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SUMMARY

In 1975, the Pacific Northwest Laboratory (PNL) began a study for the
U.S. Bureau of Mines to determine ways of extending the service life of large-
diameter wire rope used on draglines in the surface coal-mining industry.
Authorization for the Wire Rope Improvement Program was based on the potential
for eventual reduced costs and increased production at the mines.

Toward this program goal, activities in five major areas were undertaken
during the WRIP. These included

s experiments using PNL-developed bend-over-sheave fatigue test
machines to generate data on which to base a model for predicting
large-diameter rope performance from that of small-diameter ropes

s bend-over-sheave fatigue testing to determine differences in rope
failure rates at varying rope loads

e analyses to determine how wire ropes actually fail

e development of a load sensor to record and quantify operational
loads on drag and hoist ropes

e technology transfer activities to disseminate useful program find-
ings to coal mine operators.

Data obtained during the b-year program support three primary conclusions.
First, high loads on wire ropes are damaging. As an adjunct, however, poten-
tially useful countermeasures to high loads were identified. Second, large-
diameter rope bend-over-sheave performance can be predicted from small-diameter
rope test behavior, over some ranges. Third, wire ropes fail as the result of
individual wire failure(s). Program data corroborated important failure mecha-
nisms and identified potentially useful countermeasures.

In addition, a load sensor concept was fully developed during the program.
Sensors were used first on drag ropes. They proved sufficiently successful in
accurately measuring impulse loads to warrant acquiring two more sensors for
use on hoist rope loads as well.



In terms of technology transfer, the seminars on wire rope technology
were apparently the more successful means of program findings dissemination.
The first national wire rope symposium was also enthusiastically received by
both researchers and coal industry representatives.
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WIRE ROPE IMPRUVEMENT PROGRAM

INTRODUCTION

The work described in this report was performed by the Pacific Northwest
Laboratory (PNL) and its subcontractor, Battelle Columbus Laboratories (BCL),
as part of a continuing program begun in 1975 by the U.S. Bureau of Mines. On
October 1, 1978, program sponsorship was transferred to the Division of Solia
Fuels Mining and Preparation, U.S. Department of Energy.

When the Wire Rope Improvement Program (WRIP) was originally authorized in
1975, the overall goal was to determine ways to extend wire rope life, perhaps
by improving wire rope itself. Program findings would ultimately be applied in
the field to increase surface coal mine productivity and reduce costs to mine
operators. Although the goal actually remained the same in subsequent contract
years, tasks were adjusted to conform with progress and findings.

To the extent necessary, this report is intended to serve as a record of
the entire 6-year program. The research procedures and findings related to
tasks completed prior to Fiscal Year 1981 have already been reported in detail
(Beeman 1977, 1978; Morgenstern et al. 1980). Nevertheless, the first main
section of this report presents a brief overview of WRIP efforts from the pro-
gram's inception up to FY8l. The overview highlights the significant research
efforts and results, providing necessary background for the overall program
conclusions and recommendations that appear next.

The third major section describes the bend-over-sheave experiments con-
ducted by BCL on small-diameter (1-1/2-inch) wire rope. The BCL single-wire
experiments are also documented in this section. The correlation of the
resulting laboratory data with field rope data is addressed here as well.

A BCL analysis of wire rope wear and failure modes comprises the fourth
section. The fifth main section describes how the PNL-developed dragline load
sensor system was used in the field to collect and analyze data describing
actual hoist rope loads.



The sixth main section documents BCL efforts to disseminate program
findings to the surface coal-mining industry.

The final section discusses key elements of wire rope performance as
interpreted from WRIP research findings. The detailed information on wire
rope construction and uses on surface mining equiment provides background for
those readers outside the field who might want more basic explanations before
perusing the technical aspects of this report.



PROGRAM OVERVIEW

This section reviews the program's significant research efforts and
results from its inception up to FY81.

BACKGROUND

The Wire Rope Improvement Program for large-diameter rope (i.e., ropes
measuring 2 to 5 in. in diameter) was originally authorized by the U.S. Bureau
of Mines in dJune 1975. Authorization was based on potentials for increased
surface coal mine productivity and reduced costs to mine operators.

The early program sought to determine ways of improving wire rope life;
perhaps by improving wire rope itseif. Modifications in rope construction
techniques and wire composition and drawing practices were visualized as poten-
tial improvements. Correlation of lTow-cost smali-diameter rope test results
with large rope field performance might provide acceptable justification for
such rope development. One candidate method would consist of validating an
hypothesis that the Drucker-Tachau (D-T) ratio(a) correlates bend-over-sheave
(BOS) fatigue lives for all practical wire rope sizes, sheave diameters and
operating loads. The D-T ratio had already been used to correlate fatigue life
data on fiber-core wire rope in sizes ranging from 1/2 in. to 1-7/16 in. and
sheave diameters fifteen to thirty times the rope diameter, at loads covering
the design factors(b) of interest, i.e., from 2 to 6.

If this hypothesis could be validated for large ropes, then rope deveiop-
ment could be carried out on smail-diameter ropes with some confidence that
findings would apply to larger sizes. Hence, rope manufacturers would have
the evidence needed before committing resources to production of improved
larger rope sizes.

(a) The D-T ratio is the nominal bearing pressure, rope-upon-sheave, divided
by representative wire strength.
. ' _ Rated Rope Breaking Strength
(b) Design factor Operational or Test Load




Testing the quantitative validity of Drucker-Tachau ratios for all reason-
~able rope sizes was not possible at the beginning of the program because no
data describing bend-over-sheave (BOS) fatigue of large-diameter rope were
available. Bend-over-sheave fatigue tests had never been conducted on large
ropes other than on the draglines themselves. Thus, the first program effort
was to build a BOS fatique test machine for large-diameter wire rope and col-
lect fatigue life data. '

Data from BOS fatigue tests on large-diameter rope would provide opportu-
nity to evaluate the D-T ratio hypothesis. In addition, development of rope
damage in the test machine could be compared with damage observed in field
ropes that had been retired, thereby providing insight to damage mechanisms.
The fatigue test would closely simulate hoist rope field experiences; drag
rope examinations would also be useful for comparison.

Preliminary information indicated that drag ropes wore out almost twice
as fast as hoist ropes; comparative examinations might prove valuable for
uncovering differences between hoist and drag wear-out mechanisms. Conse-
quently, field rope samples were acquired.

Field trips to representative mines were also recognized as necessary
for developing realistic perspectivies; 13 mine sites were visited early in
the program. Data on rope life were obtained, and opportunities developed
for viewing and photographing several operational procedures. Tour of a wire
rope manufacturing plant provided further insight to other aspects of rope
performance.

RESULTS FROM FISCAL YEARS 1976-1978

A fatigue test machine was designed and constructed at PNL for cycling
3-in. diameter rope around 90-in. diameter sheaves. Twenty-three ropes from
two manufacturers, representing three rope designs, were tested in BOS fatigue
at design factors from 1.9 to 2.9; fourteen of these produced comparative data.
The others provided supplementary information as described in Beeman (1978).

Bend-over-sheave fatigue data from these fourteen tests of 3-in. wire
rope did not correlate with available smaller rope data when compared by the



Drucker-Tachau ratio. However, almost all the smaller rope data were obtained
from ropes with fiber cores. Because large dragline ropes have steel wire
cores, the absence of correlation was not unexpected. The few data from com-
parable core small ropes were not sufficient to accept the D-T hypothesis; more
tests with smaller ropes having comparable cores were needed. a

Field rope samples ranging in diameter from 2-7/8 in. to 4-1/2 in. were
examined. They provided useful information about the degree of wear and notch-
ing that occurred at Tocations near the bucket, near the drum, and in the mid-
region. Wear-out mechanisms appeared to consist of abrasive wear on outer
wires plus notching and wear at strand-strand contacts, as well as at strand-
IWRC contacts.

Three-inch diameter ropes tested on the BOS machine exhibited internal
wear patterns strikingly similar to the field ropes. Test rope lives varied
from 508 bending (or flex) cycles at a design factor of 1.9 to 84,712 flex
cycles at a design factor of 2.9.

Meanwhile, compilation of results from field trips produced interesting
data about rope life. Hoist ropes lasted about twice as long as drag ropes,
but within each category was a five to one variation, apparently due to differ-
ences in overburden and in operational practice. The evidence seemed persua-
sive that real opportunities existed for extending rope life by encouraging
favorable field practices. Useful dollar savings and less unscheduled down-
time could reasonably be achieved without capital expenditures. Disseminating
information to the operators suggested a technology transfer activity.

Field observations and 8-mm movies of operating draglines suggested that
drag rope life might be seriously affected by the dynamic whipping and jerk
loads the ropes can experience. Desirability for sensing and recording opera-
tional drag rope loads seemed clear.

(a) Steel wire core ropes are actually constructed with strands twisted about
a central core consisting of a wire rope itself; hence, the term indepen-
dent wire rope core (IWRC). The IWRC supports the strands so the rope
does not collapse under service loads; it can also provide some margin of
reserve strength in a new rope.



After the changeover to DOE sponsorship, planned activities were imple-
mented for rope testing, technology transfer and load sensor development.

RESULTS FROM FISCAL YEARS 1979-1980

Small-diameter IWRC ropes, 3/4 in. and 1-1/2 in. in diameter, were
obtained and tested in BOS fatigue. Most had the same number of outer wires
in each strand as the 3-in. rope. This provided a first-order effect of geo-
metric scaling. More tests with 3-in. rope were compieted, extending data
down to design factors of 5. The hypothesis of correlation over this range
via Drucker-Tachau ratios was supported.

A principal difficulty lay in scaling damage accumulation processes and
wire fracture properties. Quantitative understanding of controlling mechanisms
was clearly lacking; influence of wear processes is a case in point. Qualita-
tive hypotheses might be developed, but still missing are fatigue life data
for large-diameter rope under different sheave-to-rope diameter ratios and
with ropes of different constructions, together with mechanical properties
data for individual wires comprising the rope.

During FY79, a load sensor link suitable for field use was defined in
cooperation with selected mining companies; hardware, associated telemetry and
recording apparatus for a dual load sensor system were completed and delivered
for installation on a working dragline to coliect preliminary field data.
Field movies of professional quality were produced, showing certain types of
operational practice and their effects on both drag and hoist rope motions.
Related dynamic analyses of drag rope systems were conducted.

Instructive 1-day seminars, explaining fundamentals of wire rope construc-
tion and factors influencing its service life, were developed and presented at
several mine sites around the nation. An interpretive review of the Wire Rope
Improvement Program was presented at a COSMET(a) meeting in Kansas City,
Missouri. Each of these activities produced positive feedback, encouraging
more development and broader dissemination.

(a) Common Surface Mining Equipment Troubleshooting.

(o2}



A national wire rope symposium was held in Denver, Colorado, and termed
a success by attendees and cosponsors alike. Proceedings were published by
Washington State University Engineering Extension Service.

TARGETS FOR FISCAL YEAR 1981

Principal thrusts for FY81 were directed at obtaining field data on drag
rope loads with the load sensor, completing the BOS fatigue Tife tests on large
and smaller ropes at high design factors, i.e., low loads, continuing wear and
failure analysis studies, and expanding technology transfer efforts. Eight-
strand rope and nylon sheaves were also tested. After early success with the
drag rope sensors, it was decided to acquire two more sensors and test the
hoist ropes as well. Additional field data were acquired; however, because of
schedule disturbances due to the coal mine strike, activities on this aspect
were too late for reporting here.

The specific activities conducted and results generated in each of these
areas are documented fully in succeeding sections of this report.






CONCLUSIONS AND RECOMMENDATIONS

Three principal conclusions were drawn on the basis of Wire Rope Improve-
ment Program Findings. This section lists these and other important conclu-
sions, and then presents specific recommendations for future research.

CONCLUSIONS

First, the WRIP determined that high rope loads are damaging to wire
ropes. Potentially useful countermeasures include the following:

e Mine management engineering and dragline operators can develop pro-
cedures that minimize need for digging up high and close to the house

(a)

where large bucket position factors are virtually unavoidable;

this will help extend hoist rope life.

o Operators can practice fill and swing operations that minimize unnec-
essary movements involving bucket position factors much above 1.1 or
so. This will keep hoist rope loads practically low and tend to
improve productivity by shortening cycle time somewhat.

e Operators can practice smoother dump and return swings to minimize
occurrences of rope whip.

The second major program finding was that, within specific ranges, large-
diameter rope bend-over-sheave performance can be predicted from small rope
tests. The correlation can be determined from flex cycles versus the term,
load factor divided by sheave-to-rope diameter raio, D/d. The demonstrated
1imits appear to be D/d ratios of approximately 20 and above, and actual load
factors below about 0.3.

Third, the WRIP concluded that wire rope failure develops from individual
rope wire failures. Researchers found that most drag ropes on large draglines
are retired as a result of wear and dynamic loads rather than bending fatigue.
Cases in which bending fatigue dominates commonly indicate a sheave design or

(a) See Appendix A.



wear problem. Points of wire notching at cross wire contacts are not the usual
sites of crack initiation as commonly believed; initiation often takes place
between adjacent wires of a given strand.

Findings suggest that minor improvements in wire rope could result from
modifications in wire composition and different thermomechanical treatments
adjusted to accommodate phase transformation behavior in current or new alloys.

The BCL small-diameter wire rope and single-wire experiments led to four
specific conclusions:

e The modified bearing pressure ratio provides a reasonable consolida-
tion of bending fatigue data on ropes of different constructions.

e Filler-wire Seale and Warrington Seale wire ropes having the same
number of outer wires per strand and made of the same wire strength
have similar bending fatigue resistance.

e The number of outer wires per strand is directly related to bending
fatigue resistance.

e Steel sheave groove hardness (in the absence of gross sheave wear)
does not substantially influence rope life.

Load sensors installed on an operating dragline successfully transduced
and telemetered the active loads on drag ropes. As a result, it was decided
to obtain additional sensors for use on hoist ropes.

In terms of effective information dissemination, the most useful technol-
ogy transfer activities were judged to be the seminars and the national wire
rope symposium. The mining industry's demonstrated concern about good rope
performance, coupled with miners' general receptivity to specific suggestions
to extend rope life, suggest that continued technology transfer activities
would be successful.

RECOMMENDATIONS

Recommendations based on BCL's small-diameter rope and single-wire experi-
ments are numerous.

10



e Additional laboratory experiments should be performed to clarify the
potential of 8-strand ropes for hoist rope usage.

e Nylon sheave groove experiments should be completed to evaluate
fatigue life improvement potential.

e Additional strain-control, axial fatigue tests on rope wire should
be completed to identify changes in material behavior and to charac-
terize the wire rope service life poieatial of each wire.

e The influence of worn, hardened sheave grooves and fleet angles on
rope life should be experimentally evaluated.

e Further multiple-load-level testing should be pursued to verify the
usefulness of linear damage predictions of field rope service lives.

e Alternative lubricants and lubricating methods should be investi-
gated as a means to enhance hoist rope service lives.

e An effort should be undertaken to acquire actual breaking strength
data and information on the condition of each rope at retirement of
a large number of dragline field ropes. These data could then be
used to reevaluate the adequacy and consistency of current field
rope retirement practices.

e A more rigorous model of wire rope fatigue damage accumulation should
be pursued. The model would accommodate rope geometry cyclic wire
material properties, sheave groove geometries and wire-to-wire plas-
ticity effects.

The BCL wire wear and failure analyses also led to specific suggestions
for additional research:

e Adhesion and dry fretting of wire rope internal contacts should be
controlled by improved lubrication. Lubricants with good boundary
lubrication properties, ability to penetrate contact zones and abil-
ity to inhibit corrosion of steel should be investigated. Fluid
lubricants should be used in lieu of heavily waxed semi-solid lubri-
cants with poor penetrating properties.

11



Inclusion content in wire should be reduced to control delamination-
type wear. Vacuum melted steel should be investigated.

Wire microstructure should be altered from fine pearlite to spheroi-
dizal structure or a lower bainite. These structures should reduce
tendencies to form lamellar structures under heavy local deformation.

Boron-containing steel should be considered to improve abrasion
resistance of outer wires. The outer wires only need to be of this
composition. This material has proven effective in snowplow blades
where a combination of fracture toughness and resistance to abrasion
by 5102 particles is required.

Current methods for determining when a wire rope should be retired
should be reviewed. Measurements of the width of abrasion scars on
outer wires can be misleading owing to surface extrusion along the
boundaries of the wear scars. Measurement of rope diameter does not
take into account the contribution of internal fretting and notching
and "bedding-in."

The significance of white etching layer formation and cracking of
this transformation phase on wire rope failure needs to be investi-
gated further. Tests should be run on individual wires which have
been treated to produce white etching phase (by abrasion). These
wires should be compared with untreated wires for fatigue properties.

12



SMALL-DIAMETER WIRE ROPE AND ROPE WIRE EXPERIMENTS

R. R. Rice and R. L. Jentgen

This section documents the experiments conducted at BCL on small-diameter
wire rope and selected rope wires. Correlation of small rope results with
field rope performance is attempted.

EXPERIMENTAL FACILITIES

Two bend-over-sheave fatigue machines are available at BCL. Both machines
were used for the wire rope fatigue experiments conducted in this program.
The larger machine is suitable for fatigue cycling of ropes up to 1-1/2 inches
in diameter on sheaves up to about 75 inches in diameter. Cycling rates are
adjustable up to linear speeds of 200 feet per minute while the amount of rope
travel per half cycle can be adjusted from about 2 to 12 feet. The smaller
machine is used to test ropes up to 3/4 inch in diameter on sheaves up to about
40 inches in diameter.

On each machine, one sheave is rigidly positioned on its axle and the
other is mounted on a movable, rigid frame through which the tension is applied
to a pair of rope specimens. This arrangement is shown schematically in Fig-
ure 1. In this program, the spacing of the sheaves and the stroke length were
chosen so that, for all conditions tested, a critical section of each rope
passed onto and off its sheave during each machine cycle. In other words, this
primary test section received two bending cycles per machine cycle. The length
of this critical section was always maintained at no less than four rope lay
lengths or approximately 26 rope diameters. To each side of the critical or
primary test section in the center of each rope sample were secondary test sec-
tions that were subjected to a single bending cycle during each machine cycle.
The length of these secondary test sections was dictated by the sheave diameter
as shown 1in Figure 2.

The sheaves were manufactured from 1045 steel plate, 3 inches thick for
the 1-1/2-inch diameter rope and 1-1/2 inches thick for the 3/4-inch diameter
rope. The sheave grooves were machined to 7 percent oversize in accordance
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with the new ANSI standards for mihing ropes. Sheave groove throat angles of
30 degrees were used on all sheave grooves and groove depths were set at the
nominal rope diameter. After machining, all sheave grooves were flame-hardened
to RC = 55 to 60, so that no significant changes in sheave groove contour

would occur during testing.

The selected rope tension was achieved and maintained through constant
hydraulic pressure on the sheave load actuator. The Toad-pressure calibration
of this actuator was determined before testing with a precision load cell
traceable to the National Bureau of Standards. The linearity and stability of
this calibration was within 2 percent.

STANDARD BEND-QVER-SHEAVE FATIGUE TESTS

Laboratory bend-over-sheave fatigue tests were performed on 3/4-inch and
1-1/2-inch diameter wire rope to develop baseline data for estimating the ser-
vice lives of larger hoist ropes used in surface mining draglines and shovels.

An effort was made to procure 3/4-inch and 1-1/2-inch diameter ropes that
were as similar as possible to the large hoist ropes that are typically used.
The 3-inch diameter rope, B', tested at PNL, for example, is representative--
it was a 6 x 57 filler-wire Seale, Lang-lay, IWRC rope. It was not possible
to obtain exactly the same construction in the smaller diameters, but it was
possible in most cases to obtain constructions having the same number of outer
wires per strand. By maintaining similarity in the number of outer wires, it
was possible to scale down the critical outer strand wires in direct propor-
tion to the rope diameter.

The matrix of wire rope bend-over-sheave fatigue test parameters is shown
in Table 1. Wire ropes were obtained from two different manufacturers for both
the 3/4- and 1-1/2-inch diameter ropes. One manufacturer supplied filler-wire
Seale (FWS) ropes while the other supplied Warrington Seale (WS). In this way,
it was possible to examine the potential effects of modest differences in con-
struction on bending fatigue resistance. Two sheave-to-rope diameter ratios
(D/d ratios) and four design factors were considered so that the traditionally
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TABLE 1. Matrix of Bend-Over-Sheave Fatigue Tests

D/d D/d
Rope 20 30 Number of Rope Breaking
Diameter, Rope . Design Factor Rope OQutside Wires Strength, lbs
in. Manufacturer 2 3 4 6 2 3 4 6 Construction per Strand Rated\d)  Actual
3/4 M X X X X 6 x 36 ws(b) 14 55,800
H X X X x X X X 6 x4l rus(c) 16 55,800 65,900
1-1/2 M X X 6 x 41 WS 16 216,000
H X X X X X 6 x 4] Fus 16 216,000 252,000
3(a) B' X X X 6 x 57 FWS 16 796,000

(a) Tested at PNL.
(b) Warrington Seale.

(c) Filler-wire Seale.
(d) These rated strengths were established based on the Wire Rope Handbook (1966)

Newer standards of the wire rope industry (Wire Rope Users Manual 1979) give
approximately 5 percent higher breaking strengths.




used bearing pressure ratio value could be examined for a range of test condi-
tions. Rated and actual (where available) breaking strength for each rope con-
struction are also tabulated. Note that actual strengths exceed rating by over
15 percent. This has been observed previously (Gibson et al. 1974) and is con-
sidered typical.

The bearing pressure ratio value or Drucker-Tachau factor (Drucker and
Tachau 1944) was first proposed in 1944 as an empirical factor or design cri-
terion which could be used to correlate wire rope bending fatigue data (for a
particular construction) generated at different combinations of wire strength,
rope diameter, sheave diameter, and rope tension. It is expressed as:

_ 2T
B-—D—, (1)

[

where T = rope tension, 1b.

U = wire ultimate strength, psi
D = sheave diameter, in.
d = rope diameter, in.

Because the wire rope fatigue test machines are designed to test two
ropes simultaneously, two test results were obtained for each combination of
rope diameter and sheave diameter. Both ropes rarely fail at exactly the same
time, so the standard procedure was to cycle them both until one rope specimen
failed, and then replace the failed rope with a dummy rope of the same con-
struction. The test was then restarted 'and continued until the second rope
also failed. The primary criterion for rope failure was failure of one strand,
although some data on accumulated wire breaks were also taken, and in most
cases it was possible to identify failure according to common field practice
and ANSI MII recommendations, i.e., when either 6 broken wires in one lay
length or 2 broken wires in one strand of one lay were broken.

The baseline bend-over-sheave fatigue data generated on the 3/4-inch diam-
eter ropes are listed in Tables 2 and 3 for the 6 x 36 WS and 6 x 41 FWS,
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TABLE 2. Bend-Over-Sheave Fatigue Test Results for 3/4-Inch Diameter,
6 x 36 WS, Lang Lay, IWRC Wire Rope

Modified
Sheave to Design Cycles to Failure Bearin Bearin%
Rope Diameter  Factor Specimen 6 and 2 One Strand Pressurelb) Pressure(C)
Ratio, D/d d.f(8)  Identification Criteria Broken Ratio Ratio x 10~3
20 3.00 N - 33756 11.2 6.27
78 - 32796
4.00 6N -- 50944 8.41 4.71
6S - 54850
30 3.00 2N 58278 80118 7.47 4.18
28 53772 69226
4.00 IN 84236 106906 5.60 3.14
1S 81406 108544

(a) d.f. = rated rope strength/rope tension.

(b) B = ﬁ%g' , where U = outer wire strength and T = rope tension.
dw
(¢) B' =3B+ , where d,, = outer wire diameter.
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TABLE 3. Bend-Over-Sheave Fatigue Test Results for 3/4-Inch Diameter,
6 x 41 FWS, Lang Lay, IWRC Wire Rope

Modified
Sheave to Design Cycles to Failure Bearin Bearin%
Rope Diameter  Factor Specimen 6 and 2 One Strand Pressure(b) Pressure(c)
Ratio, D/d d.f(a)  1dentification Criteria "~ Broken Ratio Ratio x 1073
20 T 3.11 10N - 45786 15.4 7.98
108 - 44008
3.00 9N 72810 78520 10.8 5.62
9s 66708 72810
4.00 8N --= 109534 8.12 4.22
8s 74242 94436
6.00 1IN 85402 125050 5.41 2.81
118 103390 125164
30 3.00 4N 88344 120358 7.21 3.75
4s 91822 125954
4.0 3N 138024 179642 5.41 2.81
3s 142820 186762
6.0 12N 129480 352868 3.61 1.88
128 330468

(a) d.f. = rated rope strength/rope tension.

{(b) B = —ZI , where U = outer wire strength and T = rope tension.
Ubd P
dw

(c) B' =38 - d , where dy;, = outer wire diameter.



Lang Lay, IWRC wire rope constructions. The data for the two ropes are com-
pared in terms of bearing pressure ratio and cycles to one strand failure in
'Figure 3. Distinct logarithmic linear trends are evident for the two rope
constructions. The only substantial deviation from linear trends is evident
for the D/d = 20, design factor = 6 test data on the 6 x 41 FWS rope. It
appears that the bearing pressure ratio tends to overestimate 1ife for low D/d
levels and design factors above 4 or 5. The bearing pressure ratio trends
remain logarithmic linear for a D/d of 30 at all design factors tested.

In an attempt to reconcile the different rope trends for the two rope con-
structions, a modification of the bearing pressure ratio was considered. The
modified bearing pressure ratio is simply the standard expression given in
Equation (1) multiplied by the ratio of the outer wire diameter to the rope
diameter as follows:

where dw = outer wire diameter, inch.

The 3/4-inch diameter wire rope data are replotted in Figure 4 in terms of
the modified bearing pressure ratio. Some layering of the data still remains,
although a best-fit logarithmic linear regression of the pooled data gave a
correlation coefficient of over 90 percent, and no single data point deviates
from the mean by more than a factor of 1.5. Considering that deviations as
large as a factor of 1.4 existed for the individual rope regression analyses,
the modified bearing pressure ratio will be taken as an adequate parameter for
the representation of the 3/4-inch diameter wire rope bending fatigue data.

The baseline bend-over-sheave fatigue data generated on the 1-1/2-inch
diameter ropes are listed in Table 4 for both the 6 x 41 WS and 6 x 41 FWS,
Lang Lay, IWRC wire rope construction. A plot of these data in terms of the
modified bearing pressure ratio is given in Figure 5. The resultant best fit
logarithmic linear trend line was virtually parallel to the 3/4-inch rope trend
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TABLE 4. Bend-Over-Sheave Fatigue Test Results for Two 1-1/2-Inch Diameter,
6 x 41, Lang Lay, IWRC Wire Ropes

Modified
Sheave to Design Cycles to Failure Bearin Bearin%
Rope Diameter  Factor Specimen 6 and 2 ~ One Strand Pressure(b) Pressurelc)
Ratio, D/d d.£(a) Identification Criteria Broken Ratio Ratio x 1073
6 x 41 WS
20 3.05 2N 36480 47598 10.9 5.53
28 36480 43090
4.00 IN 56800 69360 8.33 4.22
1S 45590 57542
20 3.63 4N 47284 59354 9.12 4.68
48 51414 57988
4,00 3N 60880 66498 8.27 4.25
38 56780 64976
6 x 41 FWS
30 3.05 6N 75616 99082 7.23 3.71
6S 75616 91940
4.00 5N 101806 137030 5.52 2.83
58 87230 125648
6.00 7N 153832 213988 3.68 1.89
75 163526 226494

(a) d.f. = rated rope strength/rope tension.

2T
Ubnd

(¢) B' =B *

(b) B = , where U = outer wire strength and T = rope tension.

dw , where d,; = outer wire diameter.



line and it was displaced by about a factor of 1.30 in 1ife below the smaller
rope trend line. This shift might be construed as a rope size effect although
this conclusion cannot reliably be drawn since the 1-1/2-inch diameter rope
data fall on top of the 3/4-inch diameter, 6 x 36 WS wire rope data and it may
simply be that the 3/4-inch diameter 6 x 41 FWS wire rope displayed abnormally
high fatigue resistance. (In this context it should be noted that virtually
identical rope trends were observed in an earlier study on the basis of the
modified bearing pressure ratio for ropes of the same diameter that differed
in the number of exterior wires per strand.)

The trends established in Figures 4 and 5 for cycles to failure of one
strand should be viewed in comparison to Figure 6, where the cycles to attain-
ment of the "6 and 2" wire break retirement criterion are plotted as a func-
tion of the modified bearing pressure ratio for all four rope constructions.
There 1is more variability in these data although a logarithmic linear trend
line provides a reasonable representation of the data. The slope of the line
is steeper, which indicates that the difference between cycles to attainment
of the broken wire criterion and cycles to one strand failure becomes greater
for decreased loads and increased D/d values. Above a modified bearing pres-
sure ratio of about 6 x 10'3, strand failure develops very shortly after the
development of a concentration of broken wires in the rope.

EXPLORATORY BEND-OVER-SHEAVE FATIGUE TESTS

Five different exploratory experiments were conducted. The first was
conucted to investigate the impact of sheave hardness on wire rope bending
fatigue 1ife. The second study was completed on a prototype 8 x 25 FW, IWRC
wire rope to evaluate its potential as a dragline or shovel hoist rope. The
third investigation was conducted to examine the influence of a modified rope
lubricant on the fatigue properties of the 6 x 41 FWS construction.

The fourth experiment was done to examine the influence of alternating
high and low rope tensions on bending fatigue life. The last study was initi-
ated to determine whether nylon sheaves would enhance wire rope bending
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fatigue resistance beyond that observed on standard steel sheaves. The experi-
mental procedure and the results are reviewed in the following paragraphs.

Sheave Hardness Effects

To examine the influence of sheave hardness on wire rope bend-over-sheave
fatigue resistance, a series of experiments was performed on unhardened, no
initial oversize sheaves. The sheaves were manufactured from hot rolled steel
p]ate-—RC hardness of about 20. The sheave groove geometry was the same as
used for the standard tests except that the sheave groove radius was machined
to 0.375 inch (no oversize) rather than 0.401 inch (7 percent oversize).

The test results for the no initial oversize, unhardened sheave tests are
presented in Table 5. These results are presented graphically in Figure 7.
Again a logarithmic linear trend is evident. The results, in comparison to
Figure 6, were surprising, in that there was 1ittie effect on bending fatigue
resistance due to the unhardened, no initial oversize sheaves. The trend line
for the 6 x 41 FWS rope tested on unhardened sheaves does fall slightly below
the 6 x 41 FWS rope data generated on hardened sheaves and the difference
increases with decreasing values of the modified bearing pressure ratio, but
the trend Tines are very similar when both 3/4-inch ropes tested on hardened
sheaves are included in the comparison. Under the controlied laboratory con-
ditions of this study it must be said that the hardness of the sheaves had
little impact on wire rope bending fatigue resistance.

It was noted in these experiments that the sheave groove diameter increased
rapidly during the first rope test, but that it soon stabilized at about 3 to 4
percent over the nominal rope diameter, which, of course, matches the oversize
seen commonly in new ropes. The sheave groove did continue to wear into the
sheave, however, and the surface of the groove became heavily scarred as shown
in Figure 8. After 280,000 bending cycles on the D/d = 20 sheaves, the sheave
grooves had worn an average of 0.012 inch. Similarly, after 500,000 bending
cycles on the D/d = 30 sheaves, the sheave grooves had worn an average of
0.021 inch. This corresponds to a wear rate of about 0.042 inch per million
cycles. Eventually, this wear would make the sheave unsatisfactory for ser-
vice, especially in a field situation involving occasional significant fleet
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TABLE 5. Bend-Over-Sheave Fatigue Test Results for a 3/4-Inch Diameter, 6 x 41 FWS Wire Rope
Tested on Unhardened, No Initial Oversize Sheaves

Modified
Sheave to Design Cycles to Failure Bearin Bearin%
Rope Diameter  Factor Specimen 6 and 2 One Strand Pressure(b) Pressure(c)
Ratio, D/d d.f(a) Identification Criteria Broken Ratio Ratio x 10~3
20 3.0 4N 48078 57252 10.8 5.62
4S 48078 56590
3.0 5N 43816 58724 10.8 5.62
58 48916 59972
4.0 6N 66354 94404 8.12 4.22
6S 73930 79966
30 2.0 9N 50944 66452 10.8 5.62
9s - 65812
2.4 8N 59706 76612 9.01 4.69
8s 70234 83080
3.0 IN 37404 97834 7.21 3.75
1S 55448 81974
3.0 2N 73566 108512 7.21 3.75
258 65356 101090
4.0 3N 48028 144432 5.41 2.81
3s 75722 149966

(a) d.f. = rated rope strength/rope tension.

2T
Ubd
(c) B' =B -

(b) B = , where U = outer wire strength and T = rope tension.

dw , where d,; = outer wire diameter.






angles, because the throat angle of the sheave groove effectively changes with
groove wear from 30 degress to 0. This leaves a U-shaped sheave groove that
would be very damaging to the wire rope if any fleet angle developed.

It is important to note that the results found in this experiment probably
do not relate particularly well to the field situation where a surface-hardened
sheave groove has worn. In the field, the geometry of the sheave groove would
not change so readily to accommodate the rope as it wears. Instead, the sheave
groove diameter is likely to reduce to below the nominal rope diameter and
induce high compressive forces on the rope which could be very damaging and
cause very short bending fatigue lives.

Alternative Construction Study

Improved bending fatigue resistance is an important goal in designing new
rope constructions for hoist rope usage in large draglines and shovels. Recent
work at BCL has demonstrated this usefulness of the modified bearing pressure
ratio in approximately correlating the bending fatigue resistance of 6-strand
wire ropes having different numbers of outer wires per strand. This consolida-
tion works because there is a consistent trend of improved fatigue resistance
with an increased number of smaller outside wires per strand. (Of course, wear
resistance diminishes, but this discussion centers on bending fatigue resist-
ance.) A logical extension of this idea was to prepare the construction of a
wire rope with small outside wires relative to the rope diameter. Ropes wider
than 2 inches in diameter are typically not available with more than 16 outer
wires per strand. The 6 x 41 FWS wire rope obtained for this study has 16
outer wires, for example. Since an 18-outer-wire-per-strand, 6-strand rope
could not be obtained in the desired diameter, an 8-strand rope construction
was considered. With an 8-strand rope, given the same number of outside wires
per strand, the outside wires are approximately 16 percent smaller. Subse-
quently, an effort was made to obtain a 1-1/2-inch diameter, 8 x 41 FWS wire
rope. The only rope manufacturer found willing to build a special rope con-
struction offered an 8 x 25 FW, Lang Lay, IWRC rope rather than the 8 x 41 FWS.
The 8 x 25 FW rope is a l12-outer-wire-per-strand construction, so it was not
considered optimal for purposes of this study, but it was still of sufficient
interest to warrant a limited experimental evaluation.
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Two bend-over-sheave fatigue tests on standard hardness D/d = 30 sheaves
were completed on the 8 x 25 FW wire rope. The results are compiled in
Table 6. Comparison of these test results on the basis of the modified bear-
ing pressure ratio with 6 x 41 FWS data on 1-1/2-inch diameter rope (Figure 7)
shows very similar trends. This is another way of saying that, for the same
rope tensions and D/d ratios, the 8 x 25 FW rope gave slightly lower fatigue
resistance. This was predicted since the outer wire diameter of the eight-
strand rope was 8 percent larger than the outer wires of the six-strand rope.
On the average then, it would be expected that an 8-strand, l6-outer-wire-per-
strand rope construction would exhibit longer bending fatigue lives for the
same rope tensions and D/d ratios because such a rope would have smaller outer
wires.

These comments regarding the benefits of small outer wires should be temp-
ered with consideration for practical field usage situations. Drag ropes on
draglines are generally more prone to damage by wear than bending fatique.
These ropes must have relatively large outer wires to resist wear. Even some
hoist ropes experience enough scrubbing and sliding on sheaves and drums that
wear effects cannot be discounted. The apparent recommendation is to use wire
ropes in hoist rope applications with as many outer wires per strand as can be
obtained and used successfully without introducing significant wear-related
problems. In surface mining wire ropes of 3 inches in diameter and greater,
this means that some low-wear hoist rope applications could prcbably be best
served with 18-outer-wire-per-strand constructions (such as 6 x 55 WS and 6 x
61 FWS).

Modified Rope Lubricant Testing

It has been demonstrated elsewhere (VDI 1968; Lex 1954) that lubricants
placed in a rope during manufacture and/or applied afterward during usage can
substantially increase wire rope bending fatigue life. The specific issue to
be addressed in this study was whether a low-viscosity, maintenance-type lubri-
cant could be used to advantage over a conventional asphaltic lubricant as an
internal lubricant applied during rope manufacture. The question arises from
the fact that the asphaltic Tubricants are believed to be less effective as
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TABLE 6. Bend-Over-Sheave Fatigue Test Results for a 1-1/2-Inch Diameter
8 x 25 FWS, Lang Lay, IWRC Wire Rope

Modified
Sheave to Design Cycles to Failure Bearin Bearin
Rope Diameter Factor Specimen 6 and 2 One Strand Pressure(b) Pressure(c)
Ratio, D/d d.f(a) Identification Criteria Broken Ratio Ratio x 1073
20 3.05 2N 136480 147598 10.9 5.53
30 3.00 IN 71624 >76638(d) 7.36 4.07
1S 66174 76638 7.36 4.07
4.00 2N 100204 120620(d) 5.52 3.05
28 85264 120620 5.52 3.05

(a) d.f. = rated rope strength/rope tension.

(b) B = ﬁ%g , where U = outer wire strength and T = rope tension.
dw
(c) B' =3B - d , Wwhere dy = outer wire diameter.

(d) Rope removed somewhat before one strand failure to facilitate examination and
identification of initial sites and causes of wire failures.



boundary Tubricants than specific low-viscosity maintenance lubricants. Effec-
tive boundary lubrication is necessary at wire-to-wire contact points in a rope
to reduce friction and wear which can lead to fatigue damage. The asphaltic
lubricants are also frequently incompatible with lubricants applied during rope
maintenance and are more inclined to pick up dirt.

A low-viscosity maintenance lubricant was chosen from among the best Tub-
ricants examined in another BCL program (Jentgen 1978). An arrangement was
made with a rope manufacturer to introduce this lubricant into a 3/4-inch diam-
eter, 6 x 41 FWS wire rope during manufacture. A series of bend-over-sheave
fatigue tests was planned to examine the fatigue resistance of the modified
lubricant rope in comparison to the standard asphaltic-base-lubricated, 6 x 41
FWS rope. Testing was curtailed because of funding restrictions but two sets
of ropes were successfully tested in bending fatigue before the effort was
terminated. The results of those tests are presented in Table 7. The fatigue
lives obtained at the high load fell slightly above baseline fatigue trends
shown in Figure 6, while the fatigue lives obtained at the low load fell
somewhat below baseline trends.

The mediocre results may be attributable to the very modest quantity of
lubricant that was applied during manufacture. Visually, and to the touch,
the ropes were essentially dry. Before any definite conclusions can be made
regarding the suitability of the low viscosity lubricant for use as manufactur-
ing lubricant, some additional study is needed. Tests similar to those already
completed should be done using a more liberally lubricated test rope. In addi-
tion, comparative tests should be performed in which the maintenance lubricant
is added periodically during cycling to regular asphalt-base lubricant ropes
and modified Tubricant ropes.

Combined High-Low Load Tests

Most laboratory wire rope bending fatigue data are generated at constant
rope tensions, even though almost no field rope experiences constant rope ten-
sion throughout its service cycle or its lifetime. In order to examine whether
constant amplitude data could be used in a meaningful way to estimate the
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TABLE 7. Bend-Over-Sheave Fatigue Test Results for a 3/4-Inch Diameter, 6 x 41 FWS, Lang Lay,
IWRC Wire Rope Manufactured with a Low-Viscosity, Maintenance-Type Lubricant

-~ e = e

Modified
Sheave to Design Cycles to Failure Bearin Bearin%
Rope Diameter  Factor Specimen 6 and 2 One Strand Pressure(b) Pressure(¢)
Ratio, D/d d.f(a) Identification Criteria Broken Ratio Ratio x 1073
20 3.00 IN 55,618 61,210 10.8 5.62
18 69,548 269,548 10.8 5.62
4.00 2N 72,202 75,272 8.12 4.22
2S 79,940 84,888 8.12 4.22

(a) d.f. = rated rope strength/rope tension.

(b) B = ﬁ%% , where U = outer wire strength and T = rope tension.
(¢) B' =B - ¥ , where dy = outer wire diameter.

d



fatigue life of a wire rope subjected to variable loads, such as are seen in
the field, a series of combined high-low load tests was planned. Only one
test was completed within the curtailed program period but it is worthy of a
brief discussion.

The experiment which was conducted involved the 3/4-inch diameter 6 x 4i
FWS wire rope on D/d = 30 sheaves. The rope tension history involved repeated
blocks of 4,000 cycles at a design factor of 3.00, followed by 4,000 cycles at
a design factor of 6.00. These rope design factors were chosen to simulate
the "full-bucket” and "empty-bucket" portions of the dragline hoist rope opera-
ting cycle. To allow ready comparison with the other wire rope fatigque data,
the results are presented in Table 8. It is not readily apparent from this
table whether the fatigue lives obtained would have been expected based on
previous constant load test results. Based on simple linear damage calcula-
tions, predictions of bending fatigue life were made as presented in Table 9.
Calculations were made for both failure criteria, and it is apparent that both
predictions were quite good. The actual number of bending cycles to the "6
and 2" criterion exceeded the prediction by 4.2 percent, while the actual
number of bending cycles to one-strand failure fell below the prediction by
only 0.7 percent.

Additional experiments should be performed to verify these results, but
the indication is that the fatique Tife of a wire rope subjected to two dis-
tinct load levels (such as are seen by most field ropes) can be reasonably
estimated by using baseline fatique data. When predicting the fatigue Tife of
hoist ropes used in surface mining machines it is apparent that the baseline
fatigue data representing cycles to exceedance of the "6 and 2" wire break
criterion should be used, since that criterion most closely represents the
retirement criterion used in the field.

Nylon Sheave Experiments

Several recent studies (Chen and Gage 1979; Chen and Ursel 1979) have
concluded that the bending fatigue Tife of wire ropes can be extended
significantly through the use of elastomeric sheave materials in place of
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TABLE 8. Bend-Over-Sheave Fatigue Test Resuits for a 3/4-Inch Diameter, 6 x 41 FWS, Lang Lay,
IWRC Wire Rope Tested at Alternating High-Low Rope Design Factors

Modified
Sheave to Design Cycles to Faillure Bearin Beari
Rope Diameter Factor Specimen 6 and 2 One Strand Pressure(b) Pressure(c)
Ratio, D/d d.£(8)  1dentification Criteria Broken Ratio Ratio x 1073
30 3.00/6.00(d) 1IN 95,882 147,672 7.21 3.75
1S 111,982 149,844 3.61 1.88

vy e e =

(a) d.f. = rated rope strength/rope tension.

(b) B = ﬁ%%‘ , where U = outer wire strength and T = rope tension.
dw
(¢c) B' =B - , , where dy, = outer wire diameter.

(d) Repeated blocks of 4,000 cycles at design factor of 3.00, followed by the same number
of cycles at design factor of 6.00



TABLE 9. Fatigue Life Predictions for Two-load Level,
Bend-Over-Sheave Fatigue Test

-— S

Predicted Damage Fraction/Block

Design 6 and 2 ?ase on One-Strand (b)
Factor Cycles/Block Failure Criterion(a Failure Criterion
3.00 4,000 0.0543 0.0392
6.00 4,000 0.0258 0.0142

Predicted Damage/
Block 0.0801 0.0534

Predicted Blocks to
Failure Criterion 12.48 18.73

Actual Average
Blocks to 13.00 18.59
Failure Criterion

Present Error
Predicted to Actual +4.27% -0.7%

(a) Based on best fit linme for 6 x 36 WS and 6 x 41 FWS combined data
shown in Figure 6.

(b) Based on best fit line for 6 x 36 WS and 6 x 41 FWS combined data
shown in Figure 4.
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traditionally used steel sheaves. This study was undertaken to investigate
this claim for rope constructions and sheave D/d ratios representative of hoist
rope service in large surface mining machines.

Nylon sheaves, 45-inch pitch diameter and 3 inches thick, were obtained
for fatigue testing 1-1/2-inch diameter, 6 x 41 FWS Lang Lay, IWRC rope. A
design factor of 4.0 was chosen for testing. Unfortunately, the sheaves
deformed substantially when operated under full rope tension. Sheaves of this
size made entirely from nylon have never been evaluated before and the "dish-
ing" of the sheaves resulting from cold-flow of the nylon was not anticipated.
In less than 1,000 bending cycles the "dishing" had become so severe that the
alignment of the sheave in the fixture was lost and the sheave containment
bolts were broken. Attempts to constrain the outside edge of the sheave from
warping did not remedy the problem. Additional attempts to stiffen the sheave
with steel plates around the hub were also unsuccessful. Within the available
time period, it was not possible to operate the sheave successfully because of
dimensional instability and low stiffness. No useful bending fatigue data were
obtained. Nylon used as a sheave groove liner in large sheaves might well be
a more practical alternative. Nylon used in this way may be useful in improv-
ing wire rope bending fatigue resistance, but this conclusion awaits laboratory
and field verification.

SINGLE WIRE EXPERIMENTS

Experiments on individual wires taken from wire ropes used in this program
were completed to 1) document the monotonic tensile properties and 2) attempt
to identify the cyclic behavior of the wires under conditions involving cyclic
plasticity, such as a wire experiences at a cross-wire contact point in a rope.

Monotonic Stress-Strain Experiments

Tensile tests were performed on wires taken from the 3/4-inch, 1-1/2-inch
and 3-inch diameter wire ropes so that a comparison in static tensile proper-
ties of the wire materials could be made. Only the outer wires in each rope
construction were tested. The wires were tested in displacement control in an
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electrohydraulic test system. At least a 10-inch gage length was used in each
experiment. The resulting data are given in Table 10. This table includes
information on the rope construction and diameter from which the wires were
taken as well as a range of experimental measurements and computations includ-
ing proportional limit stress, yield strength, ultimate tensile strength,
apparent elastic modules, reduction in area, the Ramberg-Osgood shape param-
eter, and the plastic strain coefficient. These data are based on an average
of two tensile tests per wire size for each rope size/construction. Table 11
shows an example of stress records for one wire size and rope construction.

In summary, the 3/4- and 1-1/2-inch diameter rope wires exhibited little
difference in tensile strength or reduction in area. The values found corre-
sponded favorably with AISI standards for extra-improved plow steel wire. The
3-inch rope wire material was substantially lower in strength and corresponded
more closely to improved plow steel strength standards. The yield strengths
and proportional limit stresses were quite variable, because of differences in
strain hardening behavior; this is reflected in the substantial difference in
Ramberg-0Osgood shape parameters.

Cyclic Stress-Strain Experiments

To induce controlled strain conditions in rope wires it was necessary to
devise means for performing fully reversed, strain-controlled axial fatigue
cycling experiments. To the authors' knowledge, this had never been done
before. To avoid buckling of the wires during compressive loading, a very
short gage length specimen fixture was considered as shown in Figure 9. A
0.153-inch diameter wire is shown, although tests were attempted on wires as
small as 0.040 inch. Initially, the ends of the wires were gripped with
split, conical wedges that were compressed around the wire into mating conical
housings as described in Rungta and Rice (1981).

This arrangement worked well for determination of cyclic material proper-
ties of the wire, but it resulted in nearly 50 percent end failures for the
experiments continued to cyclic failure. End failures were reduced by using a
hardenable epoxy to "socket" the wire ends in the conical housing. The lower
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TABLE 10. Individual Wire Tensile Properties(a)

Wire Proportional Yield Tensile Apparent Reduction Ramberg- Plastic

Rope Di ameter, Limit Strength,(c) Strength, Elastic Hodulus,(d) in Area, Osgood Strain
Diameter, Rope d, P.L.» y» u E.X. R.A., Value, Coefficient,

inch Construction inch ksi ksi ksi 103 ket X n K

3/4 6 x 36 WS .042 138. 235. 295, 32.0 38. 5.60 1,05 x 10~14
3/4 6 x 41 FWUS  .039 111. 213. 285. 30.8 52, 4.53  5.75 x 10~12
1-1/2 6 x 41 WS .076 95, 212. 288. 27.5 51. 3.71  4.65 x 10”16
1-1/2 6 x 41 FWS  .077 137. 230. 286. 26.5 49. 5.83  3.41 x 10~15
3 6 x 57 FWS  .149 129. 190. 221, 25.6 55. 7.75 4,52 x 10”19

L R L

R T Y

(a) Based on an average of 2 tensile tests per wire size for each rope/size construction.

(b) Based on plastic strain level of 0.01%

(c) Based on plastic strain level of 0.20%

(d) Listed as "apparent” because not established from precision modulus experiment, a
likely value tor these wire materials would be 29 x 103 ksi.

-——



TABLE 11. Stress-Strain Data for 3/4-Inch Diameter Rope
6 x 36 WS, 0.42-Inch Diameter Wire

Spec. No. Average
1 2 Elastic Plastic
Stress, Total Strain Strain(a) Strain(b)
Io] Et Et Ee Epan
ksi y4 % )4 N 4
. i
20 0.64 0.58 .062 ———
40 .132 .120 .125 .001
60 .196 177 .187 —-—
80 .263 .238 .250 .0005
100 .328 .297 .312 .0005
120 «400 .359 .375 .0045
140 469 423 437 .009
160 .555 .499 .500 .027
180 643 .577 .562 .048
200 .749 674 .652 .086
220 .871 .791 .687 .144
240 1.03 .934 .750 .232
260 1.24 1.13 .812 .373
280 1.47 1.36 .875 .540
290 1.66 1.54 .906 _ .694

(a) Based on a value of E = O/Etavg at 0 = 80 ksi

€
e Etl + “to e
(b) pavg = __2‘_'_— - E,e Iy e > 000
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A solution to the problem of false wire strain readings was found by using
cylindrical buckling guides with machined openings large enough to attach Ton-
gitudinal extensometry directly on the wire sample. A longer wire sample could
be used with the buckling guides and the slight movement of the wires in the
epoxy grips ceased to be a problem. Using this approach, a lTimited quantity
of data was generated before the single-wire efforts were terminated.

The only fatigue data obtained were on a 0.153-inch diameter wire typical
of the wire used in a 3-inch diameter, 16-outer-wire-per-strand rope construc-
tion. Using the direct longitudinal strain measurement device, it was possible
to identify significant cyclic softening of the wire when subjected to large
strain amplitudes (of 0.5 percent and above). The monotonic and cyclic stress-
strain curves are shown in Figure 10 for the 0.153-1inch diameter wire.

The observed softening occurred very rapidiy, and nearly stable behavior
was seen after less than 50 cycles. Typical hysteresis loops for the beginning
of an experiment are shown in Figure 11. The strain softening is quite evi-
dent. The stability of the stress response after initial softening is evident
in Figure 12, where the tensile stress amplitude versus cycles is plotted for
several experiments. The two experiments shown in Figure 11, which were run
at lower strain amplitudes, showed essentially stable response throughout the
test until failure.

These experiments imply that the highly worked, hardened wires used in a
wire rope can be expected to cyclicly soften at cross-wire contact points in a
rope where repeated plastic deformation takes place. A secondary implication
is that any analysis directed toward the quantitative prediction of wire rope
fatigue behavior, that reiies on a knowledge of local stresses and strains,
will not be accurate unless the cyclic response of the rope wire material is
well characterized. Only limited data are available to date, but it is not
unreasonable to expect that strain control fatigue tests on wires from several
different ropes would offer a good indication of the relative fatigue resist-
ance of each rope.
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0.153-Inch Diameter Wire, Manufacturer H
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0.153-Inch Diameter Wire, Manufacturer H

CORRELATION OF LABORATORY AND FIELD ROPE FATIGUE LIVES

An obvious and very important consideration in this program was the rela-
tionship between laboratory test results and actual field rope service per-
formance. Fortunately, a lTimited number of carefully documented field data on
hoist ropes were obtained by PNL and these data were transmitted to BCL for
review. These data are presented in Table 12. The raw data include the bucket
size and weight, point sheave diameter, rope diameter, and average yardage of
overburden removed before rope retirement. With a few reasonable assumptions,
it was possible to convert these data into a form that was directly comparable
to the laboratory developed data. The results of that analysis of the field
data are presented in Table 13.

First, a D/d ratio was computed to identify the severity of bending over
the point sheave. Second, the number of machine operating cycles before rope
retirement was computed as the yardage removed before retirement divided by
the bucket size. Rehandle was not considered in the computation of machine
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TABLE 12. Field Data on Hoist Rope Fatigue Performance

Overburden Removed

Bucket Bucket Point Sheave Hoist Rope Before Rope
Size, Weight, Diameter, Diameter Retirement,
Mine yd3 pounds inches inches yd3

11 58 116,000 120 3 4,094,000€a)
3 60 140,000 120 3 4,876,000(a)
8 100 200,000 144 4 1/2 3,258,000(3)
6 41 80,000 85 1/4 27/8 3,598,000(3)
5 70 140,000 110 31/2 4,424,000(b)

(a) An average value based on a series of ropes over a period of time.

(b) A single rope retirement yardage.
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TABLE 13. Analysis of Field Rope Data

] o araia am = e o o - . " - ammawoaam

Approximate Modified

Estimated Approximate Design Rope Bearing Pressure
Sheave to Machine Bucket Load Factor(¢) Outer Wire Rat1o(d) x 10~
Rope Ratio Operatin When Full,(b) Bucket Bucket Diameter, Bucket Bucket Equivalent
Mine D/d Cyclel;(a 1bs. Full Empty in. Full Empty Value
11 40 70,600 272,600 4,40 10.3 .153 2.11 0.89 1.58
3 40 81.250 302,000 3.97 8.57 .153 2.33 1.09 1.72
8 32 32,575 470,000 5.48 12.9 .230 2.02 0.87 1.53
6 29.6 87,775 190,700 5.82 13.9 147 2.17 0.92 1.61
5 31.4 63,205 329,000 4.90 11.5 .178 2.37 1.01 1.77

- PEESY - = o e e e = o i AP P N N

Yardage Removed
Bucket Size

(a) Bending Cycles = x 2 (2 bending cycles/operating cycle).

(b) Based on overburden weight of 2700 1b./yd3, could actually vary from 2100 1b./yd3 to 3200 1b./yd3 depending on
type of overburden.

(c) Based on 6 x 61, IWRC, Lang Lay, Ips Wire Rope, and Bucket suspended at 20 degrees from vertical with drag rope at
15° below horizontal (i.e. load magnification factor of 1.20)

2 *Individual Rope Tension °* Rope Wire Diameter ,
(- = 22 .
(d) B UTS + Sheave Diameter °* Rope Diameter Squared where UTS 220,000 pst




cycles, since exact values were unknown. It is not unlikely that 10 to 20 per-
cent rehandle did occur in some cases, which, of course, would have increased
actual rope bending cycles beyond those computed. This factor is probably at
least partially compensated for, however, by the fact that the bucket is not
always full during every dump cycle.

Third, the full bucket weight was estimated based on an overburden den-
sity of 2,700 pounds per cubic yard. This density of overburden would corre-
spond to dry clay and gravel. Densities as low as 2,050 pounds per cubic yard
are found for loose, dry earth, while densities as high as 3,400 pounds per
cubic yard are found for wet sand and gravel. Acknowledging this potential
spread in overburden density, a density of 2,700 pounds per cubic yard was
chosen as a reasonable average. Fourth, the approximate design factors for
the bucket, both full and empty, were computed based on a pair of 6 x 61 class,
IRWC, Lang Lay wire ropes of improved plow steel grade. The design factors
were computed based on a bucket position factor (or load magnification factor)
of 1.20. This factor is required to account for the angle from vertical in
which the bucket is held during a dumping cycle. This consideration is dis-
cussed more completely in Appendix A. Fifth, the outer wire diameters of each
pair of ropes were computed based on 16 ocuter wires per strand (which most 6 x
61-class ropes have).

Finally, different MBPR values were computed based on a full bucket and an
empty bucket. These calculations were straightforward, once a wire strength
level was assumed. An ultimate strength value of 220 ksi was chosen as typical
of IPS grade wire rope in the 3- to 5-inch diameter range.

Using the above estimates of modified bearing pressure ratio and a "6
and 2" wire break retirement criterion, the number of rope bending cycles to
retirement were predicted as shown in Table 14. Using this approach, the pre-
dicted operating life before retirement was overestimated in four out of five
cases, and rope lives were overestimated by 27 percent on the average. There
are probably several reasons for this significant overestimation of fatigue
lives. Rehandle, as already mentioned, could account for much of this discrep-
ancy. Crown wire wear in the laboratory was not appreciable, whereas in the
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TABLE 14. Fatigue Life Predictions for Field Hoist Ropes

.y £ . —— - e

Approximate Predicted Damage Predicted Machine Actual Machine
Bending M8PR , Fraction/Machine Cycle(a) Cycles to Retirement Cycles to Retirement Percent Error
Mine Cycle x1074, X106 Criteria Criteria Predicted to Actual
11 Full Bucket 2.11 7.30
Empty Bucket 0.89 2.87
10.17 98,330 70,600 -28.
3 Full Bucket 2.33 8.13
Empty Bucket 1.09 _3.58
2.71 78,680 81,250 +3.3
8  Full Bucket 2.02 6.97
Empty Bucket 0.87 2.81
9.78 102,250 32,575 —-68.
6  Full Bucket 2.17 7.53
Empty Bucket 0.92 2.98
10.51 95,150 87,755 -7.8
5  Full Bucket 2.37 8.28
Empty Bucket 1.01 3.30
11.58 86,360 63,205 =27,
Average 92,150 67,080 -27.

= i amem 2o = e - - .

(a) Based on 6 and 2 wire break retirement criteria, i.e., Ni = 14,68 * (MBPR)_l'OB, Damage = 1/N..
1



field it can be, and somewhat shorter 1lives might be expected as a result.
Related to this, sheave groove geometry and fleet angles are potential field
problems that can reduce life. Dynamic loads were not considered in this anal-
ysis, and recent work at PNL indicated that dynamic loads can be significant.
Most of these factors are very hard to quantify accurately unless considerable
effort is exerted during rope usage. Therefore, it appears most practical at
this time to recommend the analysis procedure described here along with a
safety factor of about 1.3 on laboratory rope lives to put estimated field
rope lives into a realistic range.
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WIRE ROPE WEAR AND FATLURE ANALYSIS

W. A. Glaeser, R. Erickson, and R. L. Jentgen

Wear and failure analyses conducted at BCL are documented in this section.

ROPE EXAMINATION PROCEDURES

A number of samples were obtained from ropes retired from operating coal
mine draglines. An additional three rope samples were obtained from PNL. One
sample was of a new rope; the other two were from ropes tested on the bend-
over-sheave machine at PNL.

The field samples were obtained when a machine was being reroped. The
site was visited at this time and samples of the drag ropes were selected.
Four- to six-foot sections were cut with a torch from the bucket end, the fair-
lead traverse section and the section nearest the drum when the bucket is at
the bottom of the pit.

Rope sections were then transported to BCL and their condition recorded
by photography in the as-received condition.

Dirt was removed from the exterior of the rope so that the condition of
the outer wires could be examined and photographs taken. An example of a
cleaned rope sample is shown in Figure 13.

A strand was then removed from the rope section and the condition of the
lubricant, notching of strand-to-strand contacts, IWRC notches or wire breaks
and valley breaks were investigated.

The rope with a strand removed was photographed for the record. An exam-
ple of the conditions found is shown in Figure 14. The features mentioned
above were examined by hand magnifier and the general condition of the inte-
rior of the rope assessed.

Several wires were removed from the strand and cleaned in solvent. Seg-
ments were cut out of the wires for microscopy. Segments containing notches
and wire-to-wire contact scars were examined by light microscopy and by scan-
ning electron microscopy (SEM). Both light microscopy and SEM are considered
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important because each is capable of revealing specific features of the surface
morphology. Further discussion of nondestructive examination techniques is
presented in Appendix C.

Metallographic sections were made through selected areas of wires removed
from the sample rope sections. The metallographic sections were examined in
both the as-polished and etched conditions. The as-polished examinations were
used to determine the extent of nonmetallic inclusions in certain samples and
to analyze for subsurface cracking. Etched samples were examined principally
to determine the extent of subsurface deformation and to detect transformed
(white etching) layers. Deformation was assessed by observing the extent of
grain boundry tilt at near-surface locations and the drawing out of ferrite
grains into thin lathes. Sectioning was done through notches at strand-to-
strand contact zones with the metallographic section plane oriented to the
direction of surface flow. Abraded outer wires were also sectioned and the
section lane was oriented parallel to the abrasion striations. Sections were
also made in the vicinity of wire fractures. Right sections were made through
selected wires to check and compare the overall microstructure.

Selected wire samples were also subjected to chemical analysis by emission
spectroscopy. Quantitative analysis was performed for alloying elements and
trace elements. Trace elements were included to determine the uniformity of
the steel in a given rope.

INITIAL ROPE ANALYSIS

Initial rope inspections consisted of qualitative characterizations of
the condition of each rope sample. Visual inspections of the extent and type
of wire breakage, wear, contamination, corrosion, and lubricant condition were
performed on the rope strands and IWRCs from each specimen. A summary of these
observations is provided in tabular form in Appendix B.

To provide a more quantitative indication of the outside wire wear experi-
enced by several rope samples, typical wear regions were measured and the
reduction in outside wire cross-sectional area was computed. The results of
these measurements are summarized in Table 15. Because these types of ropes
are known to support approximately 47% of the applied load with the outside
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strand wires, the resultant loss of the rope's breaking strength was also com-
puted. These losses are expressed as percent reductions in strength in
Table 15.

TABLE 15. Typical Cross-Sectional Area and Strength Reductions Due to
Wear of Qutside Wires

Average Loss of Ropes

X Worn From Load Capacity due to
Sample Identification Outside Wires Outside Wire Wear

Range Average %
Fairlead End 20-22 21 10
Bucket End 18-64 44 21
Bucket End 4~7 5 2
Original Bucket End 31-50 40 19
Final Bucket End 5-25 13 6

Load Cell Drag Line

Drum End 4-13 11 5
Center 31-37 34 16
Bucket End 15-22 18 8

From the data in Table 15, note that, for the drag ropes examined, the
center portion of the rope experiences more outside wire wear than either the
bucket ends or the drum ends.(a) Apparently, this is the result of sampling
the "most used" section of the rope. That section traversing the fairlead
sheaves tends to be in contact with the sheaves during the rope's entire work-
ing life, while abrasion at the bucket end is removed by cutoffs and/or revers-
ing rope ends during service. As would be expected, the bucket ends of ropes
tended to exhibit greater wear than did the drum ends observed.

(a) "Drum end" samples were those taken from the section of the rope nearest
the drum when the bucket is at the bottom of the pit.
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The chemical compositions of several wire samples were analyzed using
spectrographic techniques. The results of these analyses are listed in
Table B.2, Appendix B.

DETAILED ANALYSIS

Rope samples were examined in depth for fracturing, notching, and signs
of outer wire wear, as well as IWRC deformation and inclusion content.

Wire Fractures

Wire breaks from strand-to-strand contacts (valley breaks), tensile fail-
ure of outer wires and crushing of the IWRC were found in a number of the field
samples examined. Of these types of wire breakage, the only ones for which
wear was responsible were those resulting in outer wire failure. Valley breaks
were exclusively fatigue failures.

A typical valley break wire fracture found is shown in Figure 15. Note
that one fracture goes through a notch. Fracture analysis revealed that the
origin was not in the notch but remote from it. The fracture surface is shown
in Figure 16. Note that the typical thumbnail feature characteristic of
fatigue indicates fracture origin away from the notch surface. Note also the
secondary fractures traveling in the axial direction. This effect was noted
for most valley fractures and suggests an axial weakening from inclusions
strung out in the axial texture developed by cold drawing. Details of the
origin of the fracture are shown in Figure 17. Apparently, the crack started
in a nick or indentation in the wire surface.

When the orientation of the fracture origin was established in the strand
from which the wire was removed, it coincided closely with the location of the
maximum reversing bending stresses expected during flexing of the rope. It can
therefore be concluded that the valley breaks found in this particular strand
resulted primarily from fatigue and that reduction in section by notching had
little to do with the failure. Of the field samples analyzed, no valley breaks
were found that could have been generated by the strand-to-strand notching
process.
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Wire Notching

The internal condition of the rope samples analyzed was modified consider-
ably by notching of wires. Two types of notchings were common in all samples:

e strand-to-strand notching - usually appear in groups of three or four
elliptical notches oriented at an oblique angle to the individual
wire axis. Matching notches are found on the contacting strand.

e strand-to-IWRC notching - elongated notches on both the IWRC and the
strand wires where both come into contact. Quite often the strand
wire has two notches with a ridge between them.

Examples of the types of notches described above are found in Figure 18.
Note the high visibility of the notches once the rope is opened. The extent
of notching seen in used rope was not found in new rope. Notches are present
in new rope from the manufacturing process; however, they are much smaller and
less noticeable than used rope notches.

Details of a strand-to-strand notch are shown in a composite of three SEM
micrographs in Figure 19. The dark flake-1like material seen on the surface of
the notch is a thin coating made up of a mixture of lubricant remnants and fine
debris (oxide, silt, wear particles). This condition is indicative of lubri-
cant starvation.

Although much of the surface of the notch appears bright and shiny to the
naked eye, the SEM micrograph shows roughened areas. Gouges can be seen where
adhesion and galling have taken place in the contact zone. This further indi-
cates complete lubricant starvation.

The boundary of the notch is ridged--the result of metal flow. Consider-
able plastic flow of metal can be seen both laterally and axially. The lateral
flow is from contact stress yielding. The axial flow is from relative motion
between the two surfaces. The axial flow and galling indicate high tangen-
tial forces, which would inhibit relative motion between the surfaces. This
action, plus the "keying" of the two wires with conforming notches, will tend
to reduce rope flexibility and increase stress concentration during bending
over sheaves.
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etching. A transition phase between the white layer and the bulk of the undis-
turbed material shows some structure and is not as hard as the white layer.
Microhardness measurements taken in these phases were:

e white layer - 800 Knoop (Rc 64)

e intermediate phase - 500 Knoop (Rc 48) .

e undisturbed wire material - 400 Knoop (Rc 40).

The white layer and intermediate phase are presumed to be a zone of very
heavy deformation (larger total strain than the textured zones shown in Fig-
ure 20). The intermediate zone is presumed to be composed of decomposed car-
bides imbedded in a high-dislocation matrix possibly arranged in a cell
structure. Strain-hardening raises the hardness of this zone above that of
the undisturbed wire material. The white layer is presumed to be transformed
material, probably untempered martensite. The transformation is not caused by
heating to the austenitic transformation level and quenching, but is the result
of a large-strain shear process. The hardness measured in the white layer is
the maximum hardness that one might expect for untempered martensite formed
from steel having the carbon level found in the wire (approximately 0.8 %).
Hardness measurements were made on white etching areas found in several of the
rope samples analyzed. The hardness levels ranged from 700 Knoop (probably
large-strain work hardening) to 1050 Knoop. Hardness measurements for undis-
turbed wire materials were remarkably consistent. Average microhardness
readings for five samples of undisturbed wire materials ranged from 419 to 466
Knoop. Specially etched specimens were examined by SEM to determine whether a
fine structure could be detected in the white layer. The tongue area in Fig-
ure 25 is shown at high magnification in the SEM micrograph shown in Figure 26.
Some structure is resolved in the white etching zone, apparently lathe-1like
structure presumed to be martensite. Full verification would require selected
area diffraction analysis on thin-foil transmission electron microscopy.

IWRC Deformation

The carbon content of IWRC wires is generally lower than that for strand
wires in the ropes analyzed. The IWRC wires are softer as a consequence.
Notching and wire-to-wire ?retting are more severe in this rope component. An
example of the extent of notching and wire-to-wire fretting is shown in
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Estimating the percentage of wire diameter as wear taken place by measuring
the widths of outer wire scars can be misleading because of the extrusion of
the edges of the wear flats.

The abrasion wear of outer wires was also accompanied by formation of hard
white-etching areas and a delamination type of wear. Although some white etch-
ing areas were found in strand-to-strand contact notches, this phenomenon was
found most often in abraded outer wires. The white etching areas are presumed
to be mechanically transformed material--presumably untempered martensite.

This material was determined to have the maximum hardness for carbon steel,
given the carbon content analyzed. Some light etching areas were presumed to
be the result of large-strain work-hardening and probably were composed of a
subgrain or cell structure. The untempered martensite often contained radial
cracks. The cracks did not extend beyond the white-etching layer and no wire
fractures were found that could be associated with white-etching areas.

The heavy deformation associated with abrasive wear produced a texturing
of the ferrite-pearlite structure producing very thin plates of ferrite sand-
wiched between plates of deformed pearlite. Nonmetallic inclusions distributed
along the layer boundaries can produce voids during heavy plastic strain, weak-
ening the laminar structure and leading to a delamination type of wear. This
process is expected to result in a higher wear rate than might be expected for
lower-deformation wear processes.

Notching in the strand wires did not proceed far enough in the samples
examined to reduce the load-carrying capacity of the wires involved to a point
where tensile fracture might occur. However, notch surfaces were devoid of
lubricant and ample evidence of adhesion and galling between the two surfaces
was found. It is highly probably that partial immobilization of strand-to-
strand, strand-to-IWRC and wire-to-wire contacts occurred in these ropes and
the flexibility of the rope was impaired during bending over sheaves. Although
all valley breaks examined showed fracture origins remote from notch areas,
the freezing of wires at notches might contribute to a stress condition in the
rope that would accelerate fatigue failures.
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Wire rope samples from bend-over-sheave tests showed very little wear of
outer wires. The abrasive wear so prevalent on the field samples was not there.
Notching and wire-to-wire fretting was similar to field samples. Thus, failure
of tested ropes was more likely associated with fatigue and not wear.
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LOAD SENSOR DATA COLLECTION AND ANALYSIS

J. M. Alzheimer, G. H. Beeman, and L. A. Strope

A major effort in the Wire Rope Improvement Program at PNL was the concep-
tualization and development of a sensing device to accurately measure loads on
operating draglines. Such a device, the load sensor was successfully designed
and constructed by the summer of 1980. Complete details of the concept's
development were fully documented in Morgenstern et al. (1980, Sec. 6.0).

This section will describe the collection and analysis of field data obtained
with the load sensor. Analysis results and implications are also presented.

DATA COLLECTION

One of the two available load sensors was connected to an operating drag-
line at a field site near Centralia, Washington, provided by the Washington
Irrigation and Development Company. The dragline, equipped with 3-1/4-inch
diameter drag ropes and a 60-cubic year bucket, was conducting a benching
operation as shown in Figure 29.

DATA DESCRIPTION

The data consited of a load/time history for both drag ropes from the
dragline. Four hours of data were collected for subsequent analysis. The
reader must recognize here that the data obtained by PNL represent the opera-
tion of a particular dragline benching in a particular type of overburden.
Hence, the following analysis should not be construed as representative of all
dragline operations.

A typical load/time history is shown in Figure 30. During the four hours
of data taken, 171 cycles were recorded for the left rope (as viewed from the
cab) and 179 cycles were recorded for the right rope. The difference in the
number of cycles was due to time spent initially calibrating the incoming
signal. Data obtained for each rope are summarized in Table 16. Accuracy of
the loads is better than +10% of recorded values.
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b. DIGGING ON THE BENCH

e e

FIGURE 29. Digging and Dumping Features Employed During Load Sensor
Operation

The average load for both ropes taken together is 364.85 kips. The rated
breaking strength for this particular rope is 1,000 kips. The average load in
the rope is therefore 26.5 percent of the rated strength of the rope, or a
design factor of 2.74.(a) This average load level is significant in that it
had previously been assumed by PNL that the stall setting of the drag motors
would limit rope loads to 35 percent of rated strength, or a design factor of
2.86. In fact, dynamic loads as high as 66 percent of the ropes' rated
strength (d.F. = 1.52) were observed.

Rated Rope Breaking Strength

(a) Design factor is defined as Working Load
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FIGURE 30. Sample Trace of Load/Time Signal from Drag
Rope Load Sensors

TABLE 16. Load Sensor Data Summary(a)

Right Left

Rope Rope
Number of Cycles 179 171
Maximum Load (kips) 540 660
Minimum Load (kips) 170 145
Average Load (kips) 361.2 368.5
Standard Deviation (kips) 67.4 76.6

(a) This analysis and the data reported
here use only the peak load for each
digging cycle.
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Figure 31 presents occurrence diagrams of loads in each rope as a percen-
tage of rated strength. These diagrams show that loads in the range of 30 per-

(a)

cent to 50 percent of the ropes' rated strength are not uncommon.

Figure 32 presents corresponding exceedance diagrams. These show that
v60% of the loads are greater than 35 percent of the ropes' ultimate tensile
strength (d.F. = 2.86).

Fatigue data generated in the testing phases of the WRIP were also used
in load sensor data analysis. Figure 33 shows the S-N diagram used in the
fatigue evaluation. For this analysis B8 is defined as

s:mz%ﬁ,
where T = tensile load in the rope (pound)
U = ultimate strength of the outer wires (psi)
D = diameter of the sheave (inch)
d = diameter of the rope (inch)
N = number of wires per strand.

DATA ANALYSIS

Using Figure 33 and Miner's Rule for cumulative fatigue damage, the data
obtained from the load sensor were evaluated. The cumulative usage factor is
0.0023 for the four hours of data. This corresponds to an estimated life of
1,750 hours for the ropes under these loading conditions, which compares favor-
ably with the actual life of drag ropes in the field. Drag ropes typically
last 1,000 to 2,000 hours. It should also be noted that the estimate of
1,750 hours is for total failure. In the field, drag ropes are seldom allowed
to fail completely but are nearly always retired with some remaining life.

Figure 34 shows the relative amount of damage done by the indicated loads.
Over 80 percent of the damage to the rope, as determined from the cumulative
usage factor, is done by loads greater than 35 percent of the ropes' UTS.

(a) Design factor of 3.33 to 2.0.
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FIGURE 33. Fatigue Life Curve Used in Analyzing Cumulative Rope Damage

The same analysis technique can be used to determine the effect of
increasing or decreasing overall loads in the rope by 10 percent. For this
evaluation it was assumed that the dragline operated 20 hours per day, 365 days

per year and had a cycle time of 60 seconds. It was also assumed that a rope
change resulted in 5 hours of downtime.

A 10 percent decrease in rope loads results in a 20 percent increase in
rope life. The 10 percent decrease in loads is assumed to be the result of a
10 percent decrease in bucket size. The 20 percent increase in rope life is
accompanied by a 10 percent decrease in overburden removed. Assuming that:
e both drag ropes are changed at the same time
e each is 350 feet long
e rope cost is $20/foot

75




900

2%
LEFT ROPE ? RIGHT ROPE

x 106

0 1o 2 30 L] 50 60 10

0 10 2 30 & 50 60 70
% ROPE UTS

% ROPE UTS

FIGURE 34. Plots of Relative Damage Factor Calculated From Fatigue Curve
by Employing Miner's Rule

e overburden is worth $0.20/cubic yard
e no change in cycle time occurs,
the 20 percent increase in rope life results in a savings of ~$9,700/year in

rope costs. The 10 percent decrease in overburden removed is an additional
cost of $522,000, resulting in a net loss of $512,300.

A net gain of the same magnitude can be computed if the bucket used
carries 10 percent more overburden for the 10 percent increase in rope loads,
even though rope life is shortened. However, this result must be tempered by
considering specific mine site and equipment costs, including likely increases
in maintenance. Nevertheless, operating a larger bucket through the lowest
practical range of bucket position factors is virtually certain to promote
increased total productivity.
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TECHNOLOGY TRANSFER

R. L. Jentgen

The major technology transfer activity during FY81 was conducting seminars
at mine sites. Other efforts included technology commercialization, collec-
tion of field rope samples and planning for a national wire rope symposium.
Technology transfer activities prior to FY81 were documented in detail in
Morgenstern et al. (1980).

WIRE ROPE SEMINARS

Seven seminars entitled "The Use of Large Diameter Wire Rope in Surface
Mining Machinery" were presented in I1linois, Ohio, Indiana, and Tennessee.
Attendees were primarily mining company operators and their field personnel.

Seminar Scope

The scope of the seminars presented earlier in the WRIP was broadened to
address not oniy the fundamental construction and applications engineering
features of wire ropes in general, but the practical selection, use, damage,
inspection and retirement of large-diameter wire ropes used in surface mining

machinery.

Seminar Materials

Considerable effort was expended in modifying the material used in the
earlier seminars. After the seminar in Jasper, Alabama on January 30, 1980,
it became apparent that the mining personnel attending were most interested in
hands-on wire rope problems and solutions based on the rope constructions they
use (or should be using), and the dragline/shovel riggings of the machines that
they operate. As a result, the 35-mm slide materials were almost completely
revamped to encompass a more practical, dragline/shovel rope applied educa-
tional format. These efforts resulted in a slide presentation that explain
the rationale and development of current wire rope practices in surface min-
ing, as well as the potential advances in the state-of-the-art that might be
achieved as a result of WRIP findings. The final edition of the slide mate-
rials contains approximately 125 slides.
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At the same time, the motion picture portion of the presentation was
revamped and improved to include selected footage from the 16-mm movies taken
under the direction of Dr. Gambrell, WRIP consultant. These efforts resulted
in an approximately 30-min. video tape showing machine- and operator-induced
dynamic effects, as well as some particularly undesirable rope handling
practices.

Seminar Format

A typical 2-day seminar consisted of one day in the field observing rope
practices at the host mine(s). On the second day a 4-hour presentation was
made using the slide and movie (video tape) materials. In the presentation of
the second day during the introduction, the scope of the WRIP was explained and
slides were presented illustrating shovel and dragline designs, rope applica-
tions and sizes for thse machines, a dragline census, annual rope utilization
requirements for these machines and the costs associated with rope changeouts
at retirement. Then, the sessions on rope constructions, selection considera-
tions, storage, handling, installation, operation and maintenance were pre-
sented. Following a short break, the video tape on dynamic and operational
effects was shown. After a short discussion of the foregoing, the sessions
that deal with damage, deterioration, inspection, and retirement were
presented.

After a short discussion of all of the topics presented thus far, a sum-
mary of the "state-of-the-art" of wire ropes for the machines used by the
audience in its particular mines was offered.

At this point, the research and development carried out on the WRIP was
presented in perspective with the state-of-the-art as the mine personnel knew
it from their experience and in the new light of the seminar information. The
research and development session also included a description of the work of
others; therefore, all of the new known ideas that promise to increase rope
life were discussed. Finally, as a product of the field trip taken the pre-
vious day to their machines and the discussions with personnel in the field
and at the seminar, a list of specific recommendations was offered that was
intended to improve rope life at the individual mine(s).
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Seminar Evaluation

Evaluation of the usefulness and effectiveness of the seminars was
attempted using an audience response form. As a result of an indicated lack
of understanding of some topics by the attendees after they experienced the
seminar, those topics that appeared to be confusing and those that were con-
cluded to need more information were simplified and/or elaborated on, and
clearer slides were prepared and substituted.

The potential benefits of the seminar might be assessed more accurately
by citing the significant interest shown by attendees. Requests for copies of
the slides and/or presentations of the seminar were numerous.

In evaluating these requests, coal mining companies in the U.S. were
deemed to be the only candidates that could be justified to receive the semi-
nar on WRIP funding. Those U.S. coal mining companies who requested, but to
whom we were unable to give, the seminar were sent the seminar materials.

In addition, four U.S. coal companies wanted copies of the seminar,
although they had not requested seminar presentation at their mine site.

TECHNOLOGY COMMERCIALIZATION

Work on this task was initiated by the consideration and gathering of
reference materials for a topical publication on lubrication of wire rope
for surface mining machinery with the objective of formulating a tentative
specification for maintenance lubricants. Unfortunately, the program termi-
nation at the end of FY81 required a decision to stop work on this activity.

FIELD ROPE SAMPLE COLLECTION

This activity began with collection of drag ropes retired from a drag-
line. These ropes were to be subjected to a wear and failure analysis at BCL
to determine the failure mode at retirement.

After considerable study, it was decided to obtain the bulk of the drag
ropes intended for wear and failure analysis from a common dragline model that
has consistent design features (e.g., rope diameter, fairiead arrangement,
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bucket capacity, boom length). Such a dragline model was identified. Owners
were contacted and arrangements were made to obtain retired drag rope samples
as they were changed out.

One set of drag rope sales was delivered to BCL before the Phasedown
caused cancellation of the rope acquisition activity. Immediately prior to
the Phase-down announcement, a common data sheet and a standard questionnaire
were formulated to obtain accurate rope history and retirement information.

SYMPOSIUM PLANNING

A meeting between BCL and PNL was held on December 18 to formulate plans
for a second National Wire Rope Symposium. St. Louis in October 1981 was the
target location and time period. At this planning meeting, a suggested format
for the symposium was presented that was designd to attract participation in
the program and attendance of the surface coal mining industry. As a followup
to that meeting, BCL sent two letters to PNL suggesting:

e a 3-day format featuring one day of papers and panels specifically
involving surface mining personnel and/or their interests

e a list of potential Symposium Advisory Board members
e keynote speaker possibilities

e mailing lists that would assure appropriate contact with local sur-
face mining companies.

Unfortunately, plans for the Symposium had to be cancelled when the Phase-
down was announced.
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KEY ELEMENTS OF WIRE ROPE PERFORMANCE ON SURFACE COAL-MINING DRAGLINES

W. E. Anderson

This section will describe how large-diameter wire rope is used on walking
draglines, as well as interpret the mechanisms involved with relevant rope per-
formance and durability. The interpretation is based on pertinent information
obtained during field trips to mines and rope manufacturers, relevant seminars
and symposia, discussions with WRIP staff, and study of data generated during
the project or available from open literature or other sources. This is not an
exhaustive rendition of the technology and practices related to use of large-
diameter running ropes. However, it should be helpful to mine operators and
their staff.

SURFACE COAL-MINING DRAGLINE RUNNING ROPE SYSTEMS

As background to the description of dragline rope systems, some explana-
tion of the dragline itself is presented next.

Dragline Performance/Function

Surface coal-mining draglines are principally used to move overburden from
coal seams of interest. Their size and manner of locomotion are unique. Size
is often referenced simply in terms of the bucket capacity, expressed in cubic
yards. Draglines move themselves from place to place by means of external feet
mounted on rotating eccentrics that literally 1ift the system and drag it for-
ward in a cyclic mode; hence the term "walking dragline." Walking draglines
typically range in capacity from 35 yd3 (approximately 3.5 million 1b) to
150 yd3 (approximately 15 million 1b) with an average near 70 yd3 (1981).
Their efficient operation means lower cost for delivered coal.

The dragline includes a primary structural frame containing the counter-
weight, motors, drums, and electrical equipment (Figure 35). Its long boom
extends opposite the counterweight. The entire structure rotates on a large
base and houses an operator's cab. The cab is positioned for viewing the
bucket system, which is lifted and lowered by hoist ropes and pulied by drag
ropes.

81



POINT
SHEAVE

BOOM

HOUSE //////// HOIST

ROPE
HOIST P FAIRLEAD
DRUM*"\, SYSTEM
-~ DRAG /
[ )= DRUM/ -
Nl BUCKET
: SYSTEM
7
DRAG ROPE

!
Y
w
FIGURE 35. Schematic Arrangement of Walking Dragline

Most draglines have a pair of ropes for each function; some larger ones
have two pair for a function, as shown in Figure 36. Each rope system has its
own drums to wind up and pay out its respective ropes. On walking draglines
these ropes measure 2 to 5 in. in diameter; they are the principal topic of
this report.

Walking draglines have large, pod-like feet on each side of the structural
frame, operated by an eccentric mechanism such that the entire system can be
advanced in steps. When retracted, the feet turn with the housing and boom
(see Figure 37).

Walking draglines are field-assembled because of their huge size. Com-
ponents are fabricated at manufacturers' shops in pieces small enough to be
shipped; assembly may take 1-1/2 to 2-1/2 years. All walking draglines of
these larger sizes are electrically driven, using power from a nearby source.
The dragline pulls its power cable with it when moving from place to place in

the mine, as shown in Figure 37.
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about $2500/hr; a pair of drag ropes costs about $15,000. Even with as little
as four hours downtime for changeout, the total bill can be $25,000, which does
not include the costs of lost time and amount of overburden not moved. Because
of these substantial costs, just modest improvements in rope life can be
worthwhile.

Hoist, Drag, and Dump Rope Systems; Sockets

Modern draglines almost universally employ the Page System of bucket con-
trol. Originally started in 1903 on a stiff-legged derrick, the concept
eventually developed into a system that permitted much improved production per-
formance on modern draglines, under the hands of a reasonably skilled operator.
The basic idea consists of rigging the bucket as shown in Figure 40. When all
the components are properly adjusted, the bucket fills by pulling on the drag
rope while the hoist rope remains effectively slack.

When the hoist rope is tensioned enough to begin lifting the bucket and
its load, and proper tension is maintained on the drag rope, the bucket
"cocks", holding most of the filled material inside it. This step is pictured
in Figure 41. The pictured dump sheave motion due to tension of the hoist
rope should help clarify how the cocking action comes about.

As drag rope tension is slackened, the bucket swings more under the point
sheave and the open end of the bucket begins to rotate down. Properly
adjusted, a bucket will quickly empty and be ready for swinging back to the
digging location. It is the combination of bucket cocking and quick dumping
which makes the system so effective in skilled hands. However, the several
factors just mentioned do not treat all the important aspects of bucket and
dump rope system design; location of the bridle pivot on the bucket, location
of the drag rope attach point, angle of tooth bite and bucket geometry are
some of the other critical aspects involved in productive dragline performance.
(One recent study of these buckets is available in Stillwell et al. 1979.)

Hoist Rope Systems

A simplified sketch of dragline rope systems (Figure 35) shows the hoist
rope coming directly over the point sheave into the cab and onto the hoist
drum. In some designs, additional sheaves are located between the point and
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the drum; e.g., a large one near the house redirects the rope onto the drum, or
several smaller sheaves along the boom guide the hoist rope between the house
and the point sheave.

Beyond the point sheave, hoist ropes hang down to their sockets, which are
connected to an "evener" (equivalent to a singletree) and thence to the bucket
Jjewelry and bucket via bridle pivot attach points. This arrangement is shown
in Figures 36, 38, and 39. Once connected, hoist ropes are essentially always
under some load because the hoist jewelry alone may run several percent of the
total bucket system weight. When unloaded and hanging statically from hoist
ropes, a total bucket system weighs approximately 2000 1b/yd3 of bucket capac-
ity. Although overburden weighs roughly 2100 to 3100 lb/yd3 in the bucket,
deadweight Toads on the hoist ropes are an appreciable fraction of a nominally-
full bucket.

Peak hoist rope loads occur after digging, during lift and swing-to-dump
portions of the cycle. Related and consequential effects of these weight and
sheave arrangement factors associated with the hoist rope system are discussed
in Appendix A.

Drag Rope System

Drag ropes function differently from hoist ropes; consequently, the load
history for a typical cycle is also quite different. Peak loads occur during
pulling to fill the bucket. Then only moderate loads are necessary to hold the
bucket cocked; after dumping, loads are small until digging again, except when
any substantial dynamic actions occur. Frequently while returning to the dig
location, a bucket can easily swing rather wildly if not controlled, and excite
the drag system jewelry into violent motions, slapping sockets and chain
together. This action then generates significant jerk loads on the drag ropes,
particularly flexing them at their sockets.

Fairlead designs may differ considerably among draglines, but all utilize
sheaves in one way or another. Because the bucket may swing out of alignment
with the vertical boom plane, fairlead assemblies must tolerate sidewise load-
ings, so they are arranged to accommodate some of that motion. Principal
loads, however, arise in the vertical boom plane (sometimes with little reverse
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bending, and sometimes through substantial reverse bends) and sheaves are
always suitably located to accommodate that function.

After reeving through the fairlead assembly, drag ropes pass into the
house, often over floor rollers or other devices to support them, on their way
to the drag drum. There, as with hoist drums, each rope is attached to one
side of its respective drum and wound up into a drum groove so that the ropes
neither touch Tlaterally nor wind over themselves (as on most smaller-rope
drums). Drums are large, not only to accommodate hundreds of feet of rope
without overwinding, but also to provide a reasonably large ratio of drum
diameter to rope diameter, 25 or 30 to 1, for example. Both right- and left-
hand drums are connected by a single axle/motor system so that they turn
together. As a consequence, the full available pulling power could be applied
to just one drag rope, if the other one is askew for some reason, because the
drag rope system has no evener as does the hoist (Figures 36, 38, and 39).

Drag drums are often quite far from the fairlead so that fleet angles at
the drum are not much of a problem. Nevertheless, at the fairlead assembly
horizontal guides or sheaves ensure that ropes enter the vertical sheaves
cleanly and do not ride up on the sheave rim when ropes are feeding out. Thus,
because the vertical sheaves may swing from side to side, rope wear in the
fairlead region is virtually unavoidable.

Dump Rope Systems

Although the dump rope system appears simple, some mines have reported
more downtime for dump rope change-out than for drag rope (Anderson and Brady
1979). A properly rigged dump rope system is important to efficient dragline
performance; together with the bridle pivot location on the bucket, the dump
ropes establish the amount of effort required to carry the bucket to dump posi-
tion and quickly spill the load.

One end of the dump rope connects to the drag chain; the other end con-
nects to the front of the bucket, or a bucket bale, after passing through its
sheave, suspended from the hoist jewelry. Figures 40 and 41 show the essence,
while Figures 38 and 39 display actual conditions. Dump sheaves are relatively
smaller than other sheaves in comparison to the diameter of the ropes used on
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them. Note the gquards on the dump sheaves to prevent the ropes from falling
off to the side. Guards are needed because the dump sheaves may swing about
when the hoist is slack and shed unguarded rope. Generally, dump rope systems
suffer much abuse from slackened hoist ropes. Some operators are able to keep
the hoist just taut enough to suppress dump system flopping about, yet not
interfere with bucket digging; such craftsmen are a joy to watch.

Sockets

Nearly all hoist, drag and dump ropes are terminated with wedge sockets.
These sockets can take more than three-quarters of the rope breaking load with-
out suffering serious damage. A rope is socketed by pulling the bitter end
through the socket hole, forming a bight and putting that end back through the
socket hole with a rounded wedge in the bight. The bight is then pulled snug,
driving the wedge into the socket hole, and jamming the rope into the hole
sides, thereby securing rope to socket, A simplified sequence is shown in
Figure 42. Getting the wedge and rope out so another can be made up is often
difficult.

Socketing a rope requires power equipment. In the field a cat-tractor is
generally used to pull the bitter end by tying onto it with smaller rope
chokers. To pull the bight snug and drive in the wedge the socket must be

a. BIGHT MADE IN THE ROPE AND
BITTER END PULLED BACK THROUGH

b. BIGHT TIGHTENED AND
WEDGE POSITIONED

c. BIGHT PULLED UP SNUG AND
WEDGE DRIVEN IN

FIGURE 42. Schematic of Rope Socketing Sequence
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delayed while pulling on the running end of the rope with a choker. As the
bight tightens, the rope accommodates to the very small radius of the wedge by
extensive relative sliding of the strands near the bend; hence, it might be
considered a controlled kink.

KEY ELEMENTS OF RUNNING WIRE ROPES

This section is intended as a subjective interpretation of the WRIP expe-
rience concerning large-diameter wire rope. It should reflect the findings
reported elsewhere, but it is biased by the author's limitations and perhaps
by the mode of presentation. The plan is to present research results in terms
of mechanisms that operatively affect rope durability. First, the rope itself
is described. Reasons why ropes are the way they are inciude proprietary
designs and trade secrets, none of which are known by the author from first-
hand accounts. On the other hand, if deductive reasoning unintentionally
touches upon some of these aspects, no confidences have been betrayed.

Rope Design/Manufacture

Wire rope is constructed somewhat like the more familiar hempen rope, but
a key difference may not be obvious, namely that wire rope is composed of
strands that wrap about a central core. Typically, the core is approximately
the same diameter as the six strands twisted about it, and the assembly may be
visualized as six solid but flexible rods wrapped tightly together around a
central core of the same size.

General Features and Lay

Core material may be nonmetallic. However, the one of interest is metal-
lic, and appears to be another rope itself, but with a different construction
and a different twisting pattern; this is the independent wire rope core
(IWRC). The primary reason for metallic construction is to resist the tremen-
dous bearing loads from the outer strands as the rope bends over the system's
sheaves.

Many variations of rope construction have been fashioned, but the type
generally utilized for walking draglines consists of six outer strands composed
of several dozen wires and the IWRC. OQuter wires of each strand will be of the

91



same diameter, but inner wires may be of differing diameters, according to the
designed pattern, which takes on various names, often involving "Warrington" or
“Seale" in some manner. This historical aspect carries through into descrip-
tion of the rope by class, wherein a 6 x 37 class rope may not have 37 wires in
each of the six strands, but some other number. The actual number would be
used in a technical specification, like 6 x 55 IWRC RLL. Sayenga (1980) is a
particularly interesting historical account.

Because the six strands are uniformly wrapped around a core, any one
strand will twist around and return to an equivalent orientation in one turn
along the rope. This distance of one turn is called the lay length. The
twist is called the lay; it can turn clockwise down the length, that is, to
the right, or to the left. Furthermore, because the strand is itself a spe-
cially twisted bundle of wires, its twist can be either right or left, as
well. When a left-hand twisted strand is wrapped onto a core by twisting the
strand to the right, the pattern is termed Right Regular Lay (RRL). Had the
two twists been the same, that is, both to the left, the rope would be Left
Lang Lay, or LLL.

Regular Lay construction produces a rope that is more resistant to unwind-
ing under tension loads than a Lang Lay rope. Nevertheless, Lang Lay construc-
tion is preferred in large ropes used for running over sheaves at high loads,
because the Lang pattern presents the outer strand wires differently to the
sheave as well as to the overburden spoil (in the case of drag ropes), tending
to produce more even wear on the rope outer wires than does Regular Lay con-
struction. The interested reader can pursue the many other considerations in
rope design and application in Sayenga (1980).

Lay Length Matching

Starting at one and counting down the rope length by strands to the sev-
enth will identify the same strand as the starting one; measuring this lay
length and the rope diameter will produce evidence that the lay length is about
six or seven rope diameters. Now, if a Lang Lay rope is laid open by twisting
off the strands, it will be seen that the IWRC is of Regular Lay construction.
Although the core lay direction is seen to be the same as the strands, its
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regular construction causes the outer strand wires to contact the outer core
wires at a rather shallow angle as may be seen in Figure 43. Hence, the con-
tacts between strands make one characteristic deformation shape and the strand/
core contact areas a different shape, as seen in Figure 44. These contact
areas are more clearly delineated in Figures 45 and 46.

Lay length is one important factor governing rope modulus or axial stiff-
ness; that is, how much stretch it will exhibit for a given amount of added
load. If all the strands were parallel, it can be visualized that the stretch
behavior would be very nearly that of a solid bar of the same total sectional
area. Because the strands are twisted about a core, axial pull on the rope
tends to slide the strands over the core in an unwrapping mode, thereby reduc-
ing stiffness from that of an equal area solid bar. A shorter lay length
should have a lower modulus than a longer lay length.

The IWRC (core rope) itself must be made to about the same lay length in
terms of its diameter as the total rope; otherwise the IWRC stiffness modulus
will differ from the total rope and thus carry too much or too little of its
share of the load. This leads to the question of the core of the core rope;
if the core of the core is a single solid wire, then it must suffer the damage
accumulation resulting from its higher modulus. In a typical large-diameter
rope, the effective modulus is roughly 12,000,000 in. 1b/cu in. (or 1b/sg. in.).
On the same basis, a solid steel wire will exhibit roughly a 30,000,000 modu-
lus. For a given stretch of the total rope, the IWRC-core wire will experience
approximately 2-1/2 times the stress of an average wire in the strands. Early
failure of the central core wire in such rope designs would not be surprising.
Nor would it be surprising to find that some rope designs utilized variations
of the IWRC with regard to the central core construction or the relative hard-
ness of the core wires. In short, rope designs to minimize the potential
problems discussed here should be expected in the marketplace. A sample rope
section is shown in Figure 47.

Wire Properties/Quality

One feature of wire rope is that its wires have been thoroughly tested for
gross defects by the very process of wire drawing from an initial rod dimension
to the diameter utilized. Microstructure resulting from drawing and annealing,

93












360
340
320+

300+
EXTRA IMPROVED PLOW

280~

Y
260 \T
IMPROVED PLOW

¥

240—

WIRE STRENGTH, ksi
INCREASING CARBON CONTENT

PLOW
220+
200—
MILD PLOW
160L— ] 1 !
0.010 0.050 0.100 0.150 0.200

WIRE DIAMETER, inch

FIGURE 48. Carbon Steel Wire Strengths for Various Grades and Diameters

needed to supply needs for even modest ranges in rope diameter, too much or too
little rope of one diameter and strength for completing a particular rope order.
could easily be produced. In any given rope, then, one or two wires might be
of the proper diameter but a different strength than their nominally identical
companions. Their effect on total rope performance is doubtless minimal when
they occur internally, and some care is no doubt exercised to ensure that large
differences are not found in the outer strand wires. But, occasional substi-
tute wires in a given rope might be expected.

Considering the self-inspecting characteristics of wire drawing and desir-
ability for strongly textured microstructure, it is difficult to imagine dra-
matic changes that might be employed in manufacture of wires for wire rope.
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Minor additions of special elements might be proposed to enhance the preferen-
tial properties after drawing, but a full range of patenting experiments would
likely be required and it would seem unlikely that the gain could be worth the
cost to a practicing manufacturer. Failure and wear studies just do not seem
to point to wire quality as a place for substantive improvement in rope life.
Properties selected for a particular rope design, however, may practically
influence rope life in a given situation, and manufacturers of large rope would
be expected to capitalize on this point in developing their product lines.

Compaction Factor/Preforming

Two characteristics of large-diameter ropes deserve consideration. Com-
paction factor describes how closely to theoretical or ideal packing a particu-
lar rope is designed. Ideally, one can describe specific wire sizes so that
they would fit together exactly, with no looseness and with no crowding. Of
course, in practice this would require amazing accuracy of wire diameter
control, to say nothing of requirements in forming the core and the strands
together. Even normal drawing die wear produces slight changes of wire diam-
eter, making idealism impractical. However, some looseness must be intention-
ally designed into the rope system to accommodate the "shrinking" as the wires
become worn and deformed at the contact points (Figure 50). Each manufacturer
coud be expected to arrive at his own compaction factor, best suited to his
practices in wire diameter control and other manufacturing and rope design
experiences.

In Figure 43, the preformed effect on strand geometry may be seen. Early
difficulties with wire rope included its propensity to unwind under Tload if the
ends were not restrained. This led to rope designs with cross-lay, or other
features to counteract this tendency (Sayenga 1980). Also, prior to preform-
ing, it can be imagined that a suddenly slackened rope might readily "bird-
cage," splaying the strands and core into a real mess at some local spot or
spots along the rope length. Preforming was the important development to
compensate for both problems to a great extent, according to Sayenga (1980).

Forming up a rope involves making strands and IWRC from their own combina-
tion of wire sizes and strengths, and rolling up the appropriate lengths onto
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a. Intentional "Looseness" of b. Snug Fit After Some
As-Fabricated Rope Accommodating Wear/
Deformation

FIGURE 50. Conceptual Requirement for Compaction Factor

individual bobbins, one for each strand and one for the IWRC. A1l the bobbins
are mounted in a rotatable cage with a seven-hole die-head on the front.
Around the die-head are adjustable roller-cams that can be set to kink each
strand as it feeds through the head. This kinking preforms the rope so it can
be twisted together more easily and thereafter behave better with respect to
unwinding or birdcaging. It is likely that all large-diameter running ropes
are preformed; any slight detrimental effects caused by the residual stresses
left in wires after kinking at the die-head are more than compensated for by
the overall beneficial effects.

It is unlikely that substantive improvements in rope 1life might be found
by introducing changes in preforming practices. However, insofar as compaction
factors are concerned, it is tempting to speculate that modest improvements in
some wire rope products might be achieved by closer attention to the blend of
wire properties and initial "looseness" of the strand compaction.

Corrosion Protection/Lubrication

Rope manufacturers universally apply some form of viscid compound to their
large ropes during the fabrication process; its principal function seems to be
corrosion protection for the rope during shipping and storage. Other compounds
or fluids intended to function as lubricants may be introduced into the rope;
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whether or not seems a manufacturer's prerogative. In the field, some opera-
tors diligently apply favored lubricants, while others occasionally apply old
crankcase oils; both approaches seem not to shorten rope 11fe.(a) Considering
the weather extremes under which draglines work, lubrication and corrosion pro-
tection seem at once both mandatory and impossible.

Lubrication requirements for the hoist ropes and the drag ropes apparently
constitute two different categories. Upon installation, the hoist ropes are
essentially free of contact with the overburden, while the drag ropes are con-
tinually exposed and pulled through loosened material. The hoist ropes always
have some load on them; the weight of rope hanging down from the point sheave
plus the bridle jewelry and dump system is substantial. Hence, the hoist ropes -
are always kept "closed" in addition to being exempt from dragging in the dirt.
Some form of internal lubrication, either built-in or introduced as a penetrat-
ing fluid, might be designed to extend hoist rope life. Of course, suitable
corrosion protection would also be needed.

Studies indicate that drag ropes are very likely to experience complete
unloading, if not rebound compression forces. If the ropes fall in the over-
burden without being tensioned, dirt/stone particles are most likely to be
jammed into the rope interior; that is, between the strands while they are
loose. It is difficult to imagine what kind of lubricant might work under
those circumstances. Even if the drag ropes were kept somewhat tensioned,
they will often be dragged through the overburden and pick up dirt which can
then work down between the strands when the ropes are unloaded during unsym-
metrical digging/jerking, or when slackened to dump the bucket. Sticky lubri-
cants or corrosion-protection compounds appear counterproductive in these

circumstances.

Because different mine sites may have very different types of overburden
and chemical species contacting the drag ropes, a universal solution is not
expected. Protection against acidic conditions is surely desirable, and

(a) One reported test approximating dump rope usage on a very large dragline
compared no lubrication (except as-fabricated) with continuous bathing in
good, penetrating oil; the lubricated rope lasted 50% longer (Gibson 1980).
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probably obvious to mine operators in those situations, but an "all-purpose"
Tubricant for drag ropes does not seem easily achievable.

Summary

The key elements of rope design and manufacture may be summarized as fol-
lows. Six strands preformed around an independent wire rope core of contrast-
ing lay constitutes a time-proven basic design for large-diameter rope; that
construction holds up well under the high tension and bending loads experi-
enced by running rope systems on walking draglines. Carbon steel compositions
and qualities provide useful combinations of cost, strength and toughness for
this application of drawn wire.

Proprietary rope designs stem from select combinations of wire properties
and sizes, combined with appropriate compaction factors. Modest improvements
in rope life may be realized by adjusting these aspects to fit a particular
service function, and by providing built-in corrosion protection and
lubrication.

MACROSCOPIC ASPECTS OF ROPE DURABILITY

After a rope is laid up it must fit certain dimensional criteria, particu-
larly with respect to diameter. Rope made to a specified diameter may be a
little larger, but never smaller, than the named dimension. In a broad sense
this may be readily seen as reasonable, since the rope would be expected to lie
looser without load than with load. Furthermore, the intentional introduction
of looseness as a compaction factor in design implies that the rope will be
smaller in diameter after a bit of working than when first rigged. Surely this
must influence the design of sheave groove geometry.

Sheave Groove Dimensions and Quality

Sheaves are approximately as much larger than the nominal rope size as the
upper tolerance on the rope itself. Thus, the unloaded or slightly loaded new
rope will just snugly fit a new sheave groove for that size rope. After the
rope has been used for a while, it will clearly fit rather sloppily into the
sheave groove. Under dragline working loads the rope will thus be flattened
to some extent as it deforms to fill the oversize groove. This sequence is
pictured in Figure 51.
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a. Snug Fit of Unloaded b. Loose Fit of Axially c. Flattened Fit of
Rope Loaded Rope Loaded and Bent
Rope

FIGURE 51. Rope Fit in Standard Size Sheave Groove

A more satisfying consideration of the flattened rope effect can be devel-
oped by considering the rope as a seven-circle section; that is, with IWRC and
strands of the same diameter, composing a rope of three circle diameters, fit-
ting into a sheave groove somewhat larger than the rope size. The rope is
viewed in Section A-A, Figure 52, at a position shortly after it has begun a
wrap around the sheave. That section view is imaginarily kept in the same
place while the rope, under practical loading, feeds onto the sheave and
passes by the viewed position. This activity is shown as a schematic rendi-
tion of a Left Lay rope moving onto a sheave.

Because the sheave groove is larger than the rope diameter, and the rope
is under appreciable load, two competing situations occur. The strands tend
to be pulled against the sheave groove, while their twist tends to keep them
tight around the core. Some accommodation takes place; the sequence is dia-
grammed in Figure 53.

The slipping-off relative motion between strands and core, shown in Fig-
ure 53, 1is probably not as deleterious to rope life as the lengthwise relative
motion of strand/core or strand/strand caused by the bending itself. Further-
more, considerable differential axial movement occurs between components just
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VIEW AT SECTION A-A
REMAINS FIXED IN SPACE
AS A LOADED, LEFT LAY
ROPE ENTERS TURNING
SHEAVE

FIGURE 52. Schematic of Rope/Sheave Condition for Assessing

Strand/Rope Motion via Seven-Circle Model of
Rope in Slightly Oversize Sheave Groove

a. No Load Condition b. Loaded Condition c. Distortion Changes
Strand 4 and IWRC With Rope Movement

Distorted

FIGURE 53.

Seven-Circle Model of Loaded Rope Moving Onto Sheave Groove
That is Somewhat Larger than Loaded Rope

104



from tensioning and relaxing, so this slipping-off aspect does not cause all
the damage. Nevertheless, it contributes to Toss of rope durability and has
been singled out for attention many times in the past, in terms of sheave
groove dimensions. One development employed a segmented sheave built so that
when the rope tensioned around it, the groove segments closed around the rope
in a firm grip; upon feeding off the sheave the segments relaxed into an open
position. There is no evidence the scheme is useful on large ropes working at
high loads.

Rope pinching from a too-small groove dimension can be visualized as the
inverse of effects with an oversize groove. On first glance, pinching might
appear to be worse than a loose fit; however, under load the rope gets smaller,
thus making pinching less of a worry and looseness more so. Definitive results
for either situation have not likely been obtained for large ropes, and extrap-
olation from smaller sizes begs the question of scale effects, the root of the
dilemma in rope design and development.

Groove quality presents a different reaction; no one seems to argue
against the desirability of keeping sheave grooves smoothly dressed to target
configuration. Some field operations are set up to alternate rope lay direc-
tions with this in mind; the left lay marks are rubbed out by reeving on a
right lay next time. Once again, however, there appears to be no definitive
work addressing the point of how bad is bad. In light of the usual attitude
toward keeping grooves clean, there is little motivation to pursue such
definitions.

A related aspect--groove hardness--merits appreciation. Customarily, the
sheave groove is hardened to approximate the outer strand wire hardness. The
process of hardening may, in some situations, be shallow, or of asymmetrical
response. After service exposure, such conditions may permit or induce groove
wear of such extent that the target groove geometry is grossly violated.
Resulting rope damage can be dramatic and almost sudden; rope durability is
quickly compromised. An operator has no choice but replacement or
re-contouring and re-hardening--very expensive at best.
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The bend-over-sheave fatigue tests on 3-in. ropes reported under this pro-
ject were all conducted with a sheave constructed from commercial mild steel
plate 5 in. thick. After more than a million rope bending cycles the unhard-
ened sheave grooves were not grossly distorted. The loaded rope quite obvi-
ously does not grind the groove into a broader and broader shape while the rope
flattens, as shown in Figures 51 and 53. Probably both the twist-tightening
effect and moderate support to the strands from the mild steel are adequate to
maintain a near-round shape. Nevertheless, cast-in-place replicas of rope
shape in a sheave, under various loadings, would be instructive.

Reasonably maintained sheave grooves built to industry standards do not
degrade large-diameter wire rope durability. Big improvements in field rope
life are not likely to result from practical changes in sheave groove dimen-
sions or quality.

Sheave/Rope Diameter Ratio (D/d)

Quite different conclusions can be stated about the influence of sheave/
rope diameter ratio on rope life under BOS fatigue. Maximum wire stresses due
to bending only, double when the ratio halves (Morgenstern et al. 1980,

p. 4.22). Because the superimposed axial tension loadings add linearly, in an
elastic sense, the maximum wire stress can reach the wire elastic limit under
modest tensions when the sheave is relatively small. Individual wire damage
and, hence, rope damage, accumulates quickly when local conditions become
inelastic. A final result of dramatically lowered BOS fatigue life is indi-
cated by test data trends pictured in Figure 54.

Comparable data for 3-in. and larger ropes are not available, but effects
at one D/d can be demonstrated by combining the bending and tensile stress cal-
culations for the strand outer wire (Morgenstern et al. 1980, Sec. 4.4). This
combined result is shown in Figure 55. The vertical dashed line is for a D/d
of 30, and the curves are for different axial load factors.

Note that as the load factor approaches one-half (0.5), the total tension
stress (in the worst location in the worst wire) must be bordering on the
elastic limit of the wire (Table 10). It would be expected that rope life is
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FIGURE 54. Linear-Life Plot of Small-Diameter Ropes in BOS Fatigue

markedly shortened by loadings that exceed wire elastic properties; hence the
large rope performance at high load factors, as indicated in Figure 56, should
not be surprising.

Figure 56 is useful in comparing the actual load factor performance of
3/4-, 1-1/2- and 3-in. ropes at constant D/d, particularly since the 3-in.
data are all for one type product. When presented in a linear scale, and when
results are plotted in a consistent reference frame, the three rope sizes
exhibit clearly similar behavior at D/d = 30. This is not to say that simi-
larities in performance should be expected at smaller D/d ratios, because the
combined effects are so nonlinear, as seen in Figure 55. Nevertheless, when
attempts are made to compare performance based on some means of "correcting"
for D/d and other factors, useful comparisons like that shown in Figure 56 can
be developed.

Finally, with regard to correlating large- and small-diameter rope data in
BOS fatigue, Figure 56 does provide evidence that similarly constructed ropes
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operated at reasonable load factors, e.g., less than 0.3, will perform in
similar ways at D/d ratios near 30. Furthermore, the behavioral trends and
scatter-band in the figure provide a valuable baseline of performance against
which rope life in BOS fatigue may be evaluated; this is a new and useful
contribution to rope literature.
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Reverse Bends, Load Factors and Bucket Position Effects

Reverse bends are just what the name implies: rope coming off one sheave
is then bent the other way onto another sheave. Other factors, including dis-
tance between reversed bends and the load factor, make important differences,
too. However, these aspects are not discussed further here because the trend
effects should be clear, and detailed results would not materially alter this
presentation.

In this document an effort has been made to systematically employ the term
"lToad factor" as the inverse of design factor; that is, load factor is a frac-
tion of rope strength, either rated or actual, and design factor (sometimes
referred to as safety factor) is a numerical reciprocal of load factor. The
dramatic effect of load factor on BOS fatigue life was displayed in Figure 56,
where an order of magnitude difference in life resulted between load factors
of 25% and 50%. Clearly, load factor plays the dominant role in BOS fatigue
performance at a given sheave/rope ratio. Hence, improved rope life can nearly
always be achieved with no other actions than reducing the operating loads.

An important contributor to the level of operating loads can be identified
from considerations of the bucket rigging system, described earlier. Recall
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that after the bucket is filled it is tipped up (cocked) by tensioning both the
hoist and drag ropes. Consequently, under these conditions the bucket system
must hang in under the point sheave of the boom, pulled toward the house by the
drag rope tension keeping the bucket cocked. Proportionate loads shared by the
hoist and drag ropes depend on the particular position of the bucket with
respect to the angles the ropes make with horizontal, against the gravity pull
of the bucket system weight.

Because the relative loads on the hoist and the drag ropes depend on posi-
tion of the bucket system, and because the loads on either set of ropes will
vary with position thus causing the respective ropes to experience varying load
factors, the overall effect is termed "bucket position factor". 1Its direct
influence on rope loads makes it one of the more important but overlooked rea-
sons for diminished hoist rope life. Actions to reduce maximum bucket position
factors experienced by the Tlift-to-dump portion of an operating cycle will use-
fully extend hoist rope life.

Appreciation for how large these loads can become may be gained by consid-
ering the diagram in Figure 57, and referring to Appendix A for more detailed
analysis. Lines of action of the drag ropes and the hoist ropes intersect
exactly with the (static) line of gravity pull on the bucket system. For con-
ditions shown in Figure 57 the hoist ropes are pulling 1-1/2 times the weight
of the total bucket system. Some dragline operators commonly pull the bucket
right up to the house during a typical fill operation, so the hoist ropes may
see large bucket position factors every cycle. Furthermore, the high loads in
the hoist rope induce commensurate high loads in the boom components. These
high loads reflect into the structure at the house and generally add to fatigue
problems on all related systems.

Because there will be a particular physical relationship among drag rope
loads, dump rope rigging geometry, and the suspension point of the bridle at
the bucket, optimizing these arrangements to permit easy bucket cocking and
quick bucket dumping will improve hoist rope life. This can probably be done
without sacrificing productivity, but specific solutions pose a practical
challenge to mine operators.
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FIGURE 57. Situation in Which the Bucket Position Factor
Causes Loads on the Hoist Ropes to be 1-1/2
Times the Bucket System Weight

Summary

Summarizing the key elements of macroscopic aspects influencing rope dur-
ability, sheave-to-rope diameter ratio was shown to have a dominant effect.
At a given ratio, loads were seen to be the governing factor affecting running
rope life. As a byproduct of this situation, the bucket position factor was
shown to be an important variable in producing surprisingly larger operating
loads than might appear obvious. Operational practices that can keep this fac-
tor to its Towest practicable maximum on each cycle will materially increase

rope life. Such practices are currently employed at several mine sites with
attendant benefits.

MICROSCOPIC ASPECTS OF ROPE DURABILITY

Some technologists maintain that all structural behavior is ultimately
governed by'the specific atomic and metallurgical performance of the materials
involved. Others point to the biased view engendered by such an attitude and
prefer to consider structural performance as an interactive response among
shape (geometry), loads, material and environment. This latter view is favored
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here. In the following remarks microscopic aspects affecting rope durability
are discussed in relation to their interaction with the total rope situation.

‘Microstructural Morphology

Morphology, the study of shape (and changes), is particularly relevant to
rope wire because of the unique microstructure that results from repeated draw- *
ing and patenting. Both the grain shapes and distribution of constituents are
important to wire properties that make rope wire functionally practical.
Included with this view is the aspect of submicroscopic features resulting
from wire drawing (cold work) in the final stages of production; cold-working
generates dislocation structures that, together with the grain boundaries and
intermetallic dispersions, are responsible for the very high damage tolerance
rope wires must possess to provide a practical running rope.

The important elongated wire texture is readily seen in Figure 58. Along
the boundaries of each elongated grain are dispersions of intermetallics.
Around the outside of the wire is a film of oxide, resulting from reaction of
iron atoms with the surrounding atmosphere. Generally the atmospheric chemical
species that dominate this film chemistry are simply oxygen atoms, and they
form one kind of "rust". If the oxide film is broken locally, fresh metallic
surfaces are exposed to react, and they do so quite violently at the atomic
scale, with available reactants.

This visualization will be called upon to help explain the author's inter-
pretation of what happens during corrosion and cracking, and in wear processes.
First, however, a situation wherein the wire microstructure is significantly
altered will be briefly described.

Microstructural Transformations

Iron and many of its carbon alloys are "polymorphic", that is, "many-
shaped". In this sense the shape refers to atomic organization, as referenced
to a steady-state condition at a particular temperature. Thus the terms aus-
tentite and ferrite refer to specific atomic organizations which are "stable"
at particular temperature ranges. However, if the austenite form in simple
carbon alloys is quenched quickly, a "metastable" form called martensite is
produced; it can become ferrite, the stable form if certain thermodynamic
requirements are satisfied.
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attacks on the problem are warranted. One view focuses on the aspect of
inducing favorable actions with freshly torn surfaces.

If certain chemical specie are presented to a freshly abraded steel sur-
face, the reaction produces a coherent film quite different from ordinary oxi-
dation. It conceivable that some combination of specie may be developed such
that the film formed after reaction with the steel is more resistant to subse-
quent welding and tearing than the usual film. This lubricant would be of dif-
ferent type, but would satisfy the requirement of diminishing wear. Together
with appropriate selection of wire hardness, and perhaps with the aid of alloy-
ing, it can be imagined that such lubricant could indeed practically improve
the life of wire rope on dragline operations.

Summary

Microstructure of the carbon steel wire developed from stages of drawing
and patenting is primarily responsible for its amazing durability in wire rope.
If some means could be found to suppress the metallic tearing associated with
high contact pressures between components of the rope systems, an improvement
of rope life would certainly result. A corrosion-inhibiting carrier of some
to-be-developed chemical specie(s) that accomplishes this goal is worth consid-
erable effort; who can pursue it?

TYPICAL SERVICE PROBLEMS

The concepts outlined as key elements can be applied by considering some
field problems and phrasing them in terms employed during the concept descrip-
tions. The following situation descriptions are intended to conclude with an
informative or provocative thought or suggestion. They are, themselves, one
form of technology transfer.

Switching End-0, Cutting-O0ff

Rope damage arises from external contacts as well as from interior wear
and deformation. Passing over sheaves or rollers causes controlled bending
that can be related to laboratory BOS fatigue tests. Contacts with rocks,
rope, jewelry, or other structures causes uncontrolled bending or kinking that
is not readily reproducible in the laboratory nor easily evaluated for damage

119



level. But the contacts and kinks certainly degrade a rope faster than if they
had been avoided. Recognizing that rope damage is often localized in nature,
some operators cut off the bucket end of a drag rope and resocket; or they swap
ends of the rope after some level of use, putting the drum end at the bucket,
and vice-versa.

Cutting-off and end-o switching of the drag ropes can be particularly use-
ful if the digging/operating conditions tend to concentrate damaging effects at
the drag socket region. Abrasive wear from overburden grinding is one example.
Rope whip flexing damage 1is another; its actions are described below.

Switching ropes end-o or cutting off and resocketing may usefully extend
rope life in certain situations; in others, the efforts may have been fruitless
or even dangerous. Operators should have a clear reason for whichever tack
they choose.

Socketing and Wire Slide

When socketing a rope, the wedge contour provides a controlled shape for
the rope to fit as well as producing inclined planes that match the socket
interior and thereby secure the rope. However, the wedge contour causes much
sharper bending of the rope than any other intentional service experience. The
tight bend can cause an unobvious difficulty.

If the rope is welded or otherwise tied at the bitter end so that strands
and wires cannot slide to accommodate the sharp bend, the "extra" wire lengths
may buckle in the socket bend region or feed back into the running section.
There, the slackened wires cause uneven load distribution and induce local
damage near the socket, adding another factor that can shorten rope life.

Drag Rope Whip and Rope Damage

During certain digging operations, particularly when the drag ropes are
about full-out, they are often observed to undulate obviously. This behavior
consists of "waves" that can be seen moving along the rope to the socket and
then back to the fairlead and so on. Sometimes the motion is very marked;
especially at these times, but to some degree whenever there are reflected
waves, the ropes experience rather sharp curvature, or bends, at both the
socket and the fairlead area.
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This sharp bend causes both wear by sliding motions and fatique damage
from the bending itself. Because the waves may reflect every second or two
there may be something on the order of 10 or 20 such cycles on the drag ropes
for each digging cycle that the waves are operative. Although the magnitude
of stressing damage or wire wear damage has not been assessed by laboratory
simulation or direct measure, the flexing actions may account for some drag
ropes to wear out so soon.

The practical effect of this might be clarified in a particular mine by
comparing drag rope life when substantial and obvious rope whipping occurred
as against filling with similar overburden when rope whip did not occur. Cer- i
tainly it can be recommended that digging be done in such a way that rope whip

is minimized.

LABORATORY TESTS/FIELD RELEVANCE

Wire rope behavior on a dragline could be simulated very closely in a
laboratory, possibly at no more cost than that of a dragline itself. But a
more practical question is "What are the important factors in field rope expe-
rience and, of these, what laboratory tests would be informative with respect
to improving field rope life?" Bend-over-sheave fatigue testing was unani-
mously nominated as a useful laboratory test. This section will describe the
BOS tests and their relevance to field use.

Bend-Over-Sheave Laboratory Fatigue Tests

By constructing a machine with two sheaves in the same plane, and which
are displaceable in a controlled manner, rope can be reeved around them and
cycled forth and back with auxiliary mechanisms. This cycling reproduces two
principal aspects of field ropes: the sheave-to-rope diameter ratio, and the
repeated flexing. All other factors aside, these two common features are
indeed primary to an understanding of BOS rope performance (but of course
through study of the wear and corrosion processes).

Bend-over-sheave performance of wire rope has been compared by plots of
rope life against some factor involving the constant tension load, the rope and
sheave diameter, and sometimes another factor or two, such as wire strength or
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wire size, or number of wires in a strand. They all testify to the fact that
rope performance is predictable in the sense that results of another BOS
fatigue life test of similar rope within the test boundaries can be predicted
quite accurately. Reason limits such predictions or correlations to the same
type of ropes and rope constructions, cycling conditions, lubrication and
environment.

To date, the WRIP has generated a useful, though narrow, data baseline on
conventional, large wire ropes (Appendix D) against which to compare either
field performance or the laboratory-tested BOS fatigue lives of some new rope
construction or rope treatment. At this point, use of the data should not
exceed these applications.

A1l the 1-1/2-in. and 3-in. diameter rope data generated during the WRIP
reported here are summarized in a simple linear plot of single-flex cycle life
against estimated actual load factor divided by D/d. The plot is shown in
Figure 63.
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FIGURE 63. Bend-Over Sheave Fatigue Life Plots for 1-1/2- and 3-in. Ropes
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A baseline performance curve for these ropes may easily be constructed.
The curve is the reference BOS fatigue 1ife behavior which must be signifi-
cantly exceeded to indicate an improved rope situation that would be worth con-
sidering for actual field service. This baseline incorporates the two princi-
pal measures of dragline rope experience in BOS fatigue: operating load and
sheave-to-rope diameter ratio.

This reference behavior is generally relevant for hoist ropes, but will be
less so for drag ropes in those situations where soil abrasion rather than BOS
fatigue dominates behavior. For these abrasion-dominant situations, another
criterion is needed; unfortunately we have not demonstrated a cost-effective
solution at this time.

Field Relevance Factors

In addition to the difference between simple laboratory BOS fatigue tests
and drag rope experiences under rocky abuse, other factors could be incorpo-
rated into more sophisticated testing.

When ropes are pulled onto the drums under load, they move over their
sheaves in a particular tension state that is anything but steady. Upon pay-
ing out from the drum, during and after the swing-to-dump, the ropes are under
significantly less tension and thus feed over their sheaves differently than
before. Simulating these conditions in the laboratory would be considerably
more complicated than a constant load test. In part, this difference hinges
on how to define a flex cycle of the rope. Hence, the Titerature descriptions
emphasize whether the region of rope length under discussion is single-fiex or
double-flex or something else. Nevertheless, these aspects could be incorpo-
rated into more sophistiated laboratory testing programs if needed.

Missing from the Tab-to-field relevance as a second-level importance fac-
tor is the actual loading exerienced by ropes during their operations. This
aspect has been addressed and some limited field data gathered, but a broader
base is surely required for clearer insight to the range of loads that ropes
experience, and why.
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Summary

Laboratory testing of large-diameter ropes in BOS fatigue has demonstrated
that the dominant factors of applied load and D/d ratio are relevant to field
BOS fatigue performance because both experiences can be rationalized in these
terms. A baseline of data has been generated and is available for comparing
performance of new rope construction or other modifications intended to improve
rope life under BOS fatigue.

ROPE WEAR AND FAILURE MECHANISMS

Drag ropes wear out by combinations of abrasion wear and fatigue damage,
in different proportions according to the particular equipment and its condi-
tions, type of rope, digging conditions, dragline operator handling and the
specifics of bucket design and rigging. Hoist ropes wear out primarily in BOS
fatigue. The degradation mechanisms for both hoist and drag ropes(a) may be
described in the following way:

e Exterior surface abrasion consisting of metal removal wear process

via hard particles of overburden material;

e internal wire notching consisting of local plastic deformation caused

by loadings of the wires in bending, which can also lead to...

e wire-wire microwelding at high-load contacts points with subsequent

tearing of the weld joints, producing bits of debris and reducing
the section size as well as exposing freshly torn metal surfaces
to...

e corrosive actions that reduce metallic volume or aggravate cracking

enlargement under the...

e fatigue processes of repeated loads, particularly when concentrated

in local regions by microscopic imperfections or macroscopic stress-
risers, like nicks and notches, and directly related to the damage
from...

(a) Dump ropes may also be included in the similarities, but they can
suffer additional damage from mechanical impacts associated with
floppy jewelry.
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e high loads in tension and bending that can result from various handl-
ing procedures as well as equipment design or condition, thus causing
individual wire fractures to eventually cascade into a strand failure
and rope burst.

Hoist ropes generally fail in a succession of actions by all but the first
mechanism, which, although sometimes dominant in drag ropes, is accompanied by
the other mechanisms as well.

CONCLUDING REMARKS

Based on the described mechanisms, corrective actions can be envisioned;
these are described in the Conclusions section of this report. Although more
research and development efforts in laboratory testing and related analyses
are warranted, it is apparent that industry action can bring immediate improve-
ments as demonstrated by changes already implemented at some mine sites. Wire
rope and equipment manufacturers may also be able to help, but their efforts
will take Tonger to show up in field performance.
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APPENDIX A

BUCKET POSITION FACTORS

An elementary calculation of loads on the hoist and drag ropes can be con-
ducted for various positions of the bucket in space. The static free-body dia-
gram in Figure A.l shows the drag rope line of action and the hoist rope line
of action intersecting on a vertical line through the total effective center
of mass represented by "W". Complicating effects of changes in relative posi-
tion of the drag or hoist jewelry during changes in bucket position are ignored
in this simple treatment; so too are the rope weights neglected.
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~ *OF VERTICAL FORUES
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W Tg s T
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Tp W
[ st p c COs P COt Ty
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FIGURE A.l1. Free-Body Diagram of the Bucket System

On the following pages the results of calculations for hoist and for drag
“rope(s) are displayed; first for hoist alone, then for drag alone. The con-
cluding figure shows them both together. In this treatment, each rope system
utilizes a separate angular reference coordinate. That is, a common global
reference system is not employed. Cautionary notes with Figures A.2, A.3, and
A.4 are intended to help clarify this point.
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FIGURE A.2. Bucket Position Factor Effects on Hoist Rope(s)

For the Hoist Rope equation, the drag rope angles above horizontal are

positive and those below horizontal are negative.
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TH/W = LOAD MAGNIFICATION FACTOR ON HOIST ROPE
Tp/W = LOAD MAGNIFICATION FACTOR ON DRAG ROPE
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FIGURE A.3. Bucket Position Factor Effects on Drag Rope(s)

30

For the Drag Rope equation, the drag rope angles above horizontal are

negative and those below the horizontal are positive.
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TH/W = LOAD MAGNIFICATION FACTOR ON HOIST ROPE
Tp/W = LOAD MAGNIFICATION FACTOR ON DRAG ROPE
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FIGURE A.4. Overlay Diagram of Hoist and Drag Rope Loads as a Function

of Bucket Position

Even though the hoist and drag rope equations employed a different refer-

ence system with regard to horizontal angles and vertical angles, they were
describing a common situation, so they can be superimposed, as shown.
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TABLE B.1.

Visual Characterization of

Rope

Segments Investigated

Rope Strand Wires TWRC
Breaks Wear
Strand Strand IWRC to
Outside Vvalley to to Strand
Wires Breaks Outside Strand IWRC Grease Dirt Rust Wear Breaks Grease Dirt Rust
Moderate Very
HOIST ROPE Slight to to Fairly Severe Dusty on
SEGMENT A None Several Moderate Moderate  Several Marginal Clean Slight Severe  (Crushed} Marginal one end Moderate
SEGMENT B Several Moderate Moderate
on one Fairly to to Fairly
Side Yes Medium Moderate  Moderate Marginal Clean Severe Severe Several  Moderate Clean Moderate
Moderate Trapped Moderate Slight
FAIRLEAD but severe in to in
TRAVERSE None on one side Moderate Moderate Greasy Grease None Severe None Moderate Clean Contacts
BUCKET END Stight Moderate Severe
to Very & Inter- at
Several None Severe Moderate Slight Ory Dirty Slight mittant None Moderate One End Slight
Fairly Moderate
. Very well to
s/p BAL None None Slight Moderate  Sltght Greased Clean None Severe Few Marginal Clean None
D/P Moderate Moderate
to to Severe
Several Yes Slight Severe Slight Marginal C(lean None Severe  (Crushed) Marginal Clean None
NEHW None None None None None Marginal Clean None Stight None Marginal Clean None
FAIRLEAD Stight Moderate
TRAVERSE to to
None None Moderate Severe Severe Marginal Clean Slight Severe None Moderate Clean Moderate
BUCKET END Moderate Moderate Marginal
to to Very to Fairly
Severe Several Moderate Severe Moderate Dry Dusty Moderate Severe None Moderate Clean Stight
Moderate None Moderate Moderate Moderate
to or on one to to Fairly
Severe Few Side Severe Moderate Marginal Moderate Severe Moderate  None Caked Clean Moderate
Yery Se- Yery Se- Stight
ORIGENAL vere on vere on Fairly to
SUCKET END one side None one side Moderate  Slight Dry Moderate  Slight Moderate  MNone Marginal Clean Moderate
€ INAL Moderate Moderate
SUCKET END but Severe to
None None on one side Slight Slight Marginal Moderate Moderate Moderate None Severe Moderate
LDAD
CELL DRAG Caked & Moderate
LINE: Moderate Ory in Severe to Severe
{ YELLOW) Dry to to Half the in Dry in Dry
BUCKET END) None None Moderate Moderate Moderate Marginal Moderate Moderate Severe None Segment Regions Regions
{GREEN) Dry to Moderate Fairly
CENTER None None Moderate Moderate Moderate Marginal Moderate Moderate ta Severe None Moderate Clean STight
‘RED} Slight to Slight to Fairly Fairly
DRUM END None None Slight Moderate Moderate Moderate C(Clean Slight Moderate  None Moderate Clean Stight
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TABLE B.2. Spectrographic Analysis of the Chemical Composition of Selected
Wire Samples

L e —— . A g A e 4 e -

Code [+ Mn P S Si Cn Sn N{ Cr Mo Al v Cd r T B Co w Pb
A

.60 .61 .003 .008 .17 .004 .000 .016 .076 .006 .033 .001 .000 .000 .000 .0000 .000 .00 .00
B

.64 .63 .004 .012 .18 .006 .000 .017 .080 .008 .036 .001 .0OO .001 .001 .00CO .000 .OO .0O
c

.40 .65 .010 .024 .13 .011 .000 .013 .055 .002 .000 .001 .000 .000 .000 .0000 .000 .0O .0O
D

.73 .81 .019 .012 .23 .007 .000 .005 .015 .000 .041 .003 .000 .001 .00l .00OQC .0OC .00 .00
E

.57 .65 .001 .013 .17 .15 .006 .053 .064 .008 .028 .001 .000 .001 .000 .0000 .004 .00 .00
F

.60 .75 .009 .013 .18 .002 .000 .004 .026 .00l .034 .002 .000 .001 .00O .00OO .00C .00 .OO
G

.60 .36 ,000 .002 .21 .011 .000 .063 .099 .00l .006 .000 .00O .002 .000 .00OO .001 .00 .0O
H

.55 .37 .000 .002 .21 .011 .000 .064 .100 .001 .,003 .00l .00O .002 .000 .0OOO .002 .00 .0O
I

.55 .64 .010 ,009 .15 .033 .000 .020 .063 .000O .023 .000 .00O .0OO .000 .0000 .000 .00 .0O
J

.82 .64 .026 .034 .23 .13 .009 .066 .017 .007 .034 .001 .000 .00l .001 .0001 .013 .00 .0O
K

J9 .62 .025 .029 .22 .12 .009 .066 .016 .008 .034 .001 .000 .002 .00l .00O1 .013 .00 .0O
L

.74 .60 024,024 .22 .12 .009 .073 .026 .008 .012 .001 .000 .001 .0O1 .0OO1 .012 .00 .0O
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APPENDIX C

WIRE ROPE RETIREMENT CRITERIA

The dragline user's ability to accurately predict the remaining life of
drag ropes can significantly increase dragline productivity. Increased drag-
line availability as a result of the reduction of unscheduled downtime and the
ability to schedule rope change-outs concurrent with planned maintenance peri-
ods are the prime motivations for having accurate rope retirement criteria.
Wire rope separation is not a viable retirement criterion due to the potential
of personnel injury, structural damage to the dragline and increased downtime.
However, the precludement of wire rope failure by the use of overconservative
retirement criteria needs to be balanced with increased wire rope change-out
costs and necessitates the development of realistic wire rope retirement
criteria.

The retirement criteria used in the field have several components that can
trigger wire rope replacement. Visual inspection is the most common. The num-
ber of individual wire breaks per lay length or per strand, or an increase in
the wire breakage rate, are all used in the field. Wear of outer wires, espe-
cially near the bucket, and other localized wear or damage are other common
components of visual inspection that will cause the retirement of wire rope.
Changes in rope diameter in the regions of sheave traverses or total rope elon-
gation are used to retire ropes based on more incipient damage.

The sound and feel of smooth running wire ropes can be distinguished from
those of worn ropes by the experienced dragline operator and usually precipi-
tates inspection of the ropes. Factors such as yardage handled, operating
hours, or number of swing cycles, are used to evaluate the performance of the
wire rope. These factors can also be used as retirement criteria when suffi-
cient experience has been obtained with the dragline.

It is obvious from field interviews and laboratory experience that all
wire ropes do not have the same failure progression. The number of visible
broken wires prior to wire rope failure can vary significantly from one rope
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construction or manufacturer to another. Some wire ropes will have broken
wires visible long before retirement is needed and others will show few or
none just prior to failure. Therefore, it is important to develop new retire-
ment criteria for each rope construction or manufacturer used.

Variations among mines in overburden type and density, operating envi-
ronment, and the specific operating characteristics of the individual dragline
can shift the dominant failure mode of the drag ropes from mine to mine.
Therefore, specific variations among mines, draglines, and ropes preclude the
use of general retirement criteria.

The unique characteristics of specific rope constructions and manufac-
turers' variations may make some ropes better suited for specific draglines
than others. However, care must be taken in assessing the suitability of
specific ropes to assure that the proposed replacement rope's useful lifetime
is correctly assessed and not simply compared with another rope based on the
development of the latter's rope-specific retirement criteria.

Nondestructive examination (NDE) procedures would provide the ability to
monitor internal as well as external wire rope damage and thus allow increased
confidence in rope retirement criteria. Electromagnetic techniques have been
used successfully on smaller-diameter mine elevator hoist ropes. However, the
application of these techniques to large-diameter ropes is still pending. The
primary problems with the direct application of these techniques to larger
diameter ropes are interpretation of results, the correlation of output versus
remaining life and the depth of penetration of the inspection. The feasibil-
ity of using other NDE techniques for on-line or periodic inspection or large-
diameter wire ropes appears reasonable and worthy of further study.

Field investigations and interviews have established that wire ropes are
retired primarily because of rope degradation at two locations. The first
location is near the bucket where rope wear is severe and subsequent reduction
of the outer wire cross section is significant. This condition is most severe
at mine sites where the overburden is rocky and contact of the rope with the
spoil causes severe abrasion. The second location is the region of fairlead
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traverse. This region experiences bending fatigue, severe internal damage as
a result of relative wire motion and outer wire wear as a result of sheave
contact.

The relative balance between drag rope retirement caused by rope degrada-
tion in these two regions was to be studied this year, until program emphasis
was shifted to the load sensor. However, the existence of a dominant failure
mode is expected to be extremely site-dependent due to variations in overburden
type, machine characteristics, operator agility, operating environment and
maintenance procedures. Therefore, the suitability of specific ropes and the
specification of an "ideal" rope will vary from dragline to dragline. This is
reflected by the disagreement among dragline users as to who makes the best
rope.

The identification of the dominant failure mechanism is further compli-
cated because the service life of a drag rope is often extended significantly
by the common practice of cuttingoff and re-socketing the section of the rope
near the bucket which has experienced severe outer wire wear. This practice
is repeated until the rope becomes too short to re-socket or retirement occurs
because of rope degradation in the fairlead traverse region.

In conclusion,

e Specific retirement criteria must be developed for the particular
rope in use on a given dragline.

e Electromagentic techniques for monitoring the failure progression
should be adapted to larger-diameter wire rope and other candidate
NDE techniques should be evaluated.

e The specific mine and draglines conditions dictate the optimal bal-
ance between fracture toughness and fatigue resistance.
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THREE-INCH ROPE BEND-OVER-SHEAVE DATA SHEETS
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