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On Oplimal Reconstruction Angles®
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Abstract

The qguestion of optimal projeclion anegles has recently become of interest in the
field of reconstruction from projections. Here, studices are concentrated on the n n
"pixel"” space, where itcerative algorithms such as ART and divcet matrix techniques
due to Katlz are considered. We  altempt tlo  show which angles are best in a
Gauss—Markov statistical sense as well as with  respeel  to o funclion-theorelical
crror bound. The possibilitly of meking pholton intensity a function of angle is also
cxamined.  Finally, we study which anglex are best to use in an ART—-like algorithm.
A certain set  of nnegually  spaced angles  was found Lo be preferred in several
contexts.,

Introduction

The reconstruction space used herein  is  the pixel space composad of n? square
regions, denoted by Z(n). Though in the studies of ART-like alporithms other spaces
come inlo play, Z(n) is always the rcconstruction space of choicve. Our study depends
sharpty on this decision; in facl, in our scarch for opltimal projection angtes,
subsels of the angles which correspond to the wunderlyving symmetlries of “(n) are

frequently better than  any  other choice of angles. On the other hand, for one who
would take 1nto account the a priori known symmetry of an object to be reconstructed,
the projection angles chosen  should reflect that information. But in gencral, no

such hnowledge is available.

Many crucin) factors molivale a study of projection angles. Recognizing thal
the choice of projection angles affects the required detecetor resolution and the
performance ot reconstruction algorithms for 7Z{(n), our studics consider stability,
numerical sensitivily, accuracy, and, in the iteralive schemes, =pced of convergence.
The =et of projection angles is optimized in two related contexts. We consider
algorilhms which wuse 7Z(n) exclusively and arc analyzed totally in that spacc. This
involves direcct matrix rcconstruction techniques, in particular those developed in
[14]A Since direct methods may not be feasible on existing computers, ART-like
algorithms are studied using projeclion angle dependent resuits like those in [10].

. Some direct malrix methods
Background

The approach to this study is empirical, being founded on theoretical
developments due to Katz.!? 0Of partieular importance in his work is the answer he
gives to the question of uniqueness of 4(n) reconstructions. We summarize some of
his results as follows. Let p, and q, bc integers such that

Py
}0i=tan_1( - },i=1,m}
2
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ix the scet of wngles we are using to reconstruct an okject in Z{n);: m is the number

of anmgles., The detector spacing is intimately related to the chosen angles by the
natural choice the Z(n) geometry affords us. [t is an integral multipie of (size of
i pixel)/(pf+q?)'5 With these facts in hand, Katz then proves that a reconstruction
in Z{n) is uniquely determined by such projection data if

m m
n < | +min( ¥ IPiI-Z |qjl)
i=1 i=1
where n is the dimension of Z{n). When Lhis conditien is violated, uniqueness cecases
to hold and the null space of the projecton transfocrmation becomes non-zero. We will
discuss the character of the null space and the role it can play at a later point.
But first it is important to clarify these importanl points. To do so we classify
projection angles and deteclor spacings in a natural way.

A first obvious classification of angles is:
a) Those having rationai tangents.
b) Those having irrational tangents.

Class (a) can be further subdivided into two sets. Mirst, there are the angles
gencrated by the Farcy series of order n which will henceforth be called "Farcy
angles of order n". To define them, we must define Lhe Lerm "Farcy series”:!'7 given

Lhat p and q arc relatively prime intecgers, the PFarey scries of order n is Lhat
increasing ordered sequence oi fractions p/q with gun such that

0 p
-~ g - g -
| q 1
For example, Lhe Farey scries of order 6 is:
g t t t 1t 2 1 13 2 3 4 5
1 6 5 4 3 5 2 5 3 4 65 6 1
The angles a Farey series generates arc given by
nom m
0, -, -, - -
2 4 4

and
P . a -p 9
tan™' (=), tan~'(=), tan™'( =), tan~'{ )
q P q P

where tan”!(1/0):n/2, and 0<p=g. The other subdivision of the class of angles which
have ralional tangenls consists of all such angles which are not Farey angles. This
distinetion is important when we come to consider naturally-induced projection data.

‘The most commonly used projection data in recenstruction algorithms comes f{rom
angles of class (b). Equaliy-spaced deteclors are normally employed, wilh some
researchers varying the spacing as a funclion of angle.9 A sccond class of projection
data is that genvrated by the projected images of the vertices of the pixels, with
the projected points being the deleztor boundaries. This is graphicafly iffustrated
in Figure 1| for projection information al an angie of 36*. Clearly, the detectors
are not equaily-spaced, although Lthere is symmetry about the ceniral detector. In
contrast, there are angles which do generate equally—spaced projection data. They
are in fact the B angles generaled by the Farey series of order 2. So, another

subclassification has arisen. But our classification of projection data is not
completle, for those angles generaled by Farcy series order m+] have projection data
which is equally-spaced on the interior detectors. That is, Llhere are outside

detectors which have widths which are integral multiples of the minimum detector
width at that angle. However, the interior detectors do have equal widths as opposed
to the situation for non-Farey angles, so this case is only slightly different from

that of completely equal ly-spaced projection data. Figure 2 illustrates 1lhe
completely equally-spaced phenomenon for tan~!(1/2) and Figure 3 shows the "edge"
effect for tan~!(2/8). The reason for larger detector spacings on the edge is that

the corner pixels lack the nearby pixeis which would otherwise provide vertices lo
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Figure 1
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Figure 2

subdivide the larger detectors. Because this kind of projection data is so closely
linked to the projection angle in the Z(n) structure, we call it "naturally—induced”
projection data. On the basis of these classificalions, we can now define the angles
of minimum required resolution. They are the m angles in the Farey angles of order n
which have the largest detector spacings, or equivalently, those angles which require
the tecast resolution for naturally-induced projection data.!?
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Figure 3
One direcl method

We proceed now to skotch Katz’s methad of itmplementing this information into a
reconstructlion algorithm. First, he casts the Z(n) recconstruction problem in the
form UA=W. Here A is an w21 vector which is an c¢lement of Z{n); i.e., the
reconstruction space we have rhosen. W is an [-1 vector containing integrals of the
projection data. In particu'ar, 1) ils clements are really strip integrals, 2) imply
the use of detectors of f{inite extent, and as  such Y1) represent some sort of an
averuage. U is on (~n® matrix which deseribes the projection data, W, for any clement
of Z(n) (via matrix multiplicalion): U depends on a given choice of angles. 1L is
actually a stacked mat ix formed from the m different U, , onc for cach prajection
anglc. 6,. where the row dimension (the number of deteclors at thal angle) depends
implieitly on 0, and equals

: n2+2n—(n~|pi]+l)'(n—|q'|+l)
This formula i% cas'!ly obtained by nouling that the number of projeclted images of
vertices in Z(n) is (n+1)% and Llhat lhe number of projected imnges which arec
duplicales of alreariy existing projections is (n-|{p,1+1)-(n—|lg l+1) for angles in the
Farey series of orner n. With a little algebra, the formula can be rewritten in the

form F;
¢

,. (r+1)-Ulp 1+lg 1) =1p, 1= lq, 1-1

For Farey angles of order 2 and angles wilh rational tangents having |p;} or |q;| =
{. this number,’is na(lp I1+lq ). For all angles outside Lhe Farey angles of order =,
the number o'l duplicated projected images of vertices is zero, so lhe row dimension
is n2+2n.

The computation of the geomeiric matrix U is a very difficult matter. Because
ol this fact, precautions were taken to arsure numerical accuracy in ils computalion.
For example, when an angle with a t.tional tangent occurs, the eiements of Us are
known to be rational, so advantuge is taken of this fact by doing the computations
in exaci integer arithmetic, However, when angles with irrational langents are
cncountered, approximations are necessarily introduced at this steg because of the
availuble numerical procedures. Either we can compute the n2~(n +2n) matrix via
dircctl area intersection calculation of the strip integrals., or we can attempt to
muke the magnitude of p and g salislying tand>p/g large. The first choice is very
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difficult to program and has many difficull numerical traps to overcome, such as
occur when only u small corner of a pixel lies in the integral’s path. [f properly
done, this is a good but approximate way to compute Uj . In the second method,
incrcasing the magnitude of p and g to very large integers wouid be necessary to come
closer and closer to equality in this relation (equality already holds for 9
rational). However, considerations of time required for this last computation aiso
restricl the Jargest magnilude of p and g we can accept, so our subroutines now use
the fairst method for compuling Uy, when tang, is :rrational.

Since U is scidam square, (o <colve UA=W scmc sort ol a least squares problem

must be solved. Therefore, a !nrm of generalized inverse can be written:
A=(U'U)"'UW.  This expression is truly formidable when it is realized that the
matrix to be inverted, U'U, is of dimension n®.n®. Good resolulion in a pixel space
would require n to be of order 64 or larger. Thus, « matrix inversion of order at

least 1096-4096 1s essential. At first, it was not known that U'U was positive
definite, although cvery case we checked was mildly diagonally dominant (diagonal

dominance does not imply positive definiteness). In an attempt to cxploit (he fact
that the elements of U'U are rational when the chosen angles have rational tangents,

we cxplated the possibility ol doing exact inversions; i.e.., using integer inversion
technigues. This implicd that Ut be transformed to an integer malrix by multiplying
each element by  the least common denominator of aill clements in ti. Because of the
camplexity of exact inversion techniques in  large dimensions, only a limited size
malrix was inverted by this techniquc (see Appendix A for a discussion of this and
other details). Fortunately, it was found thal in most cases U'U alrcady has a small
determinant and condition number, so il was properly conditioned
inversion techniques from the start. However, due to the finite precision of
computer representations of numbers, numerical instability will again arise when the
dimension of the matrix becomes large cenough. At thal point, integer inversion
techniques could again come into use if the implementation were [ast enough and the
computer system could provide adequale, vreadily available storage.

for standard

Optimizing the direct method

What can be done to optimize the reconstruction methiods given above? Kutz has
proposced several ideas. First, he derives another family of least square techniques
for the problem based on Gauss—Markov stalistics. This pcrmils a comparison belween
projeclions angles, although not between individual detectors within a detector

array. Sccond, his analysis led to the (first rigorous error bounds in Z(n). A
factor in this error bound i1nvolves a function-theorelic norm which is a function of
the projection angles via U, Yel another interesting idea is that of modilying tLhe

photon dose (or beam intcnsity) as a funclion of angle. Such modifications change
both the Gauss-Markov statistics of a given reconstruction geometry, and the norm in
the error bound. Fach of these ideas provides a separate point of view in this study
of optimal angles, and they will be examined in turn.

Gauss-Markov_statistics

In attempting to favor those equations containing the "best” information for a
particular reconstruction, the leas! squares problem was recast in Lthe [ramework aof
Gauss—Markov statistics. The equation obtained is: UG !UA=U'G™!'W. Or, multiplying
on the left by the inverse: A=(ULG'1U)“1ULG"W. Here, G is the covariance matrix of
W in the Gauss-Markov statistic. 1t should also be noted that the original variance
structure used in [14] has been replaced by a more appropriate one.!6 Next, Lhe
Gauss—Markov theory says that the covariance of A is (U'GTlU)"1. T'That is, (utgtu)~!
gives information as to how the pixels in a reconstruction are statistically
correlated with one another. In addition to minimizing these correlations in some
sensc, the "loss function”, det((U'G !U)~'), also provides a measure of the
rcconstruction errors due to inconsistencies between projections. Hence, minimizing
this quantity &s a [unction of the fixed number of projection angles involved
provides an indicalor as to which angles arec statisticelly optimal.
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Hefore presenting the numerical resulls, the tools employed in Lhis computer
study and subscquenliy throughout the paper shouid be prescnted. To oplimize {or
minimize) the functions given here, a powerful technique which is a modification of
the “Bremermann method"* was used. The reasons for 1Lhis particular choice of
aplimization algorithm were numerous, and are discussed in Appendix B. Because of
the complexily of the functions Lo be minimizcd, we also plotted segments of these
functions to aid in adapting the optimizer to the non-smooth nature of many of these
functions as well as (o increase nur understanding of the meaning of the functions
themselves.

In studying these graphs, it should be noled that il is the first angle from
each indicated ‘table of angles which is being varied. Also, as G is a lactor in
every function plotted in these figurces, il should be poinled out that its clements
are only computed up to a factor of (PN)7!, where P is an attentuation constant
characteristic of the object being reconstucted, and N is the total number of photons
involved in obtaining one sel of projection _data.!® Thus, the value of the loss
function is only accurate to a factor of (PN)"™". When this facltor is small enough
io render unimportant the 30 ordcrs of magnitude variation in the loss function Lo
be discussed shortiy, thea the results given here arc perhaps not that mcaningful.
However, when all possible mileage is nceded (rom a [imited amount of data, then the
overall resuits can depend crucially on the choice of angles. The function studied
in the next section, M;, also depends on G, bul in a differenl manner. Using this
functional dependence, it can be shown that the numbers given in the plots of M, arve
accurate to a factor of (PN) ',

The results of optimizing the loss function, det((U'GU)"!}, was Lhat angles

Angles of Minimum Required Resolution

Angle (in radians) Required Resolution
0.0 1.06000
n/2 1.0000
n/4 0.7071
-1n/4 0.7071
tan~!(1/2) 0.4472
tan~'(2/1) 0.4472
tan~'(~1/2} 0.4472
Table 1

from the tarey angles of order n were dramaticaily better than any other chnice. in
particular, the 7 angles of minimum required resolution given in Table | were
preferred for n=7, A plot illustrating the situation is shown in Figurce 4, where the
set ol angles in Table 1 occurs at the cenler of the plot. The dramatic rise by
nearly 10 orders of magnitude in moving the [first angle slightly away from 0.0
radians clearly illustrates just how strong this minimum is. Simiiar plols are shown
in Figures 5, 6, and 7. Figure 5 differs from Figure 4 only in the second angle (not
varled in the plot). The difference 1is about .04 radians (see Table 2). Since
equal ly—-spaced angles are of such interest in reconstruction work, Llhe case of 7
equally-spaced angles 1is plotted in Figure 6 at 90 and ~90* (these functions are
periodic with period =, so each of these graphs show a period of the loss function in
a different section of the space). The precise 7 angles used are given in Table 3.
Finally, to get an idea of what a randomly selected region of the space looks like,
"igure 7 was plotted. [t used the last 6 angles in Table 4 as fixed parameters.

One should first note that the loss function shows unpredictable trends
{exhibiting frequent, very rapid variations). Hence, optimizing it by any quadratic

minimization technique and even most probabilistic ones would be hopeless. It is
also of great interest to observe that a great many of the sharp drops in the
function occur at Farey angles. For example the -90°, 0*, and 90*' ordinates in
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Generat .d from last 6 angles in Table 1
Figure 4
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0 in dt*grees
Generated from last 6 angles in Table 2
Figure

Figure 6 are Farey angles of order 1. Interestingly, the —90° and 90° ordinates
correspond to equally-spaced angles, demonstrating that occasionally the Farey angles
af order n and a specilic set of equally—-spaced angles will possess elements in
common.

The overall structure observed in these plols was an aid in interpreting the
results which were obtained in attempting to optimize the loss function. The
modificd Bremermann optimizer was started at the 7 equally-spaced angles and rapidly
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Angles Near Set of Minimum Required Resolution

Angle {in radians) Rcquired Resolution

0.0 1.0000

tan~1(25/1) 0.0400

r/4 0.7071

. —n /4 0.7071
tan~!'(1/2) 0.4472

tan~!(2/1) 0.4472

. tan~'(-1/2) 0.4472

Table 2

. n=7 m=7 ) -1
variance of datum = (detector spacing)

AT T

det{U'G-IU)"

T ¢ 8 8 7 8 7 ¢ sEeEe % ¢ % % - @
6 in degrees
Gienerated {rom last 6 angles in Table 3
Figure

®

Angles arc Equally-Spaced

a1 Angle (in degrees) Required Resolution
. 90.0000 1.0000
; 64.2857 0.0332
i 38.6714 0.0099
. 12.8571 0.0848
~12.8571 0.0848
~38.5%i4 0.0099 :
-64.2857 0.0332 {
. Table 3 §
e moved to points with function values several orders of magnitude better. Further

improvement came only very slowly, but it is significant to note that invariably the
local minima which cause the '"hang-up" to occur in the progress of the optimizer !
involved one or more Farey angles. Indeed, in an optimization which ran 1000
iterations, 4 of the 7 angles of the local minimum were Farey angles to 4 significant
figurcs. Another similar optimization found a better value (by 4 orders of
mughitude) with three of the angles being Farey angies. The final function values in
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Generated from last 6 angles in Table 4
Figure 7
A Set of Randomly Selected Angles
Angle (in radians) Required Resolution
tan” (1/1) 0.7071
tan™1(3/1) 0.3162
3.0713 G.0712
tan~!(-1/3) 0.3162
~-0.7509 0.9487
an~H(=7/1) 0.1240
—1.5292 0.0416
Table 4

these two cases were 1.077-10'°0 and 1.104~1096
optimizalion was run from the “random" sel of angles listed in Table 4. After 40
iterations, a funclion value of 7.054-10%% was reacihed al a poinl with six of the
seven angles being nearly Farey angles. These angles arc (with Lhe corresponding
Farey angle in parenthesis): 1.187(1.107), .791(.785), ~.001(.000), —-.776(-.785),
-1.10(-i{.107), and ~1.53(-1.67). To increase our confidence that the angles of
minimum required resolution ({sec Table 1) do indeed minimize the loss funciion, we
ran the optimizer starting at that point. No betier functioin value was ever Tound.

respeclively. Yet a third

These resulls lead one Lo the conclusion that Farey angles are very strongly
preferred in this statistical framework. Indeed, if a range of angles were chosen
for eack. of the m projection angles lo be used, then if that range included a Farey
angle of order n, it would be strongiy preferred over any other in the chosen range.
Though 1! was disappointing thal the computer time could not be afforded to let the
optimiz2r run several! thousand iterations and find the global minimum at the angles

given in Table 1, it was nonetheless gratifying to find that Farey angles of order n
are to preferred, even locally.

All of Lthe

cemputer runs discussed thus far involved Z(7). To justify the use
of this cxample as

indicative of the answers to be found in other dimensions, a plot
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Angles of Minimum Required Resolution

Angle gln radians)
.0

Required Resolution

1.0000
r/z 1.0000
n/4 0.7071
-n/4 0.7071
tan~!(1/2) 0.4472
tan~'(2/1) 0.4472
tan~!(-1/2) 0.4472
tan~t(-2/1) 0.4472
Table 5
of the loss function in Z(9}) about the cight IParey angles of order 2 is shown in
=8 ]
varlance of dulun) " (doLecLor spacing)”
T |
-
| ok
.(‘_’) s70
3 e b
‘U.: s
T e}
FRP S
#2% # 3 5 § 3 % s 8@ =2 =2 s 2 3 = 3
f in degrees
Generated from last 7 engles in Table 5
Figure
Figure 8. [ts very similar structure to the corresponding plot in Z(7), Figure 4,

strengthens this conteuntion.

The operator norm in lhe error bsund

The idea of providing a bound on the error in a Z(n) reconslructicn as an
approximation to the unknown attentuation distribution is also fairly new. And since
the consideration of new variance structures modifies Lhe operator, the former
operator, U'U, must be replaced by the more general operator, (U'GT'U)"!, in the
norm. The new factor in the error bound involving the operator norm becomes!®

u

M,=
2
(minimum eigenvalue of utp-ly)-6
where G=0?D. And the error bound itself changes to
E=£l(n)+M2(M'5£1(n)+eo)

(I(n) is a measure of how close the original object is to a

Z{n) reslriction ol that
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object. and ¢, is the norm of the difference between the projection data of the
continuous object and Lhe projection data obtained from the Z(n) reconstruction which
the alpgorithm selects. Also, for our purposes here, M=m. If there is too much
structure in the original object or if thal objecl has very large gradients, ¢,(n)
will be large, and conseouently our reconstruction will be poor. However, it is of
interest to nole that if our function exists in Z{n) to start with, and lhere is no
noise in Lhe data, we can reconstruct that function exactly. That we can obtain such
an ecxact reconstruction has been verified by experiment up to Z(27) through an actual
computer impl!ementation. The significance of noisc in the data is described in the
variance structure of the data and thereby in M,: as M, is the crucial parameter of
the crror estimate which is angie dependent, the minimization of M, is this eriterion
for optimal projection angles.

The result of the optimization of M, is that the preferred ungles are neither
all Farey angles nor equally-spaced. This 18 again very curious hecause of local
minima occurring throughout the plotted portion of the space which involve Farey
angles of order n. Indeced, as an optimization procceded, the local minima found
involved onc or more angles which were close to the Farey angles.  The best value
obtained via 40 iterations of the wmwodified Bremermann optimiver was 46.6 al angles
(in radians) ol -.980, -.685, - 329, 093, .674, .11, and 1.13. In this sel, two

angles, .093 and .111, may be comsidered close to the two Farey angles, 0.0 and
L1107,

One~dimensional plots of this function, M,, in the same ncighborhoods of the
four sels of angles involved in the loss funcltion study arec given in Figures 9

. n=7 m=7 . -1
variance of datum « (detector specing)

|

Do

-y

(min ecig of U

i

PR S L 2 N " .

T ¢ % 8 7 3 8 7 siele 2 3 3 3 ¢ @
8 in degrees .

Generaled from last & angles in Table 1
Figure
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through 12, The first of these graphs, Figure 9, involves the angles of Table | at
the 0°* ordinate. It is siriking that the space appears to be so flat in Lhe region
of Lhe angles of minimum required resolution {the subset of the Farey angles of order
n which have the largest deteclor widths). This fact is emphasized in Figure 10, a
similar graph except that one of the lixed angles has been changed by .04 radians
{sce Table 2). However, all trace of Lhis flatness at the minimum disappears when a
random section of the space is plotted as seen in Figure 12, where the last 6 angles
from Table 4 are f[ixed parameters of the graph. The 7 equally-spaced angles of Table
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Generated fro

3 occur at 90+ aid -90* in Figure 11, where it can be seen thal these 7 angles are
near a local maximum value of M,. But, as is also apparent from this figure, there
are a large number of points that have belter values for M, than the angles cf
minimum required resolution (notice that the maximum of Figure 11 is less that the
minimum of Figure 9).

As was pointed out in the discussion of the optimlzation of M;, many local

minima involve one or more Farey angles. But in Figure 12, some of the most obvious




(min eig of UGTiU)™8
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5 in degrees
Generated from last 6 angles in Table 4
Figure 12

Farey angles (such as 0* and 90°) appear to occur at local maxima of M,. This may be
explained by noting that when two angles get closer and closer together, both M, and
det((U'G™'U)"!) get very large. That is, groups of rows of U become pairwise
dependent (corresponding rows of Up, and U,  become less and less lincarly
independent until they are actually the same), thereby causing U to become deficient
in rank. This makes del(U‘G"U):O. or del((UlG"U)_')*W. a phenomenon dramatically
visible in Figure 10 at -45° and 45*. In addition, this phenomenon would probably
explain why closely-spaced angles have been found to work poorly in many
reconstruction algorithms.'®?

In considering the numbers obtained in these computations, it is evident that
many of them are of the same order of magnitude, i.e., 50 to 150. Thus, while the
graphs show this function is certainly not smooth, it is definitely far [rom the
wildly varying loss function of the last section. Also, there appear to be no strong
local minima anywhere in the plotted domain or in the region sampled by the
optimizer. Thus an optimal value of 46.6 at the 7 angles given above would not seem
to have a pgreat deal of significance when seen in the context of the error bound.
That is, since M, multiplies a quantity involving €, and €4 in the error bound, the
fact that it may be difficult to make either €, or ¢4 small in a Z(n)} reconstruction
implies that an improvement in M, by a facter of two (the difference between the
value at the optimal set and that at the angles of minimum required resolution) may
not change the overall error bound significantly.

By plotting M, in the space of Z(9) about the B Farey angles of order 2, we once
again substantiate the claim that thesc functions do not possess strong dimensional
dependence. This can be seen in Figure 13, where the striking similarities to Figure
9 are amazing. That is, if there existed some non-trivial dimensional dependence in
these complicated functions, one would expect an unusual phenomenon, such as the
absolute flatness ahout the angles of minimum required resolution, to change
substantially in changing dimensions.

The question of photon enhancement

Since the number of photons which are seen al a detector is proportional to the
sive of the detector, and also since the detector width is a function of angle when
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the projected images of vertices in #(n) define the detcectors, the idea of enhancing
the number of pholons seen by deteclors of  smaller extent scems an interesting
possibility. This is particularly the case becanse the variance of s dalum s
inversely proportional to tLhe number of photons impinging upon thal detector. To
maintain comparability. the number of photons is fixed. Thens the number of photons
used per projeclion is modified according lo an enhancement scheme explained in [15],
where the scheme involves Vthe PFarey angles exclusively.

The effect this procedure
has on both the Joss functlion

and M, can be scen in Figures 14 ond 15, where Lhe

n=7, m=7, variance of datum = (ple+ql.2)'5“’
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angles of minimum required resolution (Table 1) are the fixed

parameters.  The
abscissa coordinate, 2, is a measure of the degree

to which enhancement is performed.

In the casce of the lose Tunction, the preferred amount of enhancement is very small.,

roughly —-.103 . The graph s ncarly flat in the plotted region, leading to the
conclusion that no enhancement will vield virtually the same reconstruction
characteristics as would the preferred value of oa=-,103 Strengthening this

argument 1s the fact that det({U'G{s)"!'U) ') »» as |a| becomes large(-3). For the G
cerror bound study, M, s simitarly flat around an enhancement of zero. The preferred -
enhancement, «=2.18, is only marginally better than the value at «=0.0 . As with the

loss function, My(a) <o as |al becomes large, so the conclusion that
the photon distribution will work well in practical
reconstruction methods is also substantiated in

no enhancement in
implementations of direct
the contex! of the error bound.

Evaluation of direct methods

As is evidenced by the optimizations of M, and the enhancement factor, a, these
studies have not been biased toward a particular set of angles. As a result, the
strong statistical stability observed at the angles of minimum required resolution
demonstrates a clear preference for those angles. That is, the near equivalence of
this set of angles and the set found by the optimizer for M; means that we can
confidently use the Farey angles of order n having the minimum required resolution
the unbiased Gauss-~Markov statistics. Also, the photon enhancement study imptl:
that radiation dose need not be modified as a function of angle in order to impre
the statistics of the reconstruction. This is a definite plus when practical des
considerations are taken into account. When this new information is biased with
fact that of all possible angles, those in the set of Farev angles ol order =
the minimum required resolution (largest required dectector spacing). =a
practical choice is without guestion that subset of the Farey angles.

i

There is however, yet another practical consideration in the use of 4&:
matrix methods using this statistieal structure and the naturally induced
data. And that is one of sheer computability. For example., we have brr
compute (U'G™'U)! up to dimensions of n=27. With the aid of work rcporied
this can be immediately pushed to n=37 (see Appendix C). These facis ¢iry
to the neced for an alternative to direct matrix methuds in reconstruc?!.on
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lcast for the present. Unfortunately, the strength of the unbiased estimator
developed via Gauss—-Markov is  lost when looking for allernative

reconstruction
algorilhms.

Il. Optimal angles and ART-like algorithms

ART and the question of uniqueness

One very popular reconstruction algorithm iu Z(n) has been ART (Algebraic
Reconstruction Technique). Numerous modifications to it have appeared, as well as a
whole femily of quadratic optimization methods which have been shown'' Lo correspend
cexactly to a number of specific ART-like algorithms currently implemented. All these
methods differ from what is donc in the direct matrix method discussed above in a
very crucisl point: the initial approximation. A sccond differcence lies in the fact
that the solulion obtained fraom an ART-like algorithm can depend on Lhe first
iterate. This is a dircct consequence of the lack of guaranteed uniqueness in these
algorithms; it will be discussed further below. The initial approximation just
referred lo consists of making the clements of U exclusively 0 or 1 (sce [22] for
some less drastic approximations). The speciflic value of a given enlry
by testing whether the center of a given pixel lies inside tLlhe
contributes to a given detector. If it lies within the strip, the corresponding
value in U is I, otherwise it is 0.9 In some cases, this will he a reasonable
approximation, parlicularly when only a very small corner of a pixel figures in the
strip integral. However, in a large number of cases it is a very poor approximalion,
and the exact influence of this assumplion car only be determined by numerical
experimenls. We call this difficulty the "centroid problem”. A further difference
between ART-like algorithms and the direct mcthods of Part | lies in the kind of
projection data used. Typically the delectors are cqually-spaced, and thal spacing
does not vary from one projection lo another. in examining the effect of these
differences upon the ART—like algorithms, possibly the single mostl important issue is
the question of wuniqueness. Without the pguarantec of a wunique object in Z(n)
corresponding to the finite amount of detecctor information in an ecxperiment, a whole
new arca of problems arises. 'Thus it is of primary interest to know when there is
uniqueness and when there is not.

is determined
strip which

There are lwo cases where we can give unequivocal results. [First, for angles in
the Farey series of order n, whenever the inequalilty
m m
n<t+min(Y |pl. ¥ lg;l)
i=1 i=1

holds, there 1is but one element of Z(n) corresponding to the naturally-induced
projection data.'? When the inequality ceases to hold, the null space contains
non-zero elements of Z(n). These objects have zero projection data at infinite
resolution in the directions of each of the m angles used. I[n [14] they are called
ghosts, which is a very appropriate term. The second situation where uniqueness
holds again involves the naturally-induced delector spacings, but the angles come
from the complement of the set of angles allowed in the first situation. In other
words, the angles come from the set of all angles not in the set of Farey angles of
order n. Once more, the detector spacing guarantees that we have infinite resolution
of any element in Z(n) at these angles, and thus the use of any single angle is
sufficient to guarantee uniqueness; this 1is the result of [20]. In spite of the
guaranteed uniqueness in this second situnation, the results of Part | would seem to
argue against the use of a single reconstruction angle, as would the fact that
resolution requirements imposed by naturally—~induced projection data would be
excessive at these angles. |In addition, the fact that the projeclion data is coming
from a smooth object and not one in Z(n) argues that it is unphysical to reconstruct
two—dimensional structure from a single view.

As noted above, ART-like algorithms do not use the kind of projection data we
have just discussed. So what can be said? In general, nothing definitive. However,
even if exact "mathematical" ghosts are not generated by the combination of the
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centroid problem and an unnatural delector placemenl, experience has taught us that

“numcrical®” ghosts will effectively be generated in many cases. Computation of any
of these ghosts is a non—-trivial matter, regardless of how close they are lo being
"mathematical™ ghosts., Such a computation would depend upon the exact detector
placement, and would thus vary from one reconstruction apparalus to another. Instead

of undertaking a scarch for these complicated objects, we propose to modify ART-Iike
algorithms to use projections from the set of Farey angles of order n, where the
detectors are ploaced in  the naturally-induced way. Unfortunately, at the deadline
for this conference, 1lhe Tfir:.t modified ART algorithm was still being developed. so
numerical results will appear at a later date.

Choice of angles_in a modified ART

Why should Farey angles be prefcrred here in the context of ART-like algorithms
as well as in the exact methods of Fart |? Because uniqueness is guaranteed when the

naturally—induced projection data is employed. But are there any other criteria
which would bias the choice of angle? No statistical struclture like Gauss—-Markov has
been implemented in an  ART  algorithm to favor one set of proicction angles over
anotber {the statistices in [12] involves favoring one reconstruction over all other
clements of 7Z(n}). and no rigorous crror bound such as in [14] has been given for
ART, so yet another criterion needs to be found. As is shown in [10]., the

convergenece factor cstablished in [23] provides just such a biasing mechanism, for
not only is that factor dependent upon the projection angles invelved. but upon the
ordering of their use as well. This convergence factor does not, however, depend

upon the detector spacing at a given angle. Therefore, ali angles will bc allowed in
an oplimization study.

As is pointed out in [10], experience has shown that the order in which

proiections are used can greatly affect the performance of ART—like algorithms in
that convergence can in some cases be greally accelerated by a re—ordering of the
projections. Two expressions are developed for bounds on this convergence factor.!'®

In the case of the first bound, a transformation to another space is first performed
so as to permit linear computations. The experience of Hamaker and Solomon was that

this first bound was not sharp, so a second bound was derived. However, their thcory
is not limited to the studyv of bounds on convergence factors. That is, their
theorcems constitute a constructive theory for the exacl computation of the

convergence factor in the case of an arbitrary permutation of equally-spaced angles.
Unfortunately, they do nol develop a similar construction for unequally spaced

angles, so no precise calculations of the convergence factor have been done in those
cases.

It was found in our computations that the first bound was not sharp at all, and
that the second bound was not significantly better. So, barring new theoretical
developments, only numerical experiments can provide an aid in conjecturing what set
of angles would be best for ART-like algorithms. Again because of time constraints,
we have not yet performed those experiments.

Bounds on the convergence factor werc computed in three spaces. The lirst was
the poor bound mentioned above. Those computations gave the preferred orderings for
subsets of the Farey angles, equally-spaced angles, and arbitrary sets of angles.
There was an ordering of m equally-spaced angles which was superior to any ordering
of the first m angles in a sequence of Farey angles, except in the instance when all
angles generated by a given order Farey series are used. |In particular, for Farey
angles of order 2, the ordering -.785, 1.107, .464, -1.107, 0.0, 1.57, —.464, and
.785 (in radians) gave & bound of .87 for the convergence factor, while the best
ordering of B8 equally-spaced angles, 90., 22.5, —-22.5, 67.5, -45., 45., 0.0, and

-67.5 (in degrees), pgave a bound of .93 . In an optimization using the Bremermann
optimizer, vet a third set of 8 angles, .253, .870, .630, 1.435, .497, .099, .345,
and .788 (in radians), guve a bound of .BI . The second computed bound gave .70 for
both the equally-spaced and Farey angles, and according to a conjecture in [10], the
vulue for an optimal ordering of 8 equally-spaced angles should be below
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.22°1-2{8/9)8. Thus, a final conclusion awaits cxperiment

and possibly further
constructive theoretical developments.

The third spacc used was the finite-dimensional restriction, Z{n), of the
infinite-dimensional Hilbert spaces used in dcriving the first bound. As noted in
the discussion on uniqueness, subsets of the Farey angles of order n can have ghosts
in 2(n) relative to them if Lhey do not satisfy the inequality given there. These
ghosts are not unique, &nd can be shown to be lincar combinations of "fundamental'
ghosts or basis vectors in 72(n).'" These basic vectors are casily generated by linear
translations of the first basis vector,'? or they can all be computed directly via a
formuta given in [15]

m m r
K(z)=h(z)+ Y (-1}° b h{z+ Y t, &)
r=1 Lysdgreres i.=1 T
Here, h and K arc elements of Z(n) and the argument 2 equals

x,y), a point in Lhe
domain of an element of 7Z(n).

Since this basis ullows us to generate all possible

ghosts with respect to any set of Marey angles, it is possible to compule directly
the minimum anglec between the null spaces corresponding to two sets of projection
angles. The angles between the null spaces give the bound on the convergence factor
via:
c 1= i] sin®(g )
L L )
17 j<m—1

where the f. are the minimum angles belween ghosts with respect to the one angle in

the first subspace and ghosts with respcct to the remaining m—j angles in the second

subspace, with the restriction that these ghosts lic in the orthogonal complcment of
the interscction of the two null spaces. That is, the ungle between null spaces is
measured in Llhat portion of each null space which is orthogonal to their
intersection. To describe how the direct computation of 4. is done, it is cssential
to undersland that a wmeans exists for computing the “fundamental™ ghonts desceribed
above. No such charactcrization of the null space exists in infinite dimensions so
direct calculation of clements in the null space cannot be done in thut cuse.

There are several steps involved in computing #.. The first step is to find the

"fundamental®” ghosts with respeclt to the first angic. the remaining m-j angles, and
the combination of the two sets of angles (this gives a basis spanning the
intersection of the mnull spaces). Next the basis of the interscction of the null
spaces is orthonormalized via a Gram—-Schmidt process. Then, the orthonormalization

is completed in each null space by using the basis veclors already spanning each
individual null space. The orthonormal basis veclors generated by this complection
process then span that part of each corresponding null space which is orthogonal to
the intersection of the two null spaces, With these tools in hand, an iterative

procedure of alternately projecting an element of the orthogonal portion of one null
space onto Lhe other and Lhen reversing the process converges rapidly to give g, (we

are indebted to Myron Kalz for the theory which permitted implementation of this
algorithm).

The resull of computing the g for the optimum ordering of the 8 Farey angles
found in computing the first bouné was a bound on the convergcnce factor of .994
How can the bound be yet worse in this case? |If the inlersection of the null spaces
takes up a proportionately larger seclion of each null space in the
infinite—dimensional case, then conceiveubly, the angle between two null spaces might
be larger in the infinite~dimensional case, thereby leading to smaller observed
bounds on the convergence factor. This conjeclture is motivated by the observation
that in finite-dimensional calculations, the angle between null spaces increases as
the non-zero dimension of the intersection of the null spaces increases proportionate
to the dimension of those null spaces (see Table 6). However, as noted above, there
is no available characterization of the null spaces in infinite dimensions, so the
conjecture just given will have Lo remain just that, a conjecture. Clearly, for the
purposes of comparison with olher sets of angles, a way to compute Lhe convergence
factor itself is still needed.
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Null Space Calculations for 8 Farey Angles

Dimension Dimension Dimensior.

j of first of second of a8 .

_ null space null space interscction (in radians)

1 64 1 0 1.5708

2 36 <] 1 0.4243

3 56 16 6 0.5684

B 56 30 16 0.6274

5 72 36 30 0.9219

6 72 42 36 0.9901

7 56 64 12 1.0943

Table 6
A final issue in the Hamaker and Solomon upproach is Lthat of working in

infintte-dimensional spaces and then applyving the results obtained to “(n). This may
indeed be valid, but  its rigorous justification would be most welcome. Such

justification would definitely cstablish ART on yet firmer footing.
Summary

It is evident from these studies that there is a great deal of previously

unknown structure in “4{n). Many surprises occurred in the discoveries reported here,
but possibly the greatest surprise of all was the strong preference of the Farey
angles in exacl reconstruction methods (direct matrix methods). Wc belicve this is a

direct result of the symmetries of Z(n) itself, and therefore, some sort of
preference for these angles probably exists for all algorithms using Z(n) as the
underlying reconstruction space. And in considering all the possiblie algorilhms, the
favorable characleristies of the divect matrix methods studied in Part | should make
those methods good candidates for spaces smaller than Z(38). For larger spaces, Lhe
results are  inconclusive since the experimenls comparing a modified ART using Farey
angles to olher versions of ART (such as those employing oplimal orderings of
cqual ly-spaced anglies) have yel to be performed. While a modified ART using
cqually-spaced angles in the optimal order might very well be cumpetitive with this
proposed algorithm, the large required resolution in the projection data (small
detector spacing) would clearly make it less allraclive as a praclical reconstruction
method.

Remarx. As has been slated, the slrong preference ol the Farey angles in the context
of Gauss-Markov statistics 1is remarkable. But one should recall that while the fact
of minimizing the loss function, det({(U'G™'U)"!), accomodales inconsistencies between
projection angles, it does not accomodatc empirically inappropriate data collected by
detectors on the same projection rack. Thal is, measurements on a given projection
rack are weighted equaliy in the slatislics discussed here. As there is invariably
white ncise in the data, inconsislencies between the measurements on a given
projection rack necessarily arise and must be dealt with. This problem can be
handled by a slatistical technique called cross-validation, but we will defer a
discussion of it to a subsequent paper.

Appendix A

There are two compelitive exact integer inversion techniques currently in use:
the two-step integer—preserving Gaussian elimination and the congruential technique.
The two-step Gaussian technique 1is a special case of a more general! class of n-step
Caussian eliminalion processes developed by Bareiss.! It requires a fast
multiprecision system, as every slep of the process involves multiprecision integer
additions, subtractions, multiplications and divisions. The higher—-order Gaussian
climination methods require a little more computer memory, and are a little more
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complicated to program, so none have appearcd in Lhe literature. The congrucential
tversion process is built upon modulo arithmetic, and 1s sometimes called the
"modular ulgorithm" for this reason. Uniqueness of arithmetic processes requires
lhat the modulo bases be primes, and speed of computation and scarcity of computer
memory require that the primes he large (just smaller than the size allowed by a word
onn the computer being wused). The inverse is then found by doing «a Gaussian
elimination modulo a set of primes until a uniqueness condition is determined or a
particular bound tells us we have the result if the matrix was not singular. Inverse
modulo arithmeiic is then done on the series of inverses generated.

Before December, 1977, the only congruen)ial inversion programs ol which we were
awared:8.13 a4y roughly twenty times slower than the two-step integer—-prescrving
Gaussian climination procedure. Since there was a fast muitiprecision system at cur
disposition, we began by implementing the two-step Gaussian climination syvstem as
programmed by Bareiss and his collcagnes.?® As it was of intcres! Lo do inversions for
much larger dimensions of Z(n}. 1l was necesyary that the matrix be kept on disk and
that only a portion of it bc in core at a given time. Because concurrent disk input
and output was nol available on that computer system  (and would have been very
difficult to program), and #.:so because a competitive congruential inversion program
appeared al that time,” the two=step technique was abandoned. Similar difficulties
quickly arose using the congruential method: lhe  pumber of primes required was
becoming enormous since lhe determinant of the transformed U was growing like ¢

truly an astronomical number. This mcant thal an overlapped input-output scheme was
essenttal on the new computer system we were using, and a complicated interface to a
double buffering program of Bruce langdon at Lawrence Livermore Laboratory was lhen
programmed. The optimal reworking of the congruential c¢limination and back-solution
loops in the modulo solver improved the program’s speed, but only by a faclor of
three or so. Thus, current computational resources seem to bound these calcultations
to roughly nsl5. It was concluded that the trausformed U'U cannot be inverted for
large n on current computers by known methods.

Remark. L should be pointed out that we became aware of the excellent work of
McClettun!® !'® gnily in December of 1977. Bul il musl be admitled thal we would still
have becen prejudiced in favor of the two-step Gaussian elimination method because our
multiprecision system was opltimally programmed on the [BM 7030 for the architcecture
of that machine, and it would have Laken a large amount of effort and time to take
McClellan’s "SAC-1" implementation of his "modular algorithm” and make it uniformly
competitive with the two-step ‘technique, if indeed it could have become competitive.
This was so because the variable-length operations in that multiprecision system
allowed special short-cuts to be taken in almost every operation, lecading to a huge
saving in computer timc as well as memory (the exact length of every multiprecision
integer in the calculation wuas known).

Appendix B

The optimization technique used here is a modification of a technique called the
“Bremermann method" in the literature, named after Hans Bremermann who discovered
it.4 It has since been improved. We have replaced a numerically unstable procedure
it employs (the solution of a cubic equalion) by a newly developed stable me thod .24
Basically, the method does line searches in Gaussian—-distributed random directions in
the k-dimensional space in which the funclion to be minimized is embedded. However,
it is distinguishable from other methods which do line searches in that it does a
parameterized Lagrangian fit to the five function values obtained at five
equal ly-spaced points along a line of randomly chosen orientation. This spacing is
also varied from iteration to iteration. The result of this fil is a quartic whose
minima are found by solving the gquartic’s derivative (a cubic). The function is
computed at the smallest of the quartic’s minima (if the cubic has three real roots),
and the minimization algorithm proceeds at Lhe smallest f the new value and the five
values used to compute the Lagrangian fit. The per.ormance of this algorithm is
astounding, and has had favorable mention in the literature,®'7 yelL many still doubt
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tts vatue. There are improvements which stitl need to be made to the method, such as
hvbridizing it with a second-order minimization technique so that its convergence Lo
@ tocal or global minimum will be accelerated once it is in the region of attraction
of that minimum, and so that the probabilily that "hang-up" at a loca! minimum in a
deep well will be diminished, but the improvements due to Jaime Milstein already
mentioned are already quite adequate for many applications.

The merits of this technique are numerous, and we only mention a few here
relevant to our applications. First, no derivatives of the function to be minimized
are required. For functions whose derivatives arc  analytically very large
expressions or hard to compute numerically, or, as in our case, not even available
due to a lack of analylic representation, this 1s a tremendous advantage. Second, it
is not limited in i1ts effectivencss to the local region of attraction, bul "sees" a
great deal of the globa!l structure of the function. PFinally, and most importantly,
it requires only a few funclion evaluations. When, as  is often the case, the
function is costly to compute, this criterion alone could determine whether a
numerical minimization is cven attempted.

Appendix C
Recently (on May  3,1979), Katz discovered that U'GT'U was not only symmelric,
bul “centro-symmetric” as well.!'® While scarching f[or an empirically faster way to
compule vlelu, we  had independently discavered (on March 17,1979) that its

computation could be decomposed as follows:

m
uteT'u= Y Up Gglu,

i=1
This decomposilion is cssential to the proofl of centro-symmetry. We had also becen
aware cmpirically thet U6 IU was centro-symmetric. Al the same time as he

dis:overed the centro-symmelry of U'% 'U, Katz also found that U itsell is
centro-symmetlric. 'S These faects permit all calculations to be done on malrices only
hail the size. Thus, pgiven the computer being used, computations of (U'G'Uu)-lutc™!
up through n=37 should be possible. Improvement beyond that point will only come
with fantastic improvement in computer size and speed. Flaborate overlapped 1-0
schemes may allow some limited extension of the diwmensional reach of the method, but
inversion methods employing overlapped 1-0 are very strictly limited by the response
times of Lthe sccondary storage. Details of an implementation of such an inversion
scheme and a discussion of its drawbacks will appcar elsewhere.
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