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Abstract

This paper defines the beta function and other linear orbit
parameters using the exact equations of motion. The g,
o and v functions are redefined using the exact equations.
Expressions are found for the transfer matrix and the emit-
tance. The differential equations for n = z/8'/2 is found.
New relationships between «, f, ¥ and v are derived.

I. INTRODUCTION

This paper defines the beta function and the other linear
orbit parameters using the exact equations of motion. The
usual treatment [1] of the linear orbit parameters is based
on the approximate equation of motion

d2

T2 + K(s)z =90

(1
Approximations are made in obtaining Eq. (1) which are
usunally valid for large accelerators.

The exact linearized equations of motion can be written
as

dz
T = Az + Agzp:
dpz
__dp; A1z + Azaps 2)

z and p, -are the canonical coordinates in a curvilinear co-
ordinate system based on a reference orbit and the A;;(s)
are periodic in s with period L. The approximate Eq. (1)
assumes that Ay = dz2 = 0, A1z = 1 and Ay = —K(s).
The exact values of the A;; are given in [2].

A treatment of the linear orbit parameters based on the
exact equations, Egs. (2), rather than the approximate Eq.
(1) may be desirable in the following situations:

1. Symplectic long term tracking using a procedure
where the magnets are replaced by a sequence of point
magnets and drift spaces. For the tracking to be sym-
plectic, one has to use the solutions of the exact equa-
tions of motion. The linearized equations of motion
then have the form of Eq. (2). :

2. Small accelerators where the approximations made in
deriving Eq. (1) may not be valid.

Many of the results found using the approximate equa-

tions carry over for the exact equations. A few of the
changed results are the following:

_ 1 1dg
a = E(—§Z+A11ﬂ)
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where C is the circumference of the accelerator.

II. EIGENFUNCTIONS OF THE EXACT
LINEAR EQUATIONS OF MOTION AND
THE LINEAR ORBIT PARAMETERS

The problem now is, given the exact linear equations of
motion, Eq. (2), how does one define the linear orbit pa-
rameters 3, a,v, 1, ¥ and the emittance ¢, and what are
the relationships that hold between them. To do this, one
has to repeat the well known treatment of the linear orbit
parameters, and see where the definitions and relationships
change for the exact equations. The treatment given below
is believed to reduce the amount of algebraic manipulation
required, and makes few assumptions about the A;; coeffi-
cients in the linear equations.

For the z motion, the linear equations are written as

d
d_:z: = Anz+ Aiaps
S
dpz
o Z A . 4
Is Anps + Azzz (4)
The transfer matrix M (s, so) obeys
zr = M(S, Sg)xo
T
= 5
== (7) ®)
d
dsM = AM

One may note that the symbol z is used in 2 different ways.
The meaning of z should be clear from the context. The
matrix M is symplectic as the equations of motions are
derived from a hamiltonian. [1,3] Thus

M = 1

= SMS
0 1 (10
- (%0) 1=(c 1)

S is the transverse of S. Also |M|=1; |[M] is the determi-
nant of M.
The one period transfer matrix is defined by

(6)

w X ¥

M (s)

MA%TER

=M(s+L,s)
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where L is the period of the A;; in Eq. (4). One can show
that M(s) and M(so) are related by
M(s) = M(s, so)M(s0)M(sq, s) (8)

The eigenfunctions and eigenvalues of M(s) are defined by

M(s)z = Mz,
|M—=AIl = o, (9)
A2 — (mi1 + ma2)X+1 = 0

where m;; are the elements of M, and using | M| = 1.
Egs. (9) shows that the two eigenvalues A1, A; obey

/\1)2 = 1, (10)

and for stable motion, |A] = 1 and A; = A}, and we can

write
At = exp(is) (11)

Given the eigenfunction at sp, £1(sp) one can find the
eigenfunction or any other point s using

z1(s) = M(s, so)z1(s0),

(12)

and z1(s) has the same eigenvalue X;. This follows from
Eq. (9), using Eq. (8) to relate M(s) and M(so). Also
z1(s) obeys the linear equations of motion,

—-21 = Az,

= (13)
which follows from Eq. (12) and Eq. (5). One can show

that
z1(s)/ A" = fi(s), (14)
where fi(s + L) = fi(s). This follows from

fils+L) = il(s + L)//\;/L+1
= l\ﬂl(s)xl(s)/,\'{/‘L+1 = zl(s)/’\;/L

Thus, one can write

exp(ius/L) f1(s)
fi(s)

21(3) =

fils+1L) = (15)

Eq. (15) can be rewritten as

z1(s) = B(s)? exp(inh)
¥(s) = ps/L+gi(s) (16)
gai(s+L) = gi(s), B(s+L)=B(s)

Eq. (16) defines the beta functions, 8(s), except for a
normalization multiplyer, for the eigenfunction z1(s). The
normalization multiplyer will be defined below. It will be
shown first that ¥ and @3 are related. To find this relation,
one uses the Lagrange invariant [1]

W =z, Sz;

(17)

where z;, T2 are two solutions of the equations of motion.
Eq. (17) corresponds to the Wronskian in the treatment of
the approximate equations of motion. For z; and z2, we
use the two eigenfunctions z; and zp = z7.

i
Ty =
! (pu)

For z; one uses Eq. (16) and for p;; one finds from the
equations of motion

(18)

Pz (19)
W = zpz1 — prazi
dﬂ:l 271(1.’82 1
= —_— —_ 2
w [:cz ds ds ] Aq2 (20)
20 v
A12 ds

The beta function 3 is normalized by normalizing the
eigenfunctions so that

W =%, Sz1 = 2 - (21)
which gives
dy _ Aig

Eq. (22) replaces the familiar result dy/ds = 1/8 which
is obtained when A;; = 1. From Eq. (22) one can find a
result for the tune. Using 27v = 9(C) — 9(0) where C is
the circumference of the accelerator, one finds

1 (€, A
From Eq. (19) we now find for pg1,
1 . .
Pr1 = 761_/2(1 — a) exp(iy) (24)
1 1dp3
a = -A—Iz (—E'd—s +A11ﬂ) (25)

Eq. (25) provides the new definition for the o parameter,
which replaces the familiar result o = —-%dﬂ/ds. At this
point the definition of a may seem arbitrary. It will be seen
to be the convenient definition of & when the emittance and
transfer matrix are considered.

The eigenfunctions can now be written as, using Eq. (16)
and Eq. (25),

Vzl

(24 T

(26)

zzz:t;f

For the results for the emittance and transfer matrix, see

[2).




ITII. DIFFERENTIAL EQUATIONS FOR THE
LINEAR ORBIT PARAMETERS

This section finds differential equations for 8, and 75

A. Second Order Differential Equation for z

From the first order differential equation for z,p,, Eq.
(4), one can eliminate p; to find a second order equation
for z. See [2] for details

d 1 dz d (A
ds <A12 ds) te (_A21 T ds (A_lz)

It has been assumed that 4;; = —Aa,.

2
All

B. Differential Equation for 3

To find a differential equation for 3, into Eq. (27) for z
put the eigenfunction

z b exp(iy)
b = ‘31/2

(28)
We find then, see [2] for details,

d {1 db d [An
a(ma) - w5 (3)
Eq. (29) is a second order differential equation for b =

BY/2. 1t can be compared to the result found when A;2 = 1
and A;; =0,

A12

B

2
- _‘h) =0
Ajp

d’b Ay,
a2 "3 0 (30)
C. Differential Equation for
7 and z are related by
z=by, b=p/? (1)

In the differential equation for 7 the independent variable
is 9 or @ which are related to s by

d.
dp = Anf
ds
dé Alzl/—ﬂ (32)

We find dz/ds and d(A7,dz/ds)/ds which are then sub-
stituted into Eq. (27) to get the equation for #, using Eq.
(29) to eliminate derivatives of b. This gives, see [2] for
details,

d%n

d6?
The differential equation for 5 is unchanged.

IV. PERTURBATION THEORY USING THE
DIFFERENTIAL EQUATION FOR 7

+vinp=0 (33)

The equation for 7, Eq. (33) is often used as a starting
point in finding the effects of a perturbing field. The par-
ticle coordinates are measured relative to a reference orbit

—Aw) =0 (27) .

which is the particle motion in a known magnetic field with
components B;. The exact equations of motion can then
be written as

= ZA,']'ZJ' + f;
j

dzx;

i=1,4,7=14
ds : &4 J

(34

where the f; includes all the terms not included in Y A;;z;.
These include terms due to fields not included in the refer-
ence field B;, which may be referred as A B;, and nonlinear
terms due to the terms in the exact equations of motion
that do not depend on B;.

One can see from the exact equations of motion, that the
contributions to f; which depend explicitly on AB;, when
AB, =0, are given by

f2

il

1 ,
B_p(l +z/p)AB,

fa

i

1
——B—p(1 +2/p)AB; (35)

Repeating the above derivation of Eq. (33) for », including
the f; terms, one finds the 5 equation for the z-motion

| _‘fl’ + v szﬂg/z P
dgz " F A 77
Af d ( i )
= +—h+5 | 36
fo= pegRass(45) 69
ds
ded = A
12 Vg P
A similar equation can be found for the y motion,
2
@ + v2 Vyzﬁgl f.
gz " " Azs Y
_ Ads d(f3
fov = fat A34’f3 +5; (A34 (37)

For the case of a gradient perturbation
ABy = -Gz (38)

one can use Eq. (36) to find the change in v, Ay,. One

finds 1 G
Allx = 2—7}- deBzB—p

This well known result for Ay, is not changed by using the
exact linear equations.

(39)
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