure t ransients (log-loq) for non-isothermal i n jec t i on  
i n t o  a v e r t i c a l  f racture (no grav i ty) .  
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Figure 10. Pressure trans ients  (log-log) for non-isothermal inject ion 
i n t o  a v e r t i c a l  fracture (no  gravity)  with a co ld  spot .  

Figure 1 1 .  Schematic pressure trans ients  ( A P  
vs \c;i for non-isothermal inject ion 
into  a vert ica l  fracture (no 
gravi ty)  with co ld  spots. 

I 

Figure 12. Pressure trans ients  (AP v s  fi) for 
mn-isothermal inject ion i n t o  a 
v e r t i c a l  fracture with gravity.  
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f igure  13 .  Pressure trans ients  (log-log) for non-isothermal inject ion 
i n t o  a vert ica l  fracture w i t h  gravity.  
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Figure 14. Schematic v i e w  o f  thermal front for non-isothermal inject ion 
into  a vert ica l  fracture for cases  o f  upper inject ion and 
lower inject ion.  
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