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On Optimal Reconstruction Angles* 
Grant Cook, Jr.1' and Larry Knight* 

June, 1979 

Abst racl 

The question of optimal projection angles has recently become of interest in the 
field of reconstruction from projections. Here, studies are concentrated on the 11*11 
"pixel" space, where iterative algorithms such as ART and direct matrix techniques 
due to Kalz are considered. We attempt to show which angles are best in a 
Gauss-Markov statistical sense as well as with respect to a I' uric t i on-t lie ore I i ca 1 
error bound. The possibility of nukim; photon intensity a function of angU- is also 
examined. Finally, we study which angles are best to use in an ART-1 ike algorithm. 
A certain set of unequally spaced angles was found to be preferred ill several 
(fj'ilcxts. 

I nt roduc t i on 

The reconstruction space used heroin is the pixel space composed of n i square 
regions, denoted by Z(n). Though in the studies of ART—like algorithms oLher spaces 
come into play, /.(71) is always the reconstruction space of choice. Our study depends 
sharply on this decision; in fact, in our search for optimal projection angles, 
subsets of the angles which correspond lo the underlying symmetries of Z(n) are 
frequently better than any other choice of angles. On the other hand, for one who 
would take into account the o priori known symmetry of an object to be reconstructed, 
I he projection angles chosen should reflect that information. But in general, no 
such knowledge is available. 

Many crucial factors motivate a study of projection angles. Recognizing that 
the choice of projection angles affects the required detector resolution and Lhc 
performance 01 reconstruction algorithms for Z(n), our studies consider stability, 
numerical sensitivity, accuracy, and, in the iterative schemes, speed of convergence. 
The set of projection angles is optimized in two related contexts. Wc consider 
algorithms which use Z(n) exclusively and are analyzed totally in thai space. This 
involves direct matrix reconstruction techniques, in particular those developed in 
[ll]. Since direct methods may not be feasible on existing computers, ART-like 
algorithms are studied using projection angle dependent results like those in [10]. 

I. Some direct mat_rj_x methcuts 

Background 

The approach to this study is empirical, being founded on theoretical 
developments due to Katz. 1'' Of particular importance in his work is the answer he 
gives to the question of uniqueness of 'i(n) reconstructions. We summarize some of 
his results as follows. Let p^ and q( be integers such that 

|i?, = tan" l( -' ) , i = l ,m| 
9, 
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is the set of ungles we arc using to reconstruct an object in Z(n) ; m is the number 
of ancles. The detector spacing is intimately related to the chosen angles by the 
natural choice the Z(n) geometry affords us. It is an integral multiple of (size of 
a pixel)/(pf+gf) 5 With these facts in hand. Katz then proves that a reconstruction 
in V.(n) is uniquely determined by such projection data if 

m m 
7i < 1 + min( £ IjDj I. E 17,1) 

i=l i=l 
where n is the dimension of Z(n). When this condition is violated, uniqueness ceases 
to hold and the null space of the projecton transformation becomes non-zero. We will 
discuss the character of the null space and the role it can play at a later point. 
But first it is important to clarify these important points. To do so we classify 
projection angles and detector spacings in a natural way. 

A first obvious classification of angles is: 
a) Those having rational tangents. 
b) Those having irrational tangents. 

Class (a) can be further subdivided into two sets. First, there are the angles 
generated by the Farcy series of order n which will henceforth be called "Farcy 
angles of order n". To define them, we must define the term "Farcy series":17 given 
that JJ and q arc relatively prime integers, the Farcy scries of order n is that 
increasing ordered sequence of fractions p/q with q'n such that 

0 p 1 — ̂  — $ — 
1 q 1 . 

For example, the Farey scries of order 6 is: 
0 1 1 1 1 3 1 -i 2 3 4 5 I 

1 6 * 5 4 3 5 2 5 3 4 5 6 1 . 
The a n g l e s a Farey s c r i e s g e n e r a t e s a r e g i v e n by 

71 TT 7T 

0, - , - , 
2 4 4 

and 

t a n " ' ( - ) . U n " ' ( - ) . l a n _ l ( - ) , t a n _ 1 ( - ) 
1 P 7 V 

where tan - 1 ( 1/0) s7r/2, and Q<p~q. The other subdivision of the class of angles which 
have rational tangents consists of all such angles which arc not Farey angles. This 
distinction is important when we come to consider naturally-induced projection data. 

The most commonly used projection data in reconstruction algorithms comes from 
angles oT class (b). Equally-spaced detectors are normally employed, with some 
researchers varying the spacing as a function of angle.9 A second class of projection 
data is that generated by the projected images of the vertices of the pixels, with 
the projected points being the detector boundaries. This is graphically illustrated 
in Figure 1 for projection information at an angle of 36'. Clearly, the detectors 
are not equaily-spaced, although there is symmetry about the central detector. In 
contrast, there are angles which do generate equally-spaced projection data. They 
are in fact the 8 angles generated by the Farey series of order 2. So, another 
subclassification has arisen. But our classification of projection data is not 
complete, for those angles generated by Farcy series order n+] have projection data 
which is equally-spaced on the interior detectors. That is, there are outside 
detectors which have widths which are integral multiples of the minimum detector 
width at that angle. However, the interior detectors do have equal widths as opposed 
to the situation for non-Farey angles, so this case is only slightly different from 
that of completely equally-spaced projection data. Figure 2 illustrates the 
completely equally-spaced phenomenon for tan - 1(1/2) and Figure 3 shows the "edge" 
effect for tan-'(2/5). The reason for larger detector spacings on the edge is that 
the corner pixels lack the nearby pixels which would otherwise provide vertices lo 
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Figure 2 
subdivide the larger detectors. Because this kind of projection data is so closely 
linked to the projection angle in the Z(n) structure, we call it "naturally-induced" 
projection data. On the basis of these classifications, we can now define the angles 
of minimum required resolution. They are the m angles in the Farey angles of order n 
which have the largest detector spacings, or equivalently, those angles which require 
the least resolution for naturally-induced projection data. 1 4 

w 



Figure 15 
One _dj_re£t_method 

We proceed now to sketch Katz's method of implementing this information into a 
reconstruction algorithm. First, he costs the Z(>i) reconstruction problem in the 
form UA=W. Here A is an 'i"-l vector which is tin element of '/(n); i.e., the 
reconstruction space we have '.-hoscn. W is an £•! vector containing integrals of the 
projection data. In partieu'ar, 1) its elements are really strip integrals, 2) imply 
the use of detectors of finite extent, and us such 'A) represent some sort of an 
average. U is an (-n2 matrix which describes the projection data, W, for any clement 
of Z(n) (via matrix multiplication); U depends on a given choice of angles. It is 
actually a stacked m a t i x formed from the m different U ( 1 , one for each projection 
angle, 8 • . where the row dimension (the number of detectors at that angle) depends 
implicitly on 6. and equals 

n a+2n-(n-|p f | + 1 )(n-|<7, 1 + ' ) 
This formula is cas . ly obtained by nuting that the number of projected images of 
vertices in Z(7i) is ( n + l ) s and that the number of projected images which are 
duplicates of already existing projections is (n-|p {| + 1)-(n-|q,I + 1 ) for angles in the 
Farey series of orrier n. With a little algebra, the formula can be rewritten in the 
form 

(n+l>-(IP|l-<-l9, D-lPi l-l^il-l 
For Farey a n g U s of order 2 and angles with rational tangents having |pj| or \q t \ = 
1, this number. Is n»( \ p,l + lq tI). For all angles outside the Farey angles of order n, 
the number o 1' duplicated projected images of vertices is zero, so the row dimension 
is n 2+2n. 

The computation of the geometric matrix V is a very difficult matter. Because 
of this fact, precautions were taken to assure numerical accuracy in its computation. 
For example, when an angle with a l^tional tangent occurs, the elements of Vg are 
known to be rational, so advantage is taken of this fact by doing the computations 
in exact integer arithmetic. However, when angles with irrational tangents are 
encountered, approximations are necessarily introduced at this step because of the 
available numerical procedures. Either we can compute the n a-(n 2+2n) matrix via 
direct area intersection calculation of the strip integrals, or we can attempt to 
mukc the magnitude of p and q satisfying tan0=p/q large. The first choice is very 
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dirfic-ult to program and has many difficult numerical traps to overcome, such as 
occur when only u small corner of a pixel lies in the integral's path. If properly 
done, this is a good but approximate way to compute V.s . In the second method, 
increasing the magnitude of p and q to very large integers would be necessary to come 
closrr and closer to equality in this relation (equality already holds for S 
rational). However, considerations of time required for this last computation also 
restrict the largest magnitude of p and q we can accept, so our subroutines now use 
the first method for computing I!5 when t a n ^ is irrational. 

Since U is seldom square, io volve UA=W somr sort of a least squares problem 
must be solved. Therefore, a I'irin of general i zed inverse can be written: 
A=(l"'t')"'Ulff. This expression is truly formidable when it is realized that the 
matrix to be inverted, U U, is of dimension n--n-. Good resolution in a pixel space 
would require n to be of order 64 or larger. Thus, a matrix inversion of order at 
least 4Q96-'1096 is essential. At first, it was not known lhat U'l! was positive 
definite, although every case we checked was mildly diagonally dominant (diagonal 
dominance does nol imply positive definiteness) . In an attempt to exploit the fact 
that the elements of V V are rational when the chosen angles have rational tangents, 
we expiated the possibility of doing txact inversions; i.e., using integer inversion 
techniques. This implied that VlV be transformed to an integer matrix by multiplying 
each element by the least common denominator of all elements in U. Because of the 
complexity of exact inversion techniques in lurge dimensions, only a limited size 
matrix was inverted by this technique (see Appendix A for a discussion of this and 
other details). Fortunately, it was found that in most cases V{V already has a small 
determinant and condition number, so it was properly conditioned for standard 
inversion techniques from the start. However, due to the finite precision of 
computer representations of numbers, numerical instability will again arise when the 
dimension of the matrix becomes large enough. At Lhat point, integer inversion 
techniques could again come into use if I he implementation were fast enough and the 
computer system could provide adequate, readily available storage. 

Optimizing Uie direct method 

What can be done to optimize the reconstruction methods given above? Katz has 
proposed several ideas. First, he derives another family of least square techniques 
for the problem based on Gauss-Markov statistics. This permits a comparison between 
projections angles, although not between individual detectors within a detector 
array. Second, his analysis led to the first rigorous error bounds in Z(n). A 
factor in this error bound involves a function-theoretic norm which is a function of 
the projection angles via U. Yet another interesting idea is that of modifying the 
photon dose (or beam intensity) as a function of angle. Such modifications change 
both the Gauss-Markov statistics oT a given reconstrue I ion geometry, and the norm in 
the error bound. Flach of these ideas provides a separate point of view in this study 
of optimal angles, and they will be examined in turn. 

Oauss-Markov statistics 

In attempting to favor those equations containing the "best" information for a 
particular reconstruction, the least squares problem was recast in the framework of 
Gauss-Markov statistics. The equation obtained is: U lG _ 1UA=U lG"' 'W. Or, multiplying 
on the left by the inverse: A = ( U l G ~ 1 U ) ~ 1 U l G _ 1 W . Here, G is the covariance matrix of 
W in Lhe Gauss-Markov statistic. It should also be noted that the original variance 
structure used in [14] has been replaced by a more appropriate o n e . 1 6 Next, the 
Gauss-Markov theory says that the covariance of A is ( U l G _ 1 U ) ' ~ 1 . That is, (U'G""'l!) - 1 

gives information as to how the pixels in a reconstruction are statistically 
correlated with one another. In addition to minimizing these correlations in some 
sense, the "loss function", d e t ( ( U t G " ' u ) _ 1 ) , also provides a measure of the 
reconstruction errors due to inconsistencies between projections. Hence, minimizing 
this quantity es a function of the fixed number of projection angles involved 
provides an indicator as to which angles are statistically optimal. 
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Before presenting the numerical results, the tools employed in this computer 
study and subsequently throughout the paper should be presented. To optimize (or 
minimize) the functions given here, a powerful technique which is a modification of 
the "Bremermann method'"1 was used. The reasons for this particular choice of 
optimization algorithm were numerous, and are discussed in Appendix B, Because of 
the complexity of the functions to be minimized, we also plotted segments of these 
functions to aid in adapting the optimizer to the non-srnooth nature of many of these 
functions as well as to increase our understanding of the meaning of the functions 
themselves. 

In studying these graphs, it should be noted that il is the first angle from 
each indicated tabic of angles which is being varied. Also, as G is a factor in 
every function plotted in these figures, it should be pointed out that its elements 
are only computed up to a factor of (PN)" 1, where P is an attentuation constant 
characteristic of the object being reconstucted, and N is the total number of photons 
involved in obtaining one set of projection data. 1 6 Thus, the value of the loss 
function is only accurate to a factor of (PN)"" . When this factor is small enough 
to render unimportant the 30 orders of magnitude variation in the loss function to 
be discussed shortly, then the rct-ults given here are perhaps not that meaningful. 
However, when all possible mileage is needed from a limited amount of data, then the 
overall results can depend crucially on the choice of angles. The function studied 
in the next section, M 2 , also depends on (1, but. in a different manner. Using this 
functional dependence, il can be shown that the numbers given in the plots of M a are 
accurate to a factor of (PN)" - 5. 

The results of optimizing the loss function, det((U'G~ lV)~' ) . was thrft angles 

Angles of Minimum Required Resolution 

AngJe_(Jji_rad i ans) 1^1" ' red Re so I ul ion 
o.o """ " r."oo'6o~" 
H/2 1.0000 
n/l 0.7071 
-n/'I 0.7071 

tan-1(1/2) 0.447^ 
tan"'(2/l) 0.4472 

tan"1(-1/2) 0.4472 
Table 1 

from the Farey ungles of order n were dramatically better than any other choice. fn 
particular, the 7 angles of minimum required resolution given in Table 1 were 
preferred for n=7. A plot illustrating the situation is shown in Figure 4, where the 
set of angles in Table 1 occurs at the center of the plot. The dramatic rise by 
nearly 10 orders of magnitude in moving the first angle slightly away from 0.0 
radians clearly illustrates just how slrong this minimum is. Similar plots are shown 
in Figures 5, 6, and 7. Figure 5 differs from Figure 4 only in the second angle (not 
varied in the plot). The difference is about .04 radians (see Table 2). Since 
equally-spaced angles are of such interest in reconstruction work, the case of 7 
equally-spaced angles is plotted in Figure 6 at 90* and -90- (these functions are 
periodic with period ff, so each of these graphs show a period of the loss function in 
a different section of the space). The precise 7 angles used are given in Table 3. 
Finally, to get an idea of what a randomly selected region of the space looks like. 
Figure 7 was plotted. It used the last 6 angles in Table 4 as fixed parameters. 

One should first note that the loss function shows unpredictable trends 
(exhibiting frequent, very rapid variations). Hence, optimizing it by any quadratic 
minimization technique and even most probabilistic ones would be hopeless. It is 
also of great interest to observe that a great many of the sharp drops in the 
function occur at Farey angles. For example the -90", 0*, and 90 - ordinates in 
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n=7 , m=7 ,_. 
variance of datum » (detector spacing) 

B § 8 e ? ? ? s t i ? 2 8 ; ? s ? E H 9 S ( s e a 
9 in degrees 

General d from last 6 angles in Table 1 
Figure 4 

n='. m=7 . 
variance of datum •* (detector spacing) ' 

, . . . ; J 

, . , , L 

J! I l ! Tl'' 
I'JW J 

•o I.. .I. 

9 in degrees 
Generated from last 6 angles in Table 2 Figure 5 

Figure 6 are Farey angles of order 1. Interestingly, t̂ e -90' and 90 - ordinates 
correspond to equally-spaced angles, demonstrating that occasionally the Farey angles 
of order n and a specific sel of equally-spaced angles will possess elements in 
common. 

The overall structure observed in these plols was an aid in interpreling the 
results which were obtained in attempting to optimize the loss function. The 
modified Hremermann optimizer was started at the 7 equally-spaced angles and rapidly 
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Angles Near Set of Minimum Required Resolution 

Angle (in rad i ans) Required Resolution 
0.0 

tan"'(25/l) 
TT/4 

tan"l(1/2) 
tan"'(2/l) 

tun"'(-1/2) 

1 .0000 
0.0400 
0.7071 
0.7071 
0.4472 
0.4 472 
0.4472 

Table 2 

n=7 m=7 , 
variance of datum » (detector spacing) 

^ | ^ ^ ¥ ? ? ? ° 7 8 ? 5 I 8 a 5 R ¥ ¥ ? ? 
S in degrees 

Generated from last 6 angles in Table 3 

Figure 6 
Angles arc Equally-Spaced 

Angle (in degrees) Required Resolution 
90.0000 "1.0000 
64.2057 0.0332 
38.5714 0.0099 
12.8571 0.0848 

-12.8571 0.0848 
-38.5714 0.0099 
-64.2857 0.0332 

Table 3 

moved to points with function values several orders of magnitude better. Further 
improvement came only very slowly, but it is significant to note that invariably the 
local minima which cause the "hang-up" to occur in the progress of the optimizer 
involved one or more Farey angles. Indeed, in an optimization which ran 1000 
iterations, 4 of the 7 angles of the local minimum were Farey angles to 4 significant 
figures. Another similar optimization found a better value (by 4 orders of 
magnitude) wilh three of the angles being Farey angles. The final function values in 
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n=~ m=7 , 
variance of datum * (detector spacing) 

9 in degrees 
Generated from last 6 angles in Tabic 4 

F i g u r e 7 

A Se t of Randomly S e l e c t e d Angles 

Angle (j_n r a d j a r i s j 
" ' t a n - T i ' / l V 

t a n _ 1 ( 3 / l ) 
0 . 0 7 1 3 

t a n - 1 ( - 1 / 3 ) 
- 0 . 7 5 0 9 

t a n " ' ( - 7 / 4 ) 
- 1 . 6 2 9 2 

Requ i r e d J?e_so I u_L ion 
0 .7071 
0 .3162 
0 .0712 
0 .3162 
0 .0487 
0 .1240 
0 .0416 

Tab le 4 

these two cases were 1.077-10 1 0 0 and 1.104-1096 respectively. Yet a third 
optimization was run from the "random" set of angles listed in Table 4. After 40 
iterations, a function value of ?.054»1098 was reached at a point with six of the 
seven angles being nearly Farey angles. These angles are (with the corresponding 
Farey angle in parenthesis): 1.197(1.107), .?91(.?85). -.001(•000) , -.776(-.7B5), 
-1.10(-i.107) , and -1.53(-l.57) . To increase our confidence thai the angles of 
minimum required resolution (sec- Table 1) do indeed minimize the loss function, we 
ran the optimizer starting at that point. No better function, value was ever found. 

These results lead one to the conclusion that Farey angles are very strongly 
preferred in this statistical framework. Indeed, if a range of angles were chosen 
for each of the m projection angles to be used, then if that range included a Farey 
angle of order n, it would be strongly preferred over any other in the chosen range. 
Though it was disappointing that the computer time could not be afforded to let the 
optimizer run several thousand iterations and find the global minimum at the angles 
given in Table 1, it was nonetheless gratifying to find that Farey angles of order n 
are to preferred, even locally. 

A M of the computer runs discussed thus far involved Z(7). To justify the use 
of thi:s example as indicative of the answers to be found in other dimensions, a plot 
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TffliyTy^M?""^ "™\1 ZLj^-jsusr* 

Angles of Minimum Required Resolution 

Angle (in radians^ 
o".6 " 
n/4 
-n/4 

tan"'(1/2) 
tan"'(2/l) 

tan"'(-l/2) 
tan"'(-2/l) 

Required Resolution 
"f.'ooob 
1 .0000 
0.7071 
0.7071 
0.4472 
0.4472 
0.4472 
0.4472 

Table 5 

of the loss function in Z(9) Hbout thr eight Farey angles of order 2 is shown in 

3 

n=9 m=8 _, 
variance of datum " (detector spacing) 

*! ¥ 
8 in degrees 

Generated from last 7 angles in Table 5 Figure B 
Figure 8. Its very similar structure to the corresponding plot in Z(7), Figure 4, 
strengthens this contention. 

The operator norm in the error bound 

The idea of providing a bound on the error in a Z(n) reconstruction as an 
approximation to the unknown altentuatlon distribution is also fairly new. And since 
the consideration of new variance structures modifies the operator, the former 
operator, U lU, must be replaced by the more general operator, (U lG~'U)~', in the 
norm. The new factor in the error bound involving the operator norm becomes 1 6 

a 

(minimum eigenvalue of U l D - 1 U ) ' B 

where G=a 2D. And the error bound itself changes to 

R= £ l(n)+M 2(M- 5
E l(n)+E 0) 

c.(n) is a measure of how close the original object is to a Z(n) restriction of that 

-10-



object, and c 0 is the norm of the difference between 
coitt inuous object and the projection data obtained from the 
the algorithm selects. Also, for our purposes here, 
structure in the original object or if that object has 
will be large, and consequently our reconstruction will b 
interest to note that if our function exists in Z(n) to s 
noise in the data, we can reconstruct that function exactly 
an exact reconstruction has been verified by experiment up 
computer implementation. The significance of noise in th 
variance structure of the data and thereby in M 0 ; as M.j i 
the error estimate which is angle dependent, the minimizati 
for optimal projection angles. 

the projection data of the 
Z(n) reconstruction which 

M=m, If there is too much 
cry large gradients, C|(n) 
e poor. However, it is of 
tart with, and there is no 

That we can obtain such 
to 7,(27) through an actual 
e data is described in the 
s the crucial parameter of 
on of M„ is this criterion 

The ri-sult of the optimization of M a is that the preferred angles are neither 
all Farey angles nor equally-spaced. This is again very curious because of local 
minima occurring throughout the plotted portion of I lie space which involve Farey 
angles of order n. Indeed, as an optimization proceeded, the local minima found 
involved one or more angles which were close to the Fa rev angles. The best value 
obtained via 40 iterations of the modified Hiemertrmnn optimizer was '16.6 at angles 
(in radians) of -.960, -.68fj, - 329, .09:1, .671, .111, and 1.13. In this set, two 
angles, .09^ and .111, may be cmsidcred close to the two Farcy angles, 0.0 and 
.1107. 

One—d miens iona I plots of 
four sets of angles involved 

th i s f une t i on , M.,, i n 
in the loss f u n d i on 

the same neighborhoods of the 
study arc given in Figures 9 

$ in degrees 
Generated from last 6 angles in Table 1 Figure 9 

through 12. The first of these graphs, Figure 9, involves the angles of Table 1 at 
the 0" ordinate. It is striking that the space appears to be so flat in the region 
of the angles of minimum required resolution (the subset of the Farey angles of order 
n which have the largest detector widths). This fact is emphasized in Figure 10, a 
similar graph except that one of the fixed angles has been changed by .04 radians 
(see Table 2 ) . However, all trace of this flatness at the minimum disappears when a 
random section of the space is plotted as seen in Figure 12, where the last 6 angles 
from Table 4 are fixed parameters of the graph. The 7 equally-spaced angles of Table 
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n=7 m=7 _, 
variance of datum « (detector spacing) 

9 in degrees 
Generated from hisl 6 angles in Table 2 

Figure 10 

n=7 , m=? ,_, 
variance of datum « (detector spacing) 

I 

9 in degrees 
Generated from last 6 angles in Table 3 

Figure 11 

3 occur at 90- attd -90" in Figure 11, where it can be seen that these 7 angles are 
near a local maximum value of M 2. But, as is also apparent from this figure, there 
are a large number of points that have better values for M 2 than the angles cf 
minimum required resolution (notice that the maximum of Figure 11 is less that the 
minimum of Figure 9). 

As was pointed out the discussion of the optimization of M z, many local 
minima involve one or more Farey angles. But in Figure 12, some of the most obvious 
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71=7 m=7 . 
variance of datum •* (detector spacing) ' 

¥ S 9 s ^ $ 3 s e e 8?'^|e s s a s e B 
S in degrees 

Generated from last 6 angles in Table 4 
Figure 12 

Farey angles (such as 0 - and 90") appear to occur at local maxima of M g. This may be 
explained by noting that when two angles get closer and closer together, both M 2 and 
det((U lG _ 1U) gel very large. That is, groups of rows of U become pairwise 
dependent (corresponding rows of Vg. and U 8 k become less and less linearly 
independent until they are actually the same), thereby causing U to become deficient 
in rank. This makes del (rjlG"'l!)=0 , or de t ( (U lG~ 'U)~ ' )-°°, a phenomenon dramatical ly 
visible in Figure 10 at —15- and -15-. In addition, this phenomenon would probably 
explain why closely-spaced angles have been found Lo work poorly in many 
reconsIruc I ion algorithms.10 

In considering the n 
many of them are of the 
graphs show this function 
wildly varying loss functio 
local minima anywhere in 
optimizer. Thus an optimal 
to have a great deal of 
That is, since M a multipli 
fact that it may be diffic 
implies that an improvement 
value at the optimal set 
not change the overall erro 

umbers obtained in 
same order of magnit 

i s certainly not 
n of the last sectio 
the plotted domai 
value of 46.6 at t 
significance when s 

es a quantity invol 
ult to make either e 

in M 2 by a fac 
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By plotting M 2 in the space of Z(9) about the 8 Farey angles of order 2, we once 
again substanliate the claim that these functions do not possess strong dimensional 
dependence. This can be seen in Figure 13, where the striking similarities to Figure 
9 are amazing. That is, if there existed some non-trivial dimensional dependence in 
these complicated functions, one would expect an unusual phenomenon, such as the 
absolute rlatness about the angles of minimum required resolution, to change 
substantially in changing dimensions. 

The question of photon enhancement 

Since the number of photons which are seen at a detector is proportional to the 
size of the detector, and also since the detector width is a function of angle when 
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the projected images of vertices in Y,{n) define the detectors, the idea of enhancing 
the number of photons seen by detectors of smaller extent seems an interesting 
possibility. This is particularly the case because the variance of • datum is 

number of photons impinging upon that detector. To 
of photons is fixed. Then the number of photons 

s modified according lo an enhancement scheme explained in [15], 
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E n h a n c e m e n t factor(<<) 
Uses a n g l e s of Table 1 

Figure 15 
angles of minimum required resolution (Table 1) are the fixed parameters. The 
abscissa coordinate, n, is a measure of the decree to which enhancement is performed. 
In the case of the less function, the preferred amount of enhancement is very small, 
roughly -.103 . The graph is nearly flat in the plotted region, leading to the 
conclusion lhat no enhancement will yield virtually the same reconstruction 
characteristics as would I he preferred value of j=-.103 . Strengthening this 
argument is the fact that de t ( (U lG( <, )" 'u )" ' ) w as |n| becomes large) -3). For the 
error bound study, M 2 is similarly flat around an enhancement of zero. The preferred 
enhancement, <J"2.1B, is only marginally better than the value at u=0.0 . As with the 
loss function, M a(o)*o as |a| becomes large, so the conclusion that no enhancement in 
the photon distribution will work well in practical implementations of direct 
reconstruction methods is also substantiated in the context of the error bound. 

[Evaluation of direct methods 

As is evidenced by the optimizations of M 2 and the enhancement factor, a, these 
studies have not been biased toward a particular set of angles. As a result, the 
strong statistical stability observed at the angles of minimum required resolution 
demonstrates a clear preference for those angles. That is, the near equivalence of 
this set of angles and the set found by the optimizer for M, means lhat we can 
confidently use the Farey angles of order n having the minimum required resolution ir. 
the unbiased Gauss-Markov statistics. Also, the photon enhancement study implies 
that radiation dose need not be modified as a fund ion of angle in order to improve 
the statistics of the reconstruction. This is a definite plus when practical desig-
considerations are taken into account. When this new information is biased with the 
fact that of all possible angles, those in the set of Farey angles of order -. hs.e 
the minimum required resolution (largest required detector spacing), ?. final 
practical choice is without question that subset of the Farey angles. 

There Is however, yet another practical consideration in the use of .v:rt<l 
matrix methods using this statistical structure and the naturally induced pri'/ffii.vi 
data. And that is one of sheer computab i 1 i ty. For example, we have brr:-, z^'ic i r-
compute (U'c'l') - 1 up to dimensions of n=27. With the aid of work report *ii IT. •£;?}:, 
this can be immediately pushed to n=37 (see Appendix C ) . These facts oit-.v,* :nr -.i r. i 
to the need for an alternative to direct matrix methods in reconst ri:i*' . .*ri »\yr.|,., -M 
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least for the present. Unfortunately, the strength of the unbiased estimator 
ric\clopcd via Gauss-Markov is lost when looking for alternative reconstruction 
a Igor ithms. 

II. Opt i ma 1__an_g[es, and ART-1 ike algor i thms 

ART and the question of uniqueness 

One very popular reconstruction algorithm in Z(n) has been ART (Algebraic 
Reconstruction Technique). Numerous modifications to it have appeared, as well as a 
whole family of quadratic optimization methods which have been shown' 1 to correspond 
exactly to a number of specific ART-like algorithms currently implemented. All these 
methods differ from what is done in the direct matrix method discussed above in a 
very crucial point: the initial approximation. A second difference lies in the fact 
that the solution obtained from an ART-like algorithm can depend on the first 
iterate. This is a direct consequence of I he lack of guaranteed uniqueness in these 
algorithms; it will be discussed further below. The initial approximation just 
referred to consists of making the elements of U exclusively 0 or 1 (see [22] for 
some less drastic approximations). The specific value of a given entry is determined 
by testing whether the center of n given pixel lies inside the strip which 
contributes to a given detector. If il lies within the strip, the corresponding 
value in U is 1, otherwise il is 0. n In some cases, this will be a reasonable 
approximation, particularly when only a very small corner of a pixel figures in the 
strip integral. However, in a large number of cases it is a very poor approximation, 
and the exact influence of this assumption can only be determined by numerical 
experiments. We call this difficulty the "centroid problem". A further difference 
between ART-like algorithms and the direct methods of Part I lies in the kind of 
projection data used. Typically the detectors arc- equally-spaced, and that spacing 
does not vary from one projection to another. In examining the cTfecl of these 
differences upon the ART-likc algorithms, possibly the single most important issue is 
the question of uniqueness. Without the guarantee of a unique object in V.(n) 
corresponding to the finite amount of detector information in an experiment, a whole 
new area of problems arises. Thus it is of primary interest, to know when there is 
uniqueness and when there is not. 

There are two cases where we can give unequivocal results. First, for angles in 
the Farey series of order n, whenever the inequality 

m m 
n < 1 + min( £ \p, | , £ |o, | ) 

i=l i=l 
holds, there is but one element of Z(n) corresponding to the naturally-induced 
projection data. When the inequality ceases to hold, the null space contains 
non—zero elements of Z(n). These objects have zero projection data at infinite 
resolution in the directions of each of the m angles used. In [14] they are called 
ghosts, which is a very appropriate term. The second situation where uniqueness 
holds again involves the naturally-induced detector spacings, but the angles come 
from the complement of the set of angles allowed in the first situation. In other 
words, the angles come from the set of all angles not in the set of Farey angles of 
order n. Once more, the detector spacing guarantees that we have infinite resolution 
of any element in Z(n) at these angles, and thus the use of any single angle is 
sufficient to guarantee uniqueness; this is the result of [20], In spite of the 
guaranteed uniqueness in this second situation, the results of Part 1 would seem to 
argue against the use of a single reconstruction angle, as would the fact that 
resolution requirements imposed by naturally-induced projection data would be 
excessive at these angles. In addition, the fact that the projection data is coming 
from a smooth object and not one in Z(n) argues that it is unphysical to reconstruct 
two-dimensional structure from a single view. 

As noted above, ART-like algorithms do not use the kind of projection data we 
have just discussed. So what can be said? In general, nothing definitive. However, 
even if exact "mathematical" ghosts are not generated by the combination of the 
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crntroid problrm and an unnatural detector placement, experience has taught us that 
"numerical" ghosts will effectively be generated in many cases. Computation of any 
of these ghosts is a non—trivial matter, regardless of how close they are to being 
"mathematical" ghosts. Such a computation would depend upon the exact detector 
placement, and would thus vary from one reconstruction apparatus to another. Instead 
of undertaking a search for these complicated objects, we propose to modify ART—like 
algorithms to use projections from the set of Farey .ingles of order n, where the 
detectors are placed in the naturally-induced way. Unfortunately, at the deadline 
for this conference, the fir-'.t modified ART algorithm was still being developed, so 
numerical results will appear at a later diite. 

Choice of angles ina modUjed_ART 

Why should Farey angles be preferred here in the context of ART-like algorithms 
as well as in the exact methods of Fart 1? Because uniqueness is guaranteed when the 
naturally-induced projection data is employed. Hut are there any other criteria 
which would bias the choice of angle? No statistical structure like Gauss-Markov has 
been implemented in an ART algorithm to favor one set of projection angles over 
another (the statistics in [12] involves favoring one reconstruction over all other 
elements of '/.(n)) , and no rigorous error bound such as in [it] has been given for 
ART, so yet another criterion needs to be found. As is shown in [10], the 
convergence factor established in [23] provides just such a biasing mechanism, for 
not only is that factor dependent upon the projection angles involved, but upon the 
ordering of their use as well. This convergence factor does not, however, depend 
upon the detector spacing at a given angle. Therefore, ali angles will be allowed in 
an optimization study. 

As is pointed out in [10], experience has shown that the order in which 
projections are used can greatly affect the performance of ART-like algorithms in 
that convergence can in some cases be greatly accelerated by a re—ordering of the 
projections. Two expressions are developed for bounds on this convergence factor. 
In the case of the first bound, a transformation to another space is first performed 
so as to permit linear computations. The experience of Hamaker and Solomon was that 
this first bound was not sharp, so a second bound was derived. However, their theory 
is not limited to the study of bounds on convergence factors. That is, their 
theorems constitute a constructive theory for the exact computation of the 
convergence factor in the case of an arbitrary permutation of equally-spaced angles. 
Unfortunately, they do not develop a similar construction Tor unequally spaced 
angles, so no precise calculations of the convergence factor have been done in those 
cases. 

It was found in our computations that the first bound was not sharp at all, and 
that the second bound was not significantly better. So, barring new theoretical 
developments, only numerical experiments can provide an aid in conjecturing what set 
of angles would be best for ART-like algorithms. Again because of time constraints, 
we have not yet performed those experiments. 

Bounds on the convergence factor were computed in three spaces. The first was 
the poor bound mentioned above. Those computations gave the preferred orderings for 
subsets of the Farey angles, equally-spaced angles, and arbitrary sets of angles. 
There was an ordering of m equally-spaced angles which was superior to any ordering 
of the first tn angles in a sequence of Karey angles, except in the instance when all 
angles generated by a given order Farey series are used. In particular, for Farey 
angles of order 2, the ordering -.785, 1.107, .464, -1,107, 0.0, 1.57, -.464, and 
.785 (in radians) gave a bound of .87 for the convergence factor, while the best 
ordering of 8 equally-spaced angles, 90., 22.5, -22.5, 67.5, -45., 45., 0.0, and 
-67.5 (in degrees), gave a bound of .93 . In an optimization using the Bremermann 
optimizer, yet a third set of 8 angles, .253, .B70, .630, 1.435, .497, .999, .345, 
and .768 (in radians), gave a bound of .81 . The second computed bound gave .70 for 
both the equally-spaced and Farey angles, and according to a conjecture in [10], the 
vuluc for an optimal ordering of 8 equally-spaced angles should be below 
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.22 1-2(8/9) . Thus, a final conclusion awuits experiment and possibly further 
constructive theoretical developments. 

The third space used was the finite-dimensional restriction, 7.(n) , of the 
infinite-dimensional Hilberl spaces used in deriving the first bound. As noted in 
the discussion on uniqueness, subsets of the Farey angles of order n can have ghosts 
in 'A(n) relative to them if they do not satisfy the inequality given there. These 
ghosts are not unique, and can be shown to be linear combinations of "fundamental" 
ghosts or basis vectors in 7.(n) . These basic vectors are easily generated by linear 
translations of the first basis vector,' 4 or they can all be computed directly via a 
formula given in [15] 

K(z)=/i(z)+ V) (-1)' 
r=l 

m r 
Y, h( z+ V t o ) 

i=l J=l 
Mere, h and K are elements of Z(n) and the argument •/. equals (x,y), a point in the 
domain of an element of Z(n). .Since this basis allows us to generate all possible 
ghosts with respect to any set of Farey angles, it is possible to compute directly 
the minimum angle between the null spaces corresponding to two sets of projection 
angles. The angles between the null spaces give the bound on the convergence factor 
via: II 

r •• 1 - [J s i n a ( » ? ) 
1- jfm-l 

where the p. are the minimum angles between ghosts with respect to the one angle in 
the first subspace and ghosts with respect to the remaining m-j angles in the second 
subspace, with the restriction that these ghosts lie in the orthogonal complement of 
the intersection of the two null spaces. That is, the angle between null spaces is 
measured in that portion of each null space which is orthogonal to their 
intersection. To describe how the direct computation of 8 . is done, it is essential 
to understand that a means exists for computing the "fundamenta 1" ghosts described 
above. No such characterization of the null space exists in infinite dimensions so 
direct calculation of elements in the null space cannot be done in that case. 

There are several steps involved in computing @ . The first step is to find the 
"fundamental" ghosts with respect to the first angle, the remaining m-j angles, and 
the combination of the two sets of angles (this gives a basis spanning the 
intersection of the null spaces). Next the basis of the intersection of the null 
spaces is orthonormalized via a Cram-Schmidt process. Then, the orthonormalization 
is completed in each null space by using the basis vectors already spanning each 
individual null space. The orlhonormal basis vectors generated by this completion 
process then span that part of each corresponding null space which is orthogonal to 
the intersection of the two null spaces. With these tools in hand, an iterative 
procedure of alternately projecting an element of the orthogonal portion of one null 
space onto the other and then reversing the process converges rapidly to give B, (we 
are indebted to Myron Katz for the theory which permitted implementation of this 
a Igor ithm). 

The result of computing the /S, for the optimum ordering of the 8 Farey angles 
found in computing the first bound was a bound on the convergence factor of .994 . 
How can the bound be yet worse in this case? If the intersection of the null spaces 
takes up a proportionately larger section of each null space in the 
infinite-dimensional case, then conceiveably, the angle between two null spaces might 
be larger in the infinite-dimensional case, thereby leading to smaller observed 
bounds on the convergence factor. This conjecture is motivated by the observation 
that in finite-dimensional calculations, the angle between null spaces increases as 
the non-zero dimension of the intersection of the null spaces increases proportionate 
to the dimension of those null spaces (see Table 6 ) . However, as noted above, there 
is no available characterization of the null spaces in infinite dimensions, so the 
conjecture just given will have to remain just that, a conjecture. Clearly, for the 
purposes of comparison with other sets of angles, a way to compute the convergence 
factor itself is still needed. 
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Null Space Calculations for 8 Farey Angles 

Dimens i on D imens i on D imens i or. 
J of first 0 f second of 

(in rad i ans) 
1.5708 1 

nu11 space 
64 

nu 1 1 
1 
iace int e r s e c I 

0 
i on (in rad i ans) 

1.5708 
2 56 6 1 0.4243 
3 
• 1 

56 
56 

16 
30 

6 
16 

0.5684 
0.6274 

5 72 36 30 0.9249 
6 72 -12 36 0.9901 
7 56 64 

Table 6 

42 1.0943 

A final issue in the llamaker and Solomon approach is that of working in 
infinite-dimensional spaces and then applying the results obtained to V,(n) . This may 
indeed be valid, but its rigorous justification would be most welcome. Such 
justification would definitely establish ART on yet firmer footing. 

Summary 

It is evident from these studies that there is a great deal of previously-
unknown structure in Z(n). Many surprises occurred in the discoveries reported here, 
but possibly the greatest surprise of all was the strong preference of the Farey 
angles in exact reconstruction methods (direct matrix methods). We believe this is a 
direct result of the symmetries of Z(n) itself, and therefore, some sort of 
preference for these angles probably exists for all algorithms using 'l(n) as the 
underlying reconstruction space. And in considering all the possible algorithms, the 
favorable characteristics of the direct matrix methods studied in Part I should make 
those methods good candidates for spaces smaller than 2(38). For larger spaces, the 
results are inconclusive since the experiments comparing a modified ART using Farey 
angles to other versions of ART (such as those employing optimal orderings of 
equally-spaced angles) have yet to be performed. While a modified ART using 
equally-spaced angles in the optimal order might very well be competitive with this 
proposed algorithm, the large required resolution in the projection data (small 
detector spacing) would clearly make it less attractive as a practical reconstruction 
method. 

Remark. As has been slated, the strong preference of the Farey angles in the context 
of Gauss-Markov statistics is remarkable. But one should recall that while the fact 
of minimizing the loss function, det((U lG~ lU)~'), accomodates inconsistencies between 
projection angles, it does not accomodate empirically inappropriate data collected by 
detectors on the same projection rack. That is, measurements on a given projection 
rack are weighted equally in the statistics discussed here. As there is invariably 
white noise in the data, inconsistencies between the measurements on a given 
projection rack necessarily arise and must be dealt with. This problem can be 
handled by a statistical technique called cross-validation, but we will defer a 
discussion of it to a subsequent paper. 

Appendix A 

There are two competitive exact integer inversion techniques currently in use: 
the two-step integer-preserving Gaussian elimination and the congruential technique. 
The two-step Gaussian technique is a special case of a more general class of n-step 
Gaussian elimination processes developed by Bareiss. 1 It requires a fast 
mu1tiprecision system, as every step of the process involves mu1tiprecision integer 
additions, subtractions, multiplications and divisions. The higher-order Gaussian 
elimination methods require a little more computer memory, and are a little more 
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complicated to program. .so none have appeared in the literature. The congruent ia! 
iii\or:,ion process is built upon modulo arithmetic, and is sometimes called the 
"modular ulgorithm" for this reason. Uniqueness of arithmetic processes requires 
Ihnt the modulo bases be primes, and speed of computation and scarcity of computer 
memory require that the primes be large (just smaller than the size allowed by a word 
on the computer being used). The inverse is then found by doing a Gaussian 
elimination modulo a set of primes until a uniqueness condition is determined or a 
particular bound tells us we have the result if the matrix was not singular. Inverse 
modulo arithmetic is then done on the scries oT inverses generated. 

Before December, 1977, Lhe only congruent i a I inversion programs of which we were 
a w a r e 3 , 8 , 1 3 ran roughly twenty times slower than the two-step integer-preserving 
Gaussian elimination procedure. S*ince there was a fast mil i t i pree i s ion system at cur 
disposition, we began by implementing the two-step Gaussian elimination system as 
programmed by Uareiss and his colleagues. As it was of interest to do inversions for 
much larger dimensions of 7.(n), it was necessary that the matrix be kept on disk and 
that only a portion of il be in core at a g i ven time. Because concurrent disk input 
and output was not available on that computer system (and would have been very 
difficult to program), and «:so because a competitive congruentia| inversion program 
appeared at that time, 5 the two-step technique was abandoned. Similar difficulties 
quickly arose using the congruent lal method: I lie number of primes required was 
becoming enormous since the determinant of the I rans formed U l U was growing like (•'' , 
truly an astronomical number. This meant that an overlapped input-output scheme was 

essential on the new computer system we were using, and a complicated interface to a 
double buffering program of Bruce Langdon at Lawrence l.ivermore Laboratory was then 
programmed. The optimal reworking of the congruential elimination and back-solution 
loops in the modulo solver improved the program's speed, but only by a factor of 
three or so. Thus, current computational resources seem to bound these calculations 
to roughly n«15. It was concluded that the transformed U ll! cannot be inverted for 
large n on current computers by known methods. 

Remark. It should be pointed out that we became aware of the excellent work of 
McCIc I I a n 1 8 ' ' 3 only in December of 1977. Hut it must be admitted thai we would still 
have been prejudiced in favor of the two-step Gaussian elimination method because our 
muItiprecision system was optimally programmed on the IBM 7030 for the architecture 
of that machine, and it would have taken n large amount of effort and time to take 
McClellan's "SAC-1" implementation of his "modular algorithm" and make it uniformly 
competitive with the two-step technique, if indeed it could have become competitive. 
This was so because the variable-length operations in that muI Iiprecision system 
allowed special short-cuts to be taken in almost every operation, leading to a huge 
saving in computer time as well as memory (the exact length of every mu1 Iiprecision 
integer in the calculation was known). 

Appendix B 

The optimization technique used here is a modification of a technique called the 
"Bremermann method" in the literature, named after Hans Bremcrmann who discovered 
il. 4 It has since been improved. 2 1 We have replaced a numerically unstable procedure 
it employs (the solution of a cubic equation) by a newly developed stable method. 2 4 

Basically, the method does line searches In Gaussian-distributed random directions in 
the k-dimensional space in which the function to be minimized is embedded. However, 
it is distinguishable from other methods which do line searches in that it does a 
parameterized Lagrangian fit to the five function values obtained at five 
equally-spaced points along a line of randomly chosen orientation. This spacing is 
also varied from iteration to iteration. The result of this fit is a quarlic whose 
minima are found by solving the quartic's derivative (a cubic). The function is 
computed at the smallest of the quartic's minima (if the cubic has three real roots), 
and the minimization algorithm proceeds at the smallest f the new value and the five 
values used to compute the Lagrangian fit. The periormance of this algorithm is 
astounding, and has had favorable mention in the literature, 6 , 7 yet many still doubt 
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its value. There are improvements which still need to be made to the method, such as 
In br i d i •/i ng it with a second-order minimization technique so that its convergence to 
a local or global minimum will be accelerated once it is in the region of attraction 
of that minimum, and so that the probability that "hang-up" at a local minimum in a 
deep well will be diminished, but the improvements due to Jaime Milstcin already 
mentioned are already quite adequate for many applications. 

The merits of this technique are numerous, and we only mention a few here 
relevant to our applications. First, no derivatives of the function to be minimized 
are required. For functions whose derivatives are analytically very large 
expressions or hard to compute numerically, or, as in our case, not even available 
due to a lack of analytic representation, this is a tremendous advantage. Second, it 
is not limited in its effectiveness lo the local region of attraction, but "sees" a 
great deal of the global structure of the function. Finally, and most importantly, 
it requires only a few function evaluations. When, as is often the ease, the 
function is costly lo compute, this criterion alone could determine whether a 
numerical minimization is even attempted. 

Appendix C 

Recently (on May 3,1979), kalz discovered that U't;_1U was not only symmetric, 
but "centro-symmetric" as well. 1 6 While searching for an empirically faster way to 
compute UlG~'U, we had independently discovered (on March 17,1979) that its 
computation could be decomposed as follows: 

m 
lJiG-'U= V V[, Gs'lV 

i = l 
This decomposition is essential to the proof of centro-symmetry. We had also been 

aware empirically that U'G~'l' was cent ro-symme tr i c. Al the same time as he 
discovered Ihe centro-symmetry of U l G _ 1 U , Katz also found that U itself is 
centro-symmctric.'6 These facts permit all calculations to be done on matrices only 
half the size. Thus, given the computer being used, computations of (UlG~'U)~'UlG~l 

up through n=37 should be possible. Improvement beyond that point will only come 
with fantastic improvement in computer size and speed. Elaborate overlapped 1-0 
schemes may allow some limited extension of the d i.nens iona 1 reach of the method, but 
inversion methods employing overlapped 1-0 are very strictly limited by the response 
times of the secondary storage. Details of an implementation of such an inversion 
scheme and a discussion of its drawbacks will appear elsewhere. 
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