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ABSTRACT

This paper describes the theory and application of a three-dimensional com-
puter code SHAPS to the complex piping systems. The code utilizes & two-
dimensiona! implicit Eulerian method for the hydrodynamic analysis together with
a three-dimensional elastic-plastic finite-element program for the structural
calculation. A three-dimensional pipe element with eight degrees of freedom is
employed to account for the hoop, flexural, axial, and the torsional mode of the
piping system.

In the SHAPS analysis the hydrodynamic equations are modified to include
the global piping motion. Coupling between fluid and structure is achieved by
erforcing the free-slip boundary conditions. Also, the response of the piping
network generated by the seismic excitation can be included.

A thermal transient capability is also provided in SHAPS. An energy equa-
tion is used to compute the coolant temperatures due mainly to the heat convec-
tion. This equation is linked together with a radial heat-conduction equation
to establish the temperature profile throughout the pipe-wall thickness. Ther-
mal rechanical stresses are calculated by a thermo-viscoplasticity constitutive
equation. The flow stress is then determined by an associated flow rule via
Newton-Raphson procedure.

To illustrate the methodology, many sample problems dealing with the hydro-
dynamic, structural, and thermal analyses of reactor-piping systems are given,
validation of the SHAPS code with experimental data is also presented.

INTRODUCTION

During postulated accident events, the piping systems of nuclear reactors
can be subjected tc trancient loadings of differant types: (1) hydrodynamic
loading resulting from pressure-wave propagation due to a core-disruptive ac-
cident (CDA) or a sodium-water reaction (SWR), (2) thermal loading generated by

. hot coolant sudden entering into the piping system, (3) structural loading due

to seismic events, and (4) existent loads in the piping system engendered by
normal reactor operation, such as internal pressurization, thermal effects, and
creep phenomena. Because of geometry complexity and different types of loadings
involved in the piping system, development of the multi-dimensional techniques
or computer programs to assess the piping integrity is essentially a necessity.




Some of the postulated accidents for Liquid Metal Fast Breeder Reactors
(LMFBR) can be analyzed as a piping system subject to simultaneous pressure
pulses of high magnitudes. Examples of such accideats are a CDA for the primary
heat transport cystems and SWR for the secondary heat transport systems. The
analysis of the interactions of the applied pressure pulses with one another and
with the different components of the piping system can become extremely complex
depending on the layout of the system, the number of the applied pulses, and the
number and types of the components in the piping system. For example, the de-
gree of complexity generated by the pressure wave propagation during an CDA can
be imaged from the typical piping Toop of the primary heat-transport system
shown in Fig. 1.

Fig.1 Typical primary heat-transport system of looped LMFBR

The structural response of a piping system to the applied and subsequently
propagating pressure pulses can be visualized to consist of two distinct
modes: the breathing mode of the structural components as a 'direct result of
the internal pressure, and the flexural mode of the system as it moves in the
three-dimensional space. The two modes can be adequately represented by a bi-
axial state of stress. Such stress is usually generated from the combination
of: (1) an axial stress resulting from the axial extension and contraction of
the piping components, the flexural bending of the pipes and components in two
orthogonai planes, and the axisymmetric bending of the pipe walls; (2) a hoop
stress resulting from the pipe-wall radial expansion or contraction; and (3) a
shear stress resulting primarily from the torsion of the pipes and components.

To perform the structural analysis of piping systems generated by various
loadings mentioned early, a piping analysis program was initiated in the Reactor
Analysis and Safety Division of Argonne National Laboratory. The ICEPEL code
[1] was developed to perform a coupled hydrodynamic-structural analysis of
piping systems in two dimensions. The ICEPEL code is an extension of the ICECO
code [2] develeoped early for LMFBR containment analysis. In ICEPEL, the
Impiicit Continuous-Fluid Eulerian finite difference hydrodynamics [3] is
coupled to a nonlinear elastic-plastic explicit finite-element model of the
piping system using thin axisymmetric shell element and co-rotational coordinate
formulation [4].

Although the ICEPEL code can treat complex wave propagation in the piping
system in two dimensions, it considers only the breathing mode of the pipes and
components by ignoring the globe motion of the piping system. Furthermore, the
code requires the centerline of ali pipes and components to be fixed in space
and has no thermal-stress calculational capabilities.

To provide an integrated analysis of piping systems a three-dimensional



been developed. In the structural analysis, SHAPS utilizes a three-dimensional
pipe element with eight degrees of freedom at each node, using co-rotational
coordinates in the mathematical formulations [5]. Six degrees of freedom, three
displacements and three rotations, describe the flexural motion in three-
dimensional space. The remaining two degrees of freedom describe the axisym-
metric breathiny mode in terms of hoop displacement and wall bending rotation.
In addition, a spring element is used to model piping supports, such as snubbers
and hangers. Thus, the structural analysis considers hoop, flexural, axial, and
torsion modes of the piping systems.

In this paper, the aspects of hydrodynamics and the coupling of the three-
dimensional structural analysis to the two-dimensional Eulerian hydrodynamics
are addressed, together with the description of the thermal! transient capability
developed recently. Sample problems are given regarding applications of the
SHAPS code to the response of piping systems generated by various accident
loads.

HYDRODYNAMICS

As the pipe system moves in a three-dimensional space, it carries along
with it the flowing fluid. The hydrodynamic finite-difference mesh is also
assumed to be carried along with the pipe system without changing its shape or
its size. Nevertheless, the fluid remains free to slide along the pipe wall and
the pipe remains free to twist independently of the fluid.

Such assumed motion of the finite-difference mesh is to be considered in
the hydrodynamic governing equations in a global sense, assuming that the axi-
symmetry of the fluid flow is maintained, at least within each individual pipe

element.
Generalizing the problem, let us consider a control volume V bounded by a

surface S and moving with an arbitrary velocity VG. The conservation of mass
and momentum of the fluid flowing through V can be written as
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where n is a unit vector normal to the control surface S, p is the density, P is
the fluid pressure, vi is the fluid velocity, and

V-, (3)

In Eq. (2), the viscous and gravity terms are neglected for simplicity.
Furthermore, since the fluid and the finite-difference mesh are moving to-

gether in the transverse direction, one can easily see that such a motion is

equivalent to a case in which the control volume is fixed in the radial direc-

tion, i.e., UG (the radial velocity component of e ) is zero.

Therefore, in terms of the cylindrical velocity components u, in the radial
direction, and v, in the axial direction, and considering the viscous forces in
the momentum equations, Eqs. {1) and (2) can be written as
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where V0 is defined by an equation similar to Eq. (3), and

q = -(A+ 2u) .}_g._).a:f" +,§l£. . (7)

In the above equations A and u are the first and second coefficients of
viscosity of the fluid, respectively.

The above governing equations are similar to the standard equations for the
Implicit Continuous-fluid Eulerian (ICE) method [3] with only one exception,
that vD appears in some of the convective terms instead of the standard fluid
velocity v. Following the ICE differencing scheme, which assigns the pressures
and densities to the center of the zone and the velocity components to the
center of the zone boundary normal to their direction, the differences between
the above governing equations and the standard ICE equations [3] are reflected
only in the source terms Rj+1/2,j and Si j4+1/2 Of the ICE-difference momentum
equations in Gy j of the ICE-PoiSson equation.

FLUID-STRUCTURAL COUPLING

To account for the pipe-wall hoop motion in the hydrodynamics, we consider
a free-slip fluid interface motion with respect to the pipe wall. The fluid
interface motion is contemplated as equivalent to that of a free surface with an
applied pressure distribution. Given the pipe-wall shell motion with respect to
the pipe axis, as obtained from the structural computations, one can produce
that same motion of the fluid interface with some unique pressure distribution
applied to the interface.

The fluid interface with the pipe wall is defined by a Tocus of points rep-
resenting the end points of the pipe shell for ail structural pipe elements.
Straight-line segments are assumed to join these points and thus define the
shape of the interface. In general, the midpoints of each- of these straight-
1ine segments will not lie on any of the Eulerian mesh lines used in the finite-
difference solution of the hydrod:'namic equations. The finite-difference zones
in which such points lie are flagged as boundary zones. The pressure at che
center of these boundary zones determines the motion of the fluid interface with
respect to the pipe axis. The pressures in the boundary zones are either
adjusted iteratively or computed explicitly until the motion of the fluid inter-
face conforms with the motion of the pipe wall, so that the fluid can freely
slide along the tangent to the wall, In the direction normal to the wall, the
fluid and the wall move together.

Implicit Method
The ?oiiowing relaxation equation is used to compute the pressure in the
boundary zones [2]:

pk+l o pk
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where nis a unit normal vector pointing to the fluid and defined at the mid-
point of the‘§traight-line segment associated with finite-difference houndary
zone (i,j), v, is the velocity vector of the midpoint of the wall segment asso-
cliated with ane {i,d), v is the velocity vector of the fluid particle at the



midpoint of the wall segment, At is a relaxation parameter, and & is a zone-size
parameter. Superscript k counts iterations, whereas n counts time steps.

Clearly, ol gl is one of the iterates and must be recomputed each time the pres-

sure and velocities are adjusted.
Iterating Poisson's equation of the Implicit Continuous-fluid Eulerian

(ICE) methad for the interior zones and Eq. (8) for the boundary zones using the
new iterates of pressures in zones (1-1,3) and (i,j-1), while sweeping the mesh
in the direction of increasing i and j, is eguivalent to a successive overrelax-
ation scheme. Von Newmann's Fourier stability analysis of the difference equa-
tions in such a scheme yields a relaxation parameter At:

2
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The use of Eq. (8) and Eq. (%) shows that thﬁ/é;essures in the boundary zones

are adjusted by an amount proportional to thy fluid mass flow rate across the

wall. The boundary-zone pressure is 1ncrea,ed when the -fluid is crossing the

wall and is decreased when the fluid is pu411ng away from the wall.

To evaluate the bracketed term of Eq. (8), we refer to Fig. 2 which shows
the pipe-wall segment (fluid interface) of pipe element k in relation to the
Eulerian finite-difference mesh. The boundary zone is flagged with the letter B
in the upper Teft corner. The midpoint of the wall segment is b, and the fluid
particle next to it is p.

Fig.2 Effect of pipe-wall hoop motion on hydrodynamics

The Eulerian finite-difference mesh is assumed to be fixed to the co-
rotational coordinate system of the element. Hence, the fiuid velocities, which
are computed with respect to the Eulerian mesh, are velocities as seen from the
co-rotational coordinate system of the element. Furihermore, the pipe-shell
hoop motion due to internal pressurization is also referred to the co-rotational
coordinates of the element. Therefore, the fluid-velocity components of the

particle p relative to the pipe wall are u, - uh in the radifal direction and vI




in the axial direetion. Thus, the fluid velocity relative to the pipe wall and
along the vector n is vp sin 8 - (up - up) cos 6.

Explicit Method

At the beginning of a hydrodynamic computaticnal cycle, the structural re-
sults using the oressure of the previous hydrodynamic cycle are readily avail-
able. From such results, the veloscity of the structure at the midsegment point
b is available, For example, the radial velecity at b is

u, = 0.5(wN + wN+1) . , (10)

Next, the hydrodynamic pressures in all fluid zones are computed using Poisson's
equation, and the fluid velocities at the boundaries between any two fluid zones
are computed using the momentum equations. Since the fluid is assumed to slip
freely along the pipe walls, the axial velocities in the boundary zone are set
equal to the axial veldcity in the zone across the wall. The axial velocity at
p is then evaluated by linear interpolation among the nearest axial velocity
stations.

Now, the radial velocity component at p is set to satisfy the condition
that the fluid particle p and the midsegment point b move together in a direc-
tion normal to the wall. Thus,

u

o uy, * (vp - vb)tan 8 . ' ' (11)

Using Up, Ui-(1/2),]s and the known position of p, we compute the radial
velocity Uj+(1/2),j by linear interpolation between up and uj.(1/2),ji thus,
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Finally, the radial momentum equation is used to compute the pressure in the
boundary zone Pi4+1,j, knowing uji(1/2),33 thus,
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THERMAL ANALYSIS

Energy Equation

%ne capability has been introduced in the SHAPS code pertains to the
treatment of the thermal shock that could be experienced by the primary piping

system due to either cooling fluctuations in the core or the pre-existing
thermal gradient during the normal operating condition. Here an energy equation
is developed that provides temperature distribution in the piping system.

In the differential form, the enerty equation derived from the piping
configuration and the corresponding control volume shown in Fig. 3 is

2 -
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where p 15 the average density at a cross section perpendicular to the pipe
line, ¢ the specific heat constant, T the temperature, v the average axial fluid
velocity, p the average pressure, * and n the viscosity coefficients, R the pipe
inner rad1us, hj the coefficient of heat transfer at the inside surface of the

wall, T1 the wall temperature at the inner surface, Pg the pressure at the pipe

boundary, and u" the wall radial velocity.
The energy equation can be further written into the f1n1te-d1fference form
(see Fig. 3) which yields
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Fig.3 Control volume for derivation of energy equation

Heat-Conduction Equation
The heat conguct1on model of the SHAPS code utilizes a one-dimensional

radial heat conduction equation to determine the temperature profile through the
wall. This equation is

W
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where py is the density of the pipe wall; cy is the heat capability of the wall
material; k, is the heat-conduction coeffic?ent of the solid wall; ™ is the
wall temperature; and r is the radial position of the temperature zone. Note
that for isotropic homogeneous materials, the thermal conductivity k, can be
factored gut of the right-hand side of Eq. (16).

To obtain the temperature distribution throughout the pipe wall, Eq. (18)
is written implicitly into finite-difference form with respect to the control
volume shown in Fig. 4. The resulting finite-difference heat conduction equa-

tion is
T’!+1 - Tn sr 8r
J d__x«@ n+l W n+l oWy n+l
5 =~ Grz Tj+1 (rj + -2_) + Tj-l (rj -2—) 2rj Tj , (1N
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Note that the finite-difference heat conduction equation applies only to the
interior temperature nodes. In other words, for the finite difference temper-
ature mesh shown in Fig. 11, Eq. (17) valids for j =2, 3, . . . , J=1,

Fig.4 Control volume for derivation of the finite-differance heat-conduction
equation

At the inner and outer surfaces of the pipe wall the temperature boundary
conditions must be satisfied. Thus, at the inner surface where the hot coolant
contacts with the pipe wall the convective boundary condition is

n+l T ™ Ky pel pel
h Te =Ty )=k ), =z, (o -T2 ) (18)
where understandably T is the fluid temperature; Ty is the wall temperature at
the first node; hy is the heat transfer coefficient; and Tg and T, are tem-
peratures at nodes 0 and 2, respectively.

The heat transfer coefficient hy is determined from the characteristic of
the fluid. Presently, two formulas are available: one for liquid metals and
one for other regular fluids. Prandtl's numbar is tnhe criteria that determines
which formula 1s to be used. Denoting Reynold's number and Prandtl's number by
2e and P., respectively, the heat transfer coefficient for 1iquid metals has the

orm



= 0.8
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For other fluids the coefficient hj is

. 0.8 ,0.333
hy = ke 0,023 Re Pr IRy
On applying Eq. (16) at node 1 and eliminating T3+1 we obtain
n+1 n+l _ n
L 1+a+ ab;, - aT, T +ab, T (19)
where
ér hi ér
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UL Ry
Similarly, at the outer surface (node J) of the pipe wall the temperature
equation is
n+l n+l _ n
Tj 1+a+ abo aTj 1 Tj + ab0 T, o (20)
where
§r h or
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h, is the heat transfer coefficient of the material outside the pipe; Rg is the
pipe outer radius; and Te is the ambient temperature.

Combining Eqs, (17), (19), and (20) the temperature at each node can be
solved by the regular iteration method.

Thermo-ViscoE1astic1tz Constitutive Eﬂuatiqgi
e mathematical model for the thermal-stress analysis is applicable to the

behavior of a large number of materials under a variety of loading conditions,
such as thermal, plastic, and viscous effects. This model is termed as "thermo-
viscoplastic" ever though elastic behavior is also inclivaed.

For many materials the simplifying assumptions of isotropy and a Von Mises
flow criterion are justified by experimental data. Thus, for the problem
involving calculations of thermal-mechanical stress the basis of the approach is
to solve the flow condition [6]

=i

¢=B-H(éi,e,T) ’ (21)

in which o and H denote the effective stress and flow stress, respective-

1y; 51 and Ei are the effective inelastic strain and its rate; and T is the
temperature.

SAMPLE PROBLEMS

Experimental Validation of Fluid-Structure Interaction
Test FP-E-103 of a single elbow piping system 1s one of the simple elastic-

plastic piping experiments performed by SRI International [7] for verifying

e




Apiging codes,such as ICEPEL [8? and PTA-2 [9]. The same test is analyzed here
us

ng the new three-dimensional coupled code SHAPS. The purpose of this
analysis is (1) to validate the fluid-structure interaction scheme, (2) to
investigate the flexural response of a single elbow configuration to internally
propagating pressure pulses, and (3) to estimate the pressure attenuation along
the elbow. Since the entire results are quite voluminous only important

portions are presented here.
k schematic of the experimental layout and the instrumentation locations of

test FP-E-103 are shown in Fig. 5. A specially designed and calibrated pulse
gun is directly flanged to a thick-walled stainless steel pipe of 8.26 cm (3.25
in) outside diameter, 0.48 cm (0.188 in) wall thickness, and 304.8 cm (10 ft)
length. This pipe is directly flanged to a thin-walled Nickel-200 test pipe
which is 152.4 cm (5 ft) long and has an outside diameter of 7.62 cm (3 in) and
a wall thickness of 0.165 cm (0.065 in). The thin-walled test pipe is connected
in series to identical pipe through a 90° thick-walled stainless steel elbow of
11,43 cm (4.5 in) radius of curvature and 0.762 (0.3 in) wall thickness. The
second flexible pipe ended with a heavy blind flange.

Fig.5 Layout of the SRI Pipe-Elbow Experiment



A typical comparison between the calculated pressure history and the

.measured one at gage P2 inside the thick.walled pipe is shown in Fig. 6. Con-

sidering tke effects of implicit hydrodynamic computations in smearing uff sharp
pressure peaks, the agreement between the calculations and the experimental
results in pulse shape, time of arrival and magnitude is excellent. Cavitation,
which is indicated in the measurements of the zero pressure, is well predicted
by the calculations which uses a zero cut-off pressure. At gages F4 and PS5 a
very good agreement in all aspects of the incident pressure pulse is found from
comparisons between the calculated and the measured pressure histories. The
plastic deformation of the pipe walls caused a significant reduction in the
pressure peak magnitude as the pulse propagates along the pipe. Dispersion of
the pulse is also indicated in the wider pulse at P5 predicted by SHAPS,

Fig.6 Comparison of the calculated and measured pressure-time histories at
gage P2 of the thick-wall stainless steel pipe

In the vicinity of the elbow, the comparisons between the calculated and
the measured pressure histories for gages P8-P10 upstream from the elbow and
gages P14-P16 downstream from it are shown in Figs. 7 and 8. In addition to the
good agreement, it should be mentioned that the calculated peak pressure down-
stream from the elbow is about 3.35 MPa, which is slightly less than th= cal-
culated peak upstream from the elbow of avout 3.61 MPa. A drop of about 7% as
compared to the measured drop of about 18%,

Fig.?7 Comparisoa of the calculated and measured pressure-time histories at
gages PE-P10 of the first flexible pipe



Fig.8 Comparison of the calculated and measured pressure-time historics at
gages P14-P16 of the second flexible pipe

it snould also be noted here that the two-dimensional ICEPEL computations
which ignore the flexural motion and treat the elbow wall as rigid had showed:
(a) no drop in the peak pressure along the elbow and (b) slightly higher
pressure levels - of about 4 MPa - in the flexible pipes as well as in the
elbow. Similar results were obtained from the three-dimensional SHAPS
computations when the flexural motion of the elbow nodes were constrained.
Therefore, it is concluded that the calculated drop in peak pressure is due to
the flexural motion of the elbow in response to the prupagating pulse.

To illustrate the code capability on computing the circumferential strain
the predirted and measured strains at gages SG11-SG15 located 7.62 cm (3 in) up-
stream from the elbow are given in Fig. 9. As can be seen that the calculated
strains are well within the wide range of experimental strain measurements
around the circumference of %“he pipe. The flexural displacements of the nodes
along the piping system indicated that bending of the pipe occurred as a result
of the propagation of pressure pulse around the elbow. Examination of the
flexural displacements of the end of the calculation time indicates that, near
the elbow, the pipe nodes moved transversely in the positive y-direction; while
near the junction with the thick-walled pipe, the nodes moved transversely in
the negative global y-dirzction. This configuration resembles the second
bending mode. Such bend:ng occurred inspite of the fact that the calculations
started from a pertect pipe. Imperfections in commercial pipes are expected to
enhance thz bending response.

Fig.9 Comparison of the calculated and measured strain-time histories at
 gages SGyy-SGyg of the first flexible pipe



. Therefore, it can be concluded that the wide variation in the circum-
ferential strains -round the circumference of the pipe is partly due to bending
and partly due to variation in the wall thickness around the circumference.

Structural Response Analysis of the Steam Generator Piping System

The capabilities or the SHAPS code are further demonstrated from the
analysis of a stream-generator piping loop shown in Fig., 10. This piping system
consists of 8 straight pipes, 6.elbows, 1 reducer, 24 snubbers,.and 5 hangers.
Structurally, the system is represented by 91 pipe elements, 24 linear spring
elements, and 116 nodes. Node 1 is at the inside end of the super heater outlet
nozzle. Node 92 is at the inside end of the evapori:tor inlet nozzle. Other
modelling features are listed as follows:

{a) Each elbow is represented by 3 straight pipe elements.

(b) The reducer is modeled by a sudden change in cross-sectional area at
node 88,

{c) A1l snubbers are to be represented by linear spring elements without
gaps (free play).

(d) The analysis is to be limited to elastic responsa using the linear
elastic material properties of the 2 1/4 CR-1 Mo steel piping as given in
Nuclear Systems Material Handbook. *

(e) The input pressure pulse is to be simplified to a triangular pulse
with a linear up ramp from zero to 1500 psi in 8.2 ms followed by a down ramp to
zero pressure in 51.2 ms.

{f; A nonreflecting boundary is used at tha superheater outlet nozzle.
g) Structural nodes 1-5 and 90-92 are fixed in space as thay represent
the overstrong superheater-outlet and evaporator-inlet nczzles, recpectively;

(h) nodes 93-116 representing the anchor points of the snubbers are also
fixed in space.

Using the model described above three cases were considered by the SHAZS
code:

Case 1, to represent the hangers as rigid by fixing the nodal displacement
in the Y-direction at nodes 7, 25, 40, 59, and 86 (Fig. 28).

Case 2, to ignore the hangers by freeing the nodal displacement in the Y-
direction at nodes 7, 25, 40, 59, and 86.

Case 3, similar to Case 2 but without the inline snubbers (S-44, 42, 34,
36, 30, 28, 18, 16, 14, 12, 10, and 8). A small stiffness of 10 1b/in is
selected for these snubbers.

A study of the calculated pressure histories along the piping loop indi-
cates that the change of both pressure peaks and pulse durations is small. This
is because the piping system is responding elastically, and hence, the
anticipated attenuation of pressure pulse peaks due to plastic deformation is
eliminated. The results also show clear evidence of pressure pulse reflections
along the system. These reflections are attributed to the reducer at node 88,
the elbows, and the flexural response of the piping system.

To illustrate the 3-D response of the piping loop Figs. 11 and 12 compare
the flexural displacements at nodes 37 and 64 for cases 1 through 3. From these
figures one can see that: (a) the elimination of the rigid hangers has effected
the amplitudes of displacements particularly in the Y-direction. The amplitudes
are in general higher in the more flexible system of case 2. The frequency is
slightly higher in the stiffer system of case 1. (b) The elimination of the
inline snubbers in case 3 resulted bigger amplitudes and even lower frequencies
than cases 1 and 2 as the system in case 3 is the most flexible.

Furthermore, examination of the stresses throughout the system indicated
that the hoop stresses resulting from the internal pressurization are of the
same order of magnitude as the axial stresses resulting from the bending of the
pipes and of the walls. Therefore, consideration of hoop stresses, which are
commonly ignored by general-purpose structural codes, are important in assessing
the structural adequacy of piping systems.

Thermal Transient in a Straight Pipe .
To 11lustrate the coupled hydrodynamic-thermal analysis, the SHAPS code was

applied to the wave propagation in 2 water-filled straight pipe. Figure 13
shows the mathematical model used in the analysis in which a pipe of 1219.2 cm
long was represented by 20 axial zones. A constant pressure of 50 Mpa and a
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Fig.lo SHAPS model of the superheater to evaporator piping system
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Fig.11 Flexural displacements as a function of time at node 27



Fig.12 Flexural displacements as a function of time at node 64
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Fig.13 Mathematical model used in the SHAPS analysis

constant coolant temperature of 300°C are applied to the front junction of the
pipe. The other end of the pipe is assumed to be a free surface. The ambient
temperature of the coolant in the pipe is 30°C.

The pressure-time history at zone (2,9) is given in Fig. 14. Since the
pressure puise propagates with the speed of sound, disturbance arrives there at
a very short time. Also, the effect of the free-surface rarefaction wavs is
clearly seen., Figures 15 and 16 depict the time histories of the fluid axial
velocity and the coolant temperature at the same location. Because the thermal
wave propagates with the fluid veleccity it takes about 300 ms for the hot
coolant to convect to the zone (2,9) and to reach the steady state temperature
of 300°C. Results of this study indicate that propagation of the thermal wave
is a slow process. The computed pressure of the fluid axial velocity and the
cnolant temperature at the same location. Because the thermal wave propagates
with the fluid velocity it takes about 300 ms for the hot coolant to convect to
the zone (2,9) and to reach the steady state temperature of 300°C. Results of
this study indicate that propagation of the thermal wave is a slow process. The
computed pressure and temperature histories provide useful information for
calculating the thermal transient of the piping system.

CONCLUSTION

A new three-dimensional code, SHAPS, for hydrodynamic, structural, and
thermal analyses of piping systems has been developed. Presently, the code uses
the impiicit time integration scheme fer both hydrodynamic and thermal transient
analyses, together with an explicit time integration scheme for the structural
calculation. It has been applied to a simple elastic-plastic single elbow
piping experiment. The calculations compared favorably with the experimentai
measurements. Also, the calculations showed that an attenuation in peak
pressure along the elbow occurs. Moreover, the SHAPS code is quite efficient.
The CPU time for simulating this experiment is about 20 min on an IBM 370/195.
This pressure attenuation results from the motion of the elbow. The good
agreement achieved demonstrates that the SHAPS code is an accurate and useful
tool for the LMFBR safety analysis.

Many areas of the SHAFS code still need additional research effort or
improvement. First, as mentioned above, the code uses an explicit time
intey~ation scheme for the structural analysis. For dynamic problems that
involve short solution times and high-intensity pressure loadings, explicit
structural analysis is very efficient. However, for static or quasi-dynamic
problems a3zilng with long-term calculations and slow-varying prassure loadings,
such as those generated by thermal wave propagation, creep phenomencn or, normal
operation zi-essurization, the explicit structural analysis could becomz very
expesnive because of its restricted small time steps. Therefore, it is highly
desirable to provide an option of using the implicit time integration scheme for
the structural aralysis so th-t problems involving long duration can also be
analyzed.

Second, the structural program should be expanded by adding taper and
curved pipe elements to model, respectively, the gradual flow-area change, as
well as the increased flexibility of the elbow.

With the analytical development to be made in a continuous and progressive
manner, the SHAPS ccde promises to be a significant step toward obtaining a
better structural-hydrodynamic-thermal analysis of complex piping systems under
transient condition. Piping support motion and external loadings, as weil as
thermal transients, can be considered in addition to the loading from internally
propagating pressure pulses.
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Fig.14 Pressure-time history at zone (2,9)

Fig.15 Fluid axial velocity as a function of time at zone (2,9)

Fig.15 Coolant temperature as a functfon of time at zone (2,9)
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