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Abstract

In this dissertation I quantitatively demonstrate how the wavelet transform can be an
effective mathematical tool for the analysis of transient signals. The two key signal pro-
cessing applications of the wavelet transform, namely feature identification and represen-
tation (i.e., compression), are shown by solving important problems involving the

seismogram and the electrocardiogram.

The seismic feature identification problem involved locating in time the P and S phase
arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant
issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be
used to locate both the P as well as the S phase using only information from single station
three- component seismograms. This is accomplished by using the basis function (wave-

let) of the wavelet transform as a matching filter and by processing information across



scales of the wavelet domain decomposition. The “pick” time results are quite promising

as compared to analyst picks.

The representation application involved the compression of the electrocardiogram
which is a recording of the electrical activity of the heart. Compression of the electrocar-
diogram is an important problem in biomedical signal processing due to transmission and
storage limitations. In Chapter 4, I develop an electrocardiogram compression method that
applies vector quantization to the wavelet transform coefficients. The best compression
results were obtained by using orthogonal wavelets, due to their ability to represent a sig-

nal efficiently.

Throughout this thesis the importance of choosing wavelets based on the problem at
hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear predic-
tion in order to design wavelets that are geared to the signal or feature being analyzed. The
use of these designed wavelets in a test feature identification application led to positive

results.

The methods developed in this thesis; the feature identification methods of Chapter 3,
the compression methods of Chapter 4, as well as the wavelet design methods of Chapter

5, are general enough to be easily applied to other transient signals.
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CHAPTER 1 Inlmduction

1.1 Background

During the last several years the wavelet transform (WT) has emerged as an important
signal processing research tool. A group of French geophysicists were the first to formally
introduce the idea of the wavelet transform as a result of their work on seismic signals
(Grossmann and Morlet, 1984; Goupillaud et al., 1984). Wavelet transform theory as it
relates to filter banks was refined by several researchers in the late 1980s and early 1990s,
including Mallat (1989), Daubechies (1992), Vetterli and Herley (1992), and Vaidy-
anathan (1993). Though work on wavelet theory has been extensive, research into wavelet
transform applications is still in its infancy. Of particular interest is the use of the wavelet
transform for the analysis of transient signals, since it is seen as an improvement over the
traditionally used short-time Fourier transform (STFT). This is based on the fact that by

using different scales of the analyzing wavelet, the wavelet transform is able to locate in



time short duration, high frequency behavior, while resolving in frequency longer duration

lower frequency behavior.

1.2 Overview of this Research

The two main areas of signal processing where the wavelet transform is seen as having
the greatest potential impact are feature identification and data compression. This disserta-
tion studies the wavelet analysis of transient signals in two parts. The first part (Chapter 3)
focuses on the use of the wavelet transform for feature identification in three component
single station seismograms. The features of interest are the P and S phase arrivals. Meth-
ods are developed to accurately locate these arrivals using information that is present
across the scales of the wavelet decomposition. The second part (Chapter 4) reports on the
development of an electrocardiogram (ECG) compression method using vector quantiza-
tion (VQ) of the wavelet coefficients. The common issue among both applications is the
importance of wavelet choice. For compression, the wavelet must be chosen to produce
the most compact representation of the original signal. For feature detection, the wavelet
should best “match” the feature in question. The wavelet can be chosen from a “library” of
standard wavelets constructed mathematically and not based on signal or feature match-
ing, or they can be designed independently using signal features as design guidelines. In
Chapter 5, I introduce a design method that uses linear prediction to design wavelets that

are geared to the particular signal being studied.

Thus, overall, the purpose of this research can be broken down as such:



Investigate the use of the wavelet transform as a feature identification tool. Develop
methods to identify features in single station seismograms by taking advantage of the
freedom of basis function choice as well as the multiscalar decomposition of the wave-

let transform.

Develop a compression technique using the wavelet transform and vector quantization.

Compare compression results of different wavelets.

Develop a wavelet design method that uses information about signal features in order

to design wavelets that are “best” suited to a particular application.

The main contributions of this research are:

Development of a method to locate seismic arrivals in single station seismograms using
information that is present across wavelet scales. Comparison of performance of vari-
ous wavelets in thié feature identification problem. Finding that earlier P phase arrival
can be used to design wavelet to locate S phase arrival. Establishing the wavelet trans-

form as a valuable seismic analysis tool.

Development of ECG compression method by using vector quantization on the wavelet
transform coefficients. Finding that higher order orthogonal wavelets lead to best com-
pression results due to the resulting nonredundant decomposition. Achievement of stor-

age rates as low as 1.1 bits-per-sample while retention of ECG feature integrity.

Development of a wavelet design method that uses linear prediction to design wavelets
by using strictly time domain feature properties. Application of this method to design

wavelets for seismic feature identification.



These contributions are of use not only for the analysis of seismic signals and ECGs, but
also in the analysis of other types of transient signals, including images. Most of the algo-
rithms developed in this research are not dependent on the type of signal being analyzed,

and those that are need only minor modifications to be applied to other situations.

1.3 Organization of Dissertation

This dissertation is arranged as follows. Chapter 2 presents a brief tutorial on the wave-
let transform, highlighting its advantages over traditional signal processing techniques,
and presenting its main properties. Also presented is much of the notation that is used
_ throughout this dissertation. A discussion of wavelet transform applications is found at the
end of Chapter 2, providing a springboard for the guts of the dissertation: Chapters 3, 4,
and 5, the contents of which have already been described in the previous section. Each of
the chapters contains a thorough theoretical justification for the methods developed. At the
end of each chapter are appendices providing more detailed derivations and code for those
interested. Chapter 6 contains conclusion about this research as well as ideas about the

possible directions of future work.



CHAPTER 2 The Wavelet Tr ansfonn

2.0 Motivation and Introduction

In this chapter the mathematical tool that is the focus of this dissertation is introduced.
Most discussions on the wavelet transform (WT) begin with a review of the Fourier trans-
form (FT). Although this is not necessary, as the WT is not dependent in any manner on
the FT, starting with the FT helps to draw attention to the ways in which the WT is differ-
ent than, and in certain cases (dependent on the application), superior to the FT. Also,
when introducing a new subject it is helpful to start with something that is familiar. Thus,

the first step is to present the definition of the FT. The FT of a function x (¢) is defined as:

X(0) = jfwx(z) exp (—jor) dt )

where x (£) isin L (R) .
The inverse Fourier Transform (IFT) is:

x(t) = %I&X(m)exp(imt)dw (2



Looking at Eq. (2) it can be seen that the function x () - is represented as a sum of infinite
length sinusoids. The FT is a powerful tool that has been used extensively in various sig-
nal processing applications. Nonetheless, it does have some serious limitations. The FT
provides a good representation for stationary signals especially signals that are made up of
a combination of pure sinusoids. However, problems arise if the signal to be represented
contains sudden sharp transitions (spikes or bursts). These “transients” need an infinite
number of sinusoidal components to be accurately represented using the FT. Thus, this
type of behavior is spread out over the entire frequency axis, and therefore is difficult to

isolate in the frequency domain.

A classic method used to overcome this type of problem is to window the signal before
taking the FT. This type of procedure is called the short-time Fourier transform (STFT)

(Gabor, 1946; Allen and Rabiner, 1977), which is just a windowed version of the FT:

(e8]
STFT (1, w) = J x()g(t—1) e_jmtdt 3
—00
The discrete-time version is:
w .
STFT(n o) = x[mlwln—mle > (4)
m=—o0

where g (w in the discrete version) is a window function which can be rectangular, Gaus-
sian, Hanning, etc. (Oppenheim and Schafer, 1989). The STFT divides a signal into seg-
ments and takes the FT of each resulting section. The size of the window to use depends
on what type of features need to be identified. To locate short-time high frequency behav-
ior, narrow time windows are needed, while to resolve low frequency behavior wider time

windows are necessary. This is a result of the fact that time localization and frequency res-



olution cannot simultaneously be determined to arbitrary precision. This can be stated in
terms of a redefinition of the Heisenberg uncertainty principle (which is better known as

one of the basic principles of quantum physics):

AtAf> 1 (5)

where Ar and Af are the uncertainties in time and frequency (Gabor, 1946).

To illustrate this with an example, let us analyze é synthetic signal containing a Dirac
delta function superimposed on a sinusoid (Figure 1). There are 1024 sample points in the
signal, and the frequency of the sinusoid is ® = 0.037 radians/second. Therefore, the
signal is characterized by a relatively long duration low frequency sinusoid and an
extremely short duration high frequency transient represented by the delta function. Based
on the discussion of the previous paragraph, it should be expected that in order to detect
the transient a narrow window STFT will be necessary. The STFT of the signal was calcu-
lated using a wide rectangular window of 256 points and a narrow rectangular window of
8 points (an overlap of half the window length was used). The resulting time-frequency
plots are presented in Figures 2 and 3, respectively. These plots show the frequency
response versus window position. For example for the wide window case, six overlapping
windows were used and in Figure 2 are shown the frequency responses for each of these

windows, from the first to the sixth.

In Figure 2 it can be seen that along the frequency axis there is only one sharp peak at
the sinusoidal frequency for each of the windows. From the vantage point of the time axis

there is no indication of the presence of the transient. Thus, the presence of the delta func-



tion éannot be determined from the “wide window” STFT, but the frequency of the sinu-
soid is well resolved. On the other hand in Figure 3 the peaks for each window at the
sinusoidal frequency have magnitudes that are significantly less than the peaks in Figure
2. Also, there are “ripples” at the other frequencies. However, along the time axis the pres-
ence and Jocation of the transient is clearly represented. Thus, the “narrow window” STFT
has resulted in detection and localization of the delta function at the cost of losing fre-
quency resolution of the sinusoid. So, to analyze various types of behavior in a signal the
STFT would have to be taken several times, each time with a different size window func-
tion. This is especially problematic when the location and/or duration of transient behav-
ior is unknown, which is normally the case. What is needed is a mapping that uses one
initial window function and varies its size automatically so that all frequency behavior can
be analyzed with just one pass (narrow windows at high frequencies and wide windows at

low frequencies). This is where the wavelet transform (WT) comes 1n.

2.1 Definition of the Wavelet Transform

Though some of the ideas behind the wavelet transform have been around since the
early part of the 20th century, the formalization of wavelet theory was only recently initi-
ated by geophysicists involved in seismic signal analysis (Goupillaud, et al., 1984; Gross-
mann and Morlet, 1984, Morlet, et al., 1982). The theory was refined by researchers in the
mathematical community (Daubechies, 1992) and in the signal processing coﬁlmunity

(Mallat, 1989; Vetterli and Herley, 1992; Vetterli and Kovacevic, 1995). In this and pro-



ceﬁdinﬁ sections the wavelst transform is defined <5th continuous-tlme and discrere-

time) and the advantages of this type of transform are highlighted.
The Continuous-time Wavelet Transform (CWT) is defined as:

1 —b
W(a,b) = Ve [ 1 g*(tT)dt

a,beR;ax0 fgeLl (R)

(6)

where a is called the scaling factor, b is the translation parameter (has the same meaning
as T which is in the STFT), and g is the window function or “wavelet”. The choice of g is

restricted by the following relation:

2

®
Cg= I|G|((g)|)l do < © ™
-
which is known as the admissibility condition. If it is assumed that g (¢) isin L! (R)
(which is true for all cases of practical interest), then G (®) is continuous, and therefore
the admissibility condition is met only if G (0) = 0. It easily follows from (1) that if
G(0) = 0, then fw g(#)dt = 0 and so the necessary and sufficient conditions on the
continuous wavelet are that it 1) be finite energy, and 2) have zero mean. Thus, unlike the
STFT where one is limited to a single basis function (sinusoid), with the wavelet trans-

form one can choose or design a wavelet to fit the application at hand, as long as the

admissibility condition is met. The possibilities are infinite!

Also unlike the STFT where the window size is independent of @, with the WT the
scaling factor, a, controls the size of the analysis wavelet. Looking at (6) it can be seen

that as a decreases the function g becomes more compact (the window narrows), while as
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a increases the window widens (refer to Figure 5 for an illustration of how the wavelet
broadens with increasing a . So, keeping in mind that a is inversely proportional to fre-
quency, for small a (high frequency) there is good time localization, while for large a
(low frequency) there is better frequency resolution. This is often termed a constant-Q

frequency bandwidth
center frequency

Q=%f= ®)

type of analysis and is one of the main advantages of the WT. This advantage is illustrated
in the wavelet domain representation of the example signal of Figure 1 (sinusoid plus
Dirac). Figure 4 shows five scales of that signal with the lowest scales at the top of the
plot. Notice how the location of the Dirac is clearly represented in the 10w scales, while in
the higher scales the sinusoid is well resolved. Another important (often unstated) advan-
tage of the WT is the fact that the wavelet domain is a time based domain, while the Fou-
rier domain of the STFT is somewhat abstract (compare the representations in Figures 2
and 3 with the representation in Figure 4). This can be a very important issue, particularly

when one is dealing with feature identification problems.

The reason for having the admissibility condition is so that an inverse wavelet trans-

form (IWT) can be defined. The IWT is defined as:

0 =g [ 5] wan L Tz 5 Jabas ®

This relation can be derived from the resolution of identity theorem:

o o0
1
[ =5 [ 1 8o (8app S dbda = Colf 1) (10)



"

where g_, (1) = :/%;a_-] g( t_Tb) (refer to Appendix 2.A for a complete derivation). From
(9) it can be seen that the original function f(2) is expressed as a combination of weighted,
scaled, and translated wavelets, where the wavelet coefficients W f( a, b) are the weight
factors. This is a much more natural way to represent real signals than the representation
given in equation (2), since many real signals (transient signals in particular) are more

effectively represented as a combination of basis functions that are concentrated in time

than by a combination of infinite duration sinusoids.

2.2 Properties of the Wavelet Transform

In this section some important properties of the CWT are presented. Notice that the

CWT is linear and shift invariant.

1) Linearity:

Af, () +Bf,(H) » 4 Wf1 €] +BWf2(t) (1)

Proof:

ojo 41, () + By 0) g =2 Ja

(t)g(t b)dt‘f-— Ifz( )g( )

A
N

é*——~8 ﬁl_.

2) Translation invariance: The CWT is shift invariant in terms of the translation param-

eter, b. Thus, if £, (1) = f(t—1)) , then:



W, (a,b) = Wia,b=1y)

Proof: Using f; (¢) as defined above we have:

a

17 _b
W, (a,b) = NE L f(t—ty) g(-t-—)dt

Using the substitution, t' = t—¢,, one gets:

W, (a,b) = jf( Sy (R Y

J—l_—]i f(t)g( (b o) )dt' = W (a,b~10)

3) Scalar variance: If f, () = f(2¢) , then:

1

2

sz (a,b) = f(2a, 2b)

Proof:

1 —b
W, (ab) = 7|_;i_{of(2t)g(t—a—)dt

By making the substitution, T = 2¢, one gets:

w

1—2b 1
fz(a, b) = mz__ jf( 1) ( )dt o (2a, 2b)

12

(12)

(13)

(14)

(15)

(16)

a7
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2.3 Discrete-time Wavelet Transform (DTWT) and Perfect Reconstruction

Filter Banks (PRFB)

Though the CWT is useful for the mathematical derivation of wavelet transform theo-
rems and properties, in computational applications (where signals and filters are discrete),
it is the DTWT that is used. The DTWT is generally implemented using filter banks (Vet-

terli and Herley, 1992; Akansu, 1992; Vaidyanathan, 1993).

2.3.1. Basics of PRFB

In Figure 6 is illustrated one stage of a two-band filter bank, with the squares represent-
ing linear convolution, circles with downward arrows representing downsampling by a
factor of two (removal of every other sample), and circles containing upward arrows rep-
resenting upsampling by a factor of two (inserting of zeros between samples). A mathe-
matical description of these operations is given in Appendix 2.B. In the figure, x [n] is
the input while g and 4 are called the analysis filters, and g and h are known as the
reconstruction filters. The sequence X [n] is the reconstructed version of the input. Let us
analyze the filter bank to determine the conditions needed to attain perfect reconstruction
(i.e. X [n] = x[n]). To make things easier, the z-transform representation shall be used

in the analysis.

The z-transform is defined as:

[¢ o}

X2 = Y x[nlz” (18)

n=-—o



14

Now, using some of the properties of the z-transform (Appendix 2.B) and referring to Fig-

ure 6, we have the following:

X, () = X(:)G(2) (9
X,(2) = 3 (X GEVY) +X(=V) 6 (=12) o

X,(2) = 5(X(2)G(2) + X(-2) G (=) @

X, =5@6@ = ;0@O6HE@+XGDE@) @

In a similar fashion, the following can be obtained:

Xy(2) = 3 (X(@H() H(2) +X(-2) H(=2) H(-2)) @

Now, finally the output is found to be:

X(z) = X (2) +X,(2) 24)

k(0= (1@ (6@ 6@ +H@O @) +3X() (6 (@) +H(DH()) @

The X (—z) term is due to aliasing and can be cancelled by setting
G (—z) G (2) + H(~z) H(2) to zero. This can be achieved by assuming the following

relation between filters:

G(z) = H(-2)

o (26)
H(z) = -G ()

In the time domain the above two relations are (refer to Appendix 2.B):
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gln] = (-1)"h[n]

. @n
hln] = (-1)"*1g[n]
Using (26) the output becomes:
. 1 - .
X(2)= 5X(2) (G(2) G(2) +H(2) H(2)) (28)
It should be obvious that for perfect reconstruction it is necessary that
G(2)G(z) +H(z)H(z) = 2 29)
This condition together with the earlier found condition:
G(-2)G(z) +H(-2)H(z) = 0 (30)

are the only requirements necessary to achieve perfect reconstruction. Equations (29) and
(30) together determine the filters used in the PRFB. A system just satisfying (29) and (30)
is commonly termed a biorthogonal (Vetterli and Herley, 1992; Cohen et al., 1992) sys-
tem. Additional conditions are necessary in order to achieve an orthogonal system. In

such a system the filters are orthogonal to their even translates, that is:

(g(n=2D,h(n—-2k)) =0 (31)
(g(n—=20),g(n-2k)) = &, (32)
(h(n=20),h(n=-2k)) = 8 (33)

where [, k are integers. In the z-transform domain this means that:

G)HGEY+G(=)H(-z1) =0 (34)
GGz H+G(=2)G(=z1) =2 (35)
HZ)HE Y +H(—=2)H(=1) =2 (36)
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So, for an orthogonal PRFB, conditions (34) - (36) along with (29) and (30) have to be
met. There are two interesting facts resulting from (34) - (36). One is that the length of
g[n] has to be even. In addition the one rather elegant way to satisfy the conditions

above is to impose the following:

H(z) = G(==!) @37)

which in the time-domain is:

h[n] = (-1)"g[-n] (38)

While in a biorthogonal system the reconstruction filters (g, h ) are different than the anal-
ysis filters (g, 4 ), in an orthogonal system the reconstruction filters are simply flipped ver-
sions of the analysis filters, i.e., g[n] = g[-n] and h [n] = h[-n] . This is a result of

the combination of equations (26) and (37).

In both the orthogonal and the biorthogonal systems, the two analysis filters can be seen

as a lowpass-highpass pair.

2.3.2 The Discrete-time Wavelet Transform (DTWT)

How is the wavelet transform implemented using the type of filter bank discussed
above? What is shown in Figure 6 is just one scale of decomposition and reconstruction.
For more scales, the processing shown on x [n] would be repeated on the lowpass output.
For the filters of a PRFB to be wavelet filters they must be regular (this term will be
explained further below). The highpass output are the wavelet coefficients for that scale.

(see Figure 7). This is continued until the desired number of scales are obtained. This is
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known as the pyramid algorithm. For reconstruction, all that is needed are the wavelet
coeflicients at all scales and the lowpass output (scaling coefficients) at the last scale. This

whole process can be written mathematically in the following manner:

Decomposition:
1 .
g = h@n-me,
m
P41 . (39)
aJn = Zg(2n—m) c"m
m
Reconstruction:
1 . . i .
ciz = Zh(n—Zm)cIm+Zg(n—2m)d’m (40)
m m

where d, are the wavelet coefficients and ¢! are the scaling coefficients, with ¢, being the
original signal. The index j represents scale number, and is the discrete-time equivalent of
the continuous-time scale factor a . The output scaling coefficients become the input to the
néxt stage in the DTWT. Figure 7 illustrates two stages of such a scheme. The scaling
coefficients, c/ *1 , result from the convolution of c] with a lowpass filter, followed by
dowsampling. The coefficients, c’ v , are thus known as the “coarse” approximation of
cj . The wavelet coefficients, d’ * , are a result of convolution with a highpass filter, and
are commonly known as the “detail” coefficients. The detail coefficients along with cJ
(where J equals the total number of scales) make up the wavelet representation of the sig-

0
nal ¢ .
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Finally, how is it that the filters in the pyramid algorithm are equivalent to wavelets?
The answer is that the cascade of filters converge to wavelet functions. To illustrate this let

us rewrite (39) in terms of the original signal, ’:

=Y h@n-me,

d = > g (2n—m) cy

41)

where

g [n] =gln] hy[n] = h[n]

g, 7] =Zk:gj[k]h[2k—n1 Beyyln] = Zk:h,[k]htzk—n] @

As mentioned above, in order for the filters of the filter bank to be considered wavelet fil-
ters they must be regular which means that as j — o the function & should converge to a
continuous function. Figure 5 illustrates a wavelet at three different scales resulting from
the operations shown in F igure 8. As stated by Rioul (1993), the regularity requirement
imposes some “smoothness” on the filter bank filters. The faster the convergence is of g
to a “smooth” function, the higher the degree of regularity. There are advantages of having

filters with high degrees of regularity which will be discussed in Chapters 4 and 5.

Now, how does one go about choosing or designing the wavelet filters (perfect recon-
struction and regular) used in the pyramid algorithm? That is the issue that is addressed in

Section 2.4 and in more detail in Chapter 5.
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2.3.3 Linearity and Shift Properties of DTWT

In this section the linearity and shift properties of DTWT are presented and the DTWT

and CWT are compared in light of these.

Linearity: Given two inputs c]1 [#] and c]2 [r] and using (39) the following holds:

A, (0] + B (n] > 4d" ' [n] + B [n] @)

where d£+ In] = Zg(2n —m) cfi [m] are the wavelet coefficients.
1

m

Shift variance: The DTWT is not shift invariant, i.e., if c{;' [n] = cfi [n—ny] then,

d£+ : [n] = a’? : [n—ng] (@4)
2 1

Proof:

o o
d, [n] —;g(zn m) ¢} [m—ng]
= g@n-m'=n & [m1= ") g((@n—ng) —m") ¢ [m'] (as)

AR i+ 1
= d’c1 [2n—n,] ¢d;l [n—ny]

Therefore, unlike the CWT, the DTWT is linear but not shift invariant. This is due to
the fact that the DTWT is a critically sampled representation, and the shift variance is due

to the downsampling step of the filter bank implementation. The CWT on the other hand is
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a highly redundant representation. Thus, in terms of sampling, the CWT and DTWT are at

two extremes.

2.4 Designing Wavelet Filters

As mentioned earlier, one of the main strengths of the wavelet transform is the flexibil-
ity with regards to the basis wavelet, g (#) , used in the WT, or equivalently the filters,
g[n] and A [n] , used in the filter bank of Figure 7. This choice will depend on the type
of signal being analyzed and the goal of the application. One way to make a choice of
wavelet is to test existing or “library” wavelet functions (there are many to choose from)
and use the wavelet that performs the best based on some type of metric. This is one of the
approaches that I use in my solution of a feature detection problem (refer to Chapter 3)
and a representation (compression) problem (refer to Chapter 4). For the feature detection
problem the metric is the magnitude of an output detection function. The test wavelet that
results in the detection function with the highest magnitude (high confidence) is chosen as
the best wavelet. For the compression problem the metric is the degree of compression
obtained versus the distortion in the reconstructed signal. The wavelet leading to the great-

est degree of signal compression with the least distortion is chosen.

As an alternative or a complement to the “search through a library of wavelets”
approach mentioned above, the wavelet to be used can be chosen or designed a priori
based on inherent characteristics of the signal being processed. This approach is explored

in Chapter 3 using a feature in the seismic signal (P phase arrival) as a starting point in
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choosing the analyzing wavelet by comparing the feature with “library” wavelets, as well
as designing what I call pseudo-wavelets (refer to Chapter 3). Designing actual wavelets
(as opposed to pseudo-wavelets) can be done using either frequency based, or time based
methods. A frequency based method to design the filters in a PRFB is described by Vaidy-
anathan (1993). This method starts with the design of a halfband finite impulse response
(FIR) filter using the Parks-McClellan or Remez algorithm. The variables used in the
design include passband, stopband, and length values. These can be chosen based on the
application. For example, one might choose the passband and stopband values to reflect
the characteristics of the frequency spectrum of the signal being analyzed. This resulting
filter is modified and then the minimum phase part is extracted using spectral factoriza-
tion. This minimum phase filter is the lowpass filter in the filterbank. The remaining filters
can be found using the relationships presented in Section 2.3. The details of this design

algorithm can be found in Chapter 5 which concentrates on the wavelet design issue.

Though a number of different wavelets can be designed using the Fourier-based design
method outlined above, the different ¢ype of wavelets that can be designed is limited. The
wavelets designed tend not to be that different from one another and are usually already
represented by existing wavelets. This is due to the limitations of the frequency based
design method (halfband, FIR, etc.). A more appealing method is to design the wavelet
directly from features in the signal to be analyzed. This is illustrated in a rough manner in
Chapter 3 with regards to the design of pseudo-wavelets. In that case the feature of interest
is modified slightly (mean is removed and ends are tapered to zero) and used as an analyz-

ing filter. More desirable would be to use the features of the signal to design actual perfect



22

reconstruction wavelets. A method to achieve this goal is presented in Chapter 5 utilizing

linear prediction and a recently developed time-domain based design procedure.

2.5 Applications

The two main areas of signal processing where the application of wavelet analysis has
shown promise are 1) fgature detection and 2) compression. Feature detection refers to
detection of some particular type of behavior in a signal. The problem of feature detection
proves especially difficult when a significant amount of noise is present. Compression
refers to reducing the amount of information needed to represent a signal. The main pur-
pose of this thesis is to develop and test wavelet transform based methods for these two

types of applications.

2.5.1. Feature Detection

If a signal feature of importance is not strong in a raw signal, it is often necessary to
process the signal to enhance the feature in question. Even when a feature of interest is
strong, it can be helpful to develop some type of automatic detection procedure. The fact
that the basis function of the wavelet transform can be suited to features in a signal and
that the resulting transform output is a representation of the signal over different scales
makes the WT well suited to feature detection problems. The advantage of the WT over
traditional Fourier based techniques is particularly important for transient signals. This

idea is applied to a practical situation involving seismic signals and the results are pre-
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sented in Chapter 3. Also in the same chapter more details about the WT and feature
detection are given. In Chapter 5 wavelets are designed to help with some of the problem

feature detection cases of Chapter 3.

2.5.2. Compression

There are two types of data compression: lossy and lossless. In lossless compression no
information is lost and these methods involve efficient bit allocation taking advantage of
the relationships that exist between data points. For example the difference between
neighboring data points is often significantly smaller than the actual data point values,
which will in turn can be represented using fewer bits. Transform coding on the other hand
is called lossy coding, since information is lost in the process. Wavelet transform com-
pressio;l techniques fall into this category. The advantage of the WT for compression is
that the data in the wavelet domain is less correlated than the original data, and is often
quite sparse. Thus, thresholding and quantization of the wavelet coefficients can be used
to code the data. Chapter 4 contains the results of the application of a wavelet transform
compression technique to electrocardiogram (ECG) data, along with a more thorough

description of wavelet based compression methods.

3.6 Discussion and Conclusions

In this chapter the wavelet transform has been introduced, focusing on its advantages

over traditional signal analysis methods. In addition to basic definitions, a few important
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properties, as well as methods of implementation are also presented. The purpose was to
provide basis and motivation for the problems that are investigated in the following chap-
ter. It should be noted that the wavelet transform is not always superior to traditional sig-
nal processing tools, and should not be viewed as a replacement of other transforms such
as the Fourier transform. For example, for the representation of pure sinusoids such as
those found in musical compositions, the Fourier representation is more than sufficient.
The wavelet transform should instead be viewed as an additional tool that can be used to
process signals, thus providing a different insight. In the next chapters it will be shown
how the wavelet transform can be used.to help in two important types of problems. Chap-
ter 3 deals with detecting seismic arrivals in seismograms, while Chapter 4 shows how the
WT is an effective tool in signal compression. An important issue in both Chapters 3 and 4
is how one chooses or designs a wavelet for a particular application. Chapter 5 presents a

wavelet design algorithm that uses linear prediction to help address this issue.

Appendix 2.A The Resolution of Identity Theorem and the Inverse Wavelet

Transform

As stated in Section 2.1, the definition of the IWT (9) is derived using the resolution of
identity theorem (10). In this appendix, first the resolution of identity theorem will be jus-

tified and then the IWT will be derived from it. Given that £, (¢) , /, (¢) ,and g, p(2) are
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finite energy functions and the definitions for g , (¢) and C o given in Section 2.1, we can

proceed with the proof of (10).

Proof of resolution of identity theorem:

© 0
|
I= _[:15.[ <fl: gab> <gab,f2>dbda )
—0 —0

By using Parseval’s theorem, i.e., I:x (DHy*(t)dt = J-ZOX (o) Y* (o) do, the follow-

| ing is obtained:

e ¢) o 0o O
‘ 1 ' ’ '
I = J;—ij “‘ J.Fl* (o) Gab(m) Gab* (0 )FZ(O') )dbdadwdw 47
—0 —00~00 —0

a

Now remembering that G, (®) = T(:/Il___lg(t—lz)) = ,./Hexp (Hbw) G(aw),
a

(using Fourier transform properties), (47) can be rewritten as such:

o 00
I j la|exp (—jb (0 — ")) F * (0) G (a0) G* (a0") F, (o) dbdadwdw’ (48)

%8

[r o]
1
I= J-_
a
—00  —00—00—00

Using the fact that j: exp (b (w—w'))db = 3 (@ —w') the following relation is

obtained:

(o 0] [o 0]
I= j |71Z| J’ G (a0') G* (aw') F* (0') F, (0") do'da (49)

—0

Finally, making the substitution, ®” = ®a do" = wda, one gets:
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o0 oo
— 1 " * ” ] * ' ,M
I jl(&)"/(t)'_“G(m )G* (0 )FZ((O)FI (0" do p (50)
—0 —o0
* 2
G(o" "
I=(f.0) |%,,—)—l—dm (51)
—00

which equals the right side of (10), C o (fl, f2) .QED.
Derivation of Inverse Wavelet Transform using Resolution of Identity Theorem:

Having proven the resolution of identity theorem, it can be used to derive the IWT by

setting f, (') = &(¢'—1) . The resolution of identity theorem then becomes:

w oo
1 '
oty = Ci ) = [ = [ 1809 (8 87 1))dbda
—00  —00 i
o o (52)
1 ’ ’
Chi0 = [ 5 [ 41080 (), (0 dbda
—0  —
Using the definition for the wavelet transform (6) and the definition for
1 (t—b) : .
t) = —g| —— |, the above relation can be written as such:
gab( ) Ji;lg a
o o] oo
Cfi (1) = j'l_[ W. (a,b) Lg(ﬂ’)dbda (59
! 2) 70 A
—0  —00

As can be seen, by dividing (53) by C g OD€ obtains the equation for the inverse wavelet

transform as presented in (9).
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Appendix 2.B Linear Convolution, Downsampling, Upsampling, etc.

Linear Convolution: The convolution of a discrete sequence x [n] with another sequence

h[n] is defined as such:

[« ¢]

yIn) = x(n)*h(n] = D x(klh[n—k 59

k=—o

Convolution in the time domain is just a product in the z-transform domain, i.e.:

x[n]*h[n] © X (2) H(2) (5)

where the z-transform is defined in Section 2.3.1.

Downsampling: This term refers to the keeping of every M sample of a sequence and
removing the rest. Thus, if the original sequence is x [#] and the downsampled sequence

is called x ;[n] then:

x4ln] = x[nM] (6)

In the z-transform domain downsampling becomes:

Xy(2) = 5 (X(21M) + X (21/M) ) @

Upsampling - In this operation M zeros are inserted between every sarﬁple of a sequence.

So, if the original sequence is x [#] , then the upsampled sequence, x [n], is defined as:
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— (x[n/M], n=multiple of
x, [n] ( 0, otherwise 58)

In the z-transform domain this operation is represented in the following manner:

X, (2) = X(zM) (59)

Time Reversal - The time reversed version of x [n] is represented as x [-#n] . In the z-

transform domain time reversal is derived as:

X,(2) = Y xlonlz = B xn] (1797 = X(z7) o

Multiplication of x [n] by (—1)" -

X, () = D (Dxnlz" = Y x[n] (2)™" = X(~2) 1)
Therefore this operation leads to reversal in the z-transform domain, i.e.,

X(=2) © (~1)"x[n] .
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FIGURE 1. Delta function superimposed on a sinusoid. Below the plot is an illustration of how the
overlapping windows are set up for the STFT plots of Figures 2 and 3. For each windowed segment

the FT is calculated.
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FIGURE 2. STFT of signal in Figure 1 using wide windows. In this case the STFT is taken with 6
overlapping windows (x-axis) each of length 256. The z-axis represents the absolute value of the
frequency response.

100

80

FIGURE 3. STFT of signal in Figure 1 using narrow windows. In this case the STFT is taken with
256 overlapping windows (x-axis) each of length 8. The z-axis represents the absolute value of the
frequency response.
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FIGURE 4. WT of signal in Figure 1. Notice localization of delta function in low scales and resolution
of sinusoid in higher scales
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FIGURE 5. A wavelet for three different scale values (scale increasing downwards)
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FIGURE 6. Two-band filter bank
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FIGURE 8. Iterations of filters that lead to wavelets. The iterations below lead to the same wavelet at

different scales such as those shown in Figure 5. The dashed lines signify the continuation of the
iteration to J scales.
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CHAPTER 3 Wavelet Transform
Methods for Phase

Identification in Three-
component
Seismograms

3.0 Summary

In this chapter the focus is on the use of the wavelet transform in terms of feature iden-
tification. The method that is presented helps to locate the arrivals in single station three-
component short-period seismograms using polarization and amplitude information con-
tained in the wavelet coefficients of the signals. The main idea is that strong features of the
seismic signal will appear in the wavelet coefficients across several scales. Each compo-
nent of a three-component short period seismogram is decomposed using the discrete-time
wavelet transform (DTWT). Polarization and rectilinearity functions are calculated for

each scale. A composite rectilinearity function is developed based on information present
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across scales. A second composite function based on the relative wavelet coefficient
amplitudes of the transverse and radial components is also constructed. These composite
functions prove to be very effective at identifying important arrivals. Results are com-

pared with arrival times picked by an analyst.

3.1 Introduction

The three-component seismogram represents motion on a ground detector in three
orthogonal directions; two in the horizontal plane and one vertical. The seismic signal has
several features that represent various types of phase arrivals (Aki and Richards, 1980).
The two most significant are the P (compressional) and S (shear) phase arrivals (refer to
Figure 6). The arrival of the P phase precedes the arrival of the S phase as is illustrated in
Figure 1. Accurately determining the time of these arrivals is important in determining the
location of an event, such as an earthquake or explosion. Traditionally this has been done
using data from various locations, however recently research has been carried out in trying
to determine this information more accurately from just a single station seismogram
(Kanasewich, 1981; Roberts et al., 1989; Magotra et al., 1989; Jarpe and Dowla, 1991),
especially for small regional events. In this work, I extend the polarization analysis meth-
ods of Kanasewich (1981) and others (Park, 1987; Means, 1972; Fowler et al., 1967), to
the wavelet coefficients instead of the original signal. The main motivation for this is that
significant features in the signal will be retained over several resolutions (“scales” in

wavelet transform terminology), while less important features will be present in only one
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or two scales. This idea of retention of features over scales was first introduced in the area
of vision by Marr (1982) and has played an important role in image processing (Mallat,
1992). Just as the inter-scale behavior of edges is analyzed in images, I look at the inter-

scale behavior of transitions in the seismic signal.

The algorithm developed has two main parts. In part 1, three short-period components
(se, sn,and $7) are processed using the discrete-time wavelet transform (DTWT) pro-
ducing the wavelet coefficients as output (di , Jn ,and d’z ). At each scale, j, a 3x3 cova-
riance matrix is used to find the rectilinearity function (Fi ). These rectilinearity functions
are used to construct a “composite” rectilinearity function (C r)- The location of the max-
imum for this function is very effective at locating the P arrival. The maximum eigenvec-
tor at this location is used to find the back azimuth. In the second part of the algorithm this
back azimuth is used to rotate se and Sn to get the radial and transverse components, S¥
and §f. These are then processed using the DTWT resulting in the wavelet coefficients d’r
and di At each scale, a transverse over radial amplitude ratio is calculated, all of which
are combined to produce a second composite function (C ;) which is used to locate the S
phase arrival. Both Cp and C, are powerful functions in that they highlight features that

are present across scales while suppressing those features that are not.

In the following sections details of the algorithm as well as results are presented. Theo-
retical background as well as a description of the algorithm are given in Section 3.2. The

results of an application of the algorithm to a set of events is presented in Section 3.3.
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Summary and conclusions are found in Section 3.4. Appendix 3.A contains some mathe-

matical background on how polarization is affected by the wavelet transform.

3.2 Theoretical Background

3.2.1 The Wavelet Transform and Feature Identification

As stated in Section 2.5.1 the wavelet transform has shown potential as a tool for the
purposes of feature identification, particularly in the case of transient signals (Kronland-
Martinet, 1988; Frisch and Messer, 1992; Szu et al., 1993; Trejo and Shensa, 1993; Li et
al., 1995). This is due to the ability of the wavelet transform to resolve features at various
scales and the fact that the wavelet used can be matched to the particular feature of inter-
est. Formalization of wavelet theory was actually initiated by work on seismic signals
(Goupillaud et al., 1984; Grossmann and Morlet, 1984). Recent work commenting on the
potential application of the wavelet transform to seismic data has been carried out by
Yomogida (1994), and Chakraborty and Okaya (1995). The work presented in this chapter
represents an application of the wavelet transform to seismic data that utilizes the key
advantages of wavelet analysis, and helps in further establishing the wavelet transform as

a valuable seismic analysis tool.

The two aspects of the wavelet transform that are of use for feature identification have
been mentioned in the previous paragraph as well as in Chapter 2. The first is that the ana-

lyzing wavelet can be chosen based on the feature that is to be identified. The other is the




multi-scale representation produced by the wavelet transform. The result is that at low
scales high frequency behavior is localized, while at high scales (when the wavelet is
stretched out) low frequency features are better resolved. This is of significant benefit
when one is dealing with signals, such as the seismic signal, containing features with vari-
ous frequency characteristics. This aspect was clearly demonstrated with the sinusoid plus
delta function example of Chapter 2 (refer to Figures 1 and 4 of Chapter 2). More detail
about the wavelet transform and feature identification as it relates to the seismogram is

given in Section 3.2.B.

Since the seismic data being analyzed is discrete-time, the DTWT is used for the wave-
let processing portion of the algorithm. The DTWT is implemented using the subband
coding scheme where the wavelet is the highpass filter (g), and the lowpass filter (k) is
the scaling function (Akansu, 1992; Daubechies, 1992; Vetterli and Kovacevic, 1995) as
described in Chapter 2. As can be noticed from Figure 7 in Chapter 2, there is a downsam-
pling step which results in the number of points in the wavelet coefficients, 4 , being scale
dependent; d’ : has half the number of points as d . Since my algorithm involves inter-
scale comparisons, this type of decomposition is not the best because features should be at
the same location in each scale for ease of analysis. Therefore, the wavelet coefficients,

d , are interpolated so that the output at each scale contains the same number of points as
the original signal. This interpolation is accomplished using upsampling and convolution
with a combination of the filters, h and gE[n] = (-1 "h [n] and

h [n] = (1) nl g [n] ). Figure 2 shows how this interpolation is implemented for three
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scales. The result is a set of coefficients that are interpolated versions of d] . Further refer-
ences in this chapter to d’ will refer to the interpolated coefficients. This type of decom-
position is often called multiresolution analysis (Mallat, 1989; Vetterli and Kovacevic,
1995; Rioul and Vetterli, 1991). Figure 3 shows the vertical component of a three compo-
nent short-period seismogram and eight (multiresolution) wavelet scales. (i. €. d for

j =1,2,3, ..., 8) The lowest scale is at the top and the highest scale at the bottom.

As mentioned many times already, the wavelet used in the wavelet transform can be
chosen based on the application. Certain conditions on the wavelet g and the scaling func-
tion A have to be met (Daubechies, 1992; Vetterli and Kovacevic, 1995) for the filter bank
to be a perfect reconstruction filter bank (it will be discussed later how these conditions
might be able to be relaxed for this study). The wavelets (Daubechies, 1992; Vetterli and
Herley, 1992) used in this study are shown in Figure 4. This wavelet “library” was chosen
based on the expected shape of the seismic phase arrivals. In Figure 5 the shapes of a few
P phase arrivals are shown to illustrate how their shapes are similar to the wavelets in Fig-
ure 4. Notice how the first two examples in Figure 5 look similar to the Vetterli-22 wave-
let, while the third example looks similar to the biorthogonal-18 and Daubechies-12
wavelets. For part 1 of the algorithm the P location accuracy is not affected significantly
by which wavelet in Figure 4 is used. However, as will be discussed later, in part 2 of the

algorithm wavelet choice proved to be more important.




3.2.2 Characterization of Seismograms by the Wavelet Transform

Seismic signals are commonly modeled as the convolution of a “source” with a filter
representing the transmission response of subsurface media. The “source” refers to a
series of vibrations in the Earth that can be due to an earthquake or explosion. These
vibrations set off a traveling wave that has longitudinal as well as shear components (refer
to Figure 6). The longitudinal or compressional motion is represented on the seismogram
by the P phase, while the transverse motion is represented by the S phase (Figure 1). Since
the subsurface media cannot be assumed to be homogeneous, the wave encounters discon-
tinuities in the media through which selective reflection and transmission takes place.
Ricker (1940) first hypothesized and later Morlet et al. (1982), demonstrated experimen-
tally that this “scattering” is frequency dependent. Low frequencies are transmitted more
easily while high frequencies are not. For intermediate frequencies there is frequency
dependent dispersion. An effect of this scattering is the broadening of the initially sharp
source impulse, resulting in seismograms composed of wavelet-like structures. Experi-
mental demonstrations of this effect were first presented by Ricker (1940), and more

extensively in a later report (Ricker, 1953).

The suitability of applying the wavelet transform to seismic signals can thus be viewed
in terms of the type of decomposition as well as in terms of pattern matching. Based on the
frequency dependent nature of the scattering mentioned above, and on the fact that the
features of interest in this study are onset times, the basis functions used to analyze the

seismic signal should be well defined in the time domain, as well as in the frequency
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domain. The basis functions of the wavelet transform are well defined in the two domains,
and in fact have constant At/ T and Af/f, where At is the duration or breadth of the
wavelet, T is the mean period, Af is the bandwidth, and f is the mean frequency. In a
wavelet transform decomposition one would expect the scattered arrivals to be present in
some scales, but not present consistently across scales. The direct arrivals (P and S), on
the other hand, should be present across several scales. Thus, interscalar analysis should

isolate the direct arrivals while neglecting the arrivals due to scattering.

The characterization of the seismogram as a combination of wavelet-like structures jus-
tifies the use of wavelets to match arrival shapes. The arrival shapes will vary with event
as the source wave travels through different media and distances for each event. Thus, the
particular wavelet to use in the wavelet decomposition of a seismogram will depend on the
event. This proves to be important in S arrival detection (refer to Results section). The
wavelet that best approximates the S arrival shape will result in strong correlations in the
wavelet scales. Thus, the S arrival detector function, C ¢ (described in detail in the Algo-
rithm subsection), will have the highest magnitude, and therefore the highest level of con-
fidence with regards to S arrival onset detection when the S arrival shape and wavelet
shape are closest. The algorithm which is presented in the next subsection uses this idea to

pick S onset time.

For cases where the P arrival shape can be clearly identified, it is observed that the
wavelet that leads to the highest magnitude C ; 1s nearest in shape to the P arrival. This

observation motivates the idea of directly using the P arrival shape to aid in S arrival
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detection. This can be achieved by either using a wavelet from a library that best matches
the P arrival shape or by designing a wavelet based on the P arrival shape. This approach
assumes that there is some relationship between the P arrival shape and the S arrival
shape. The fact that for a given event, both arrivals originate from the same source and
travel through the same media would indicate that the P and S shapes should be correlated.
For the simple case of homogeneous subsurface media the shapes are similar, with the S
arrival generally being broader than the P arrival. In a heterogeneous media where the
velocity gradients are not large the arrival shapes will still be fairly similar with possible
differences in the very high frequencies (very low scales). Even in the situation of a heter-
ogeneous media containing large velocity gradients, the distortions in arrival shapes due to
scattering will be frequency dependent and thus isolated in certain scales and will not be

consistent across scales.

In summary, the wavelet decomposition employing the “best wavelet” captures (and
with appropriate processing, emphasizes) the features of a phase across the various scales.
Hence, we are able to develop algorithms for phase identification by observing these fea-
tures across scales. Since there are reasons to believe that the P and S arrivals are corre-
lated (in energy, spectrum, or shape), the choice of wavelet to use for S arrival detection
can be based on the P arrival. Although the problem of choosing the “best wavelet” is the

focus of Chapter 5, observations on this issue are discussed in Section 3.2.4.




3.2.3 The Algorithm

As mentioned in the introduction, the algorithm is made up of two main parts. The first
part results in the detection of the P arrival and the second part results in the detection of

the S arrival.
i) Part 1: Locating the P Arrival

It is known that the P phase is a compressional body wave that is highly linearly polar-
ized (refer to Appendix 3.A for polarization definitions). Thus, a metric that measures the
degree of linear polarization of a wave would be very helpful in detecting P arrivals. Such
a metric is defined by Kanasewich (1981). It is known as the rectilinearity function and is

defined as:

F=1-(A/A))P 1)

where A, is the largest eigenvalue and A, is the second largest eigenvalue of the 3 by 3

covariance matrix:

Var(x) Cov(x,y) Cov(x,z)
M = Cov(x,y) Var(y) Cov(y,z) @
Cov(x,z) Cov(p,z) Var(z)

where X, y, and z would be the three components in case of a three component seismic

signal. Var (x) = Cov(x,x) and the covariance of X and y is defined as:

N
Cov(xy) = 53 () —k) () —H) o

i=1



where 1 is the mean value of x. The function F is equal to one at points at which a

wave is fully linearly polarized and equal to zero at points where there is no polarization.

The first step in the algorithm is the wavelet processing of each of the short-period
components (se, Sn, and $Z) of a three component seismogram. After wavelet process-
ing of the three components, the outputs are dL , dln , and dlz . At each scale, a covariance
matrix M’ [i] is found at each point i over a T point window (refer to Figure 7) using
equation (2) with di substituted for x, d; substituted for y, and d’z substituted for Z.
The window length (ranging from 5 seconds to 25 seconds) is determined using a measure
called the varimax norm (Wiggins, 1978). Refer to Appendix 3.B for details. The eigen-
values for each M [] are found and the rectilinearity functions F (using p = 1)are
constructed. So, the result is a rectilinearity function for each scale. The next step is the
most crucial in part 1. The idea that edges in an image are present over several scales has
been used in the area of image representation (Mallat, 1992). One of the first presentations
of this idea was in the area of vision by Marr (1982). An analogy can be made between
edges in an image and transitions in F] . The P phase arrival produces a transition (discon-
tinuity) in the rectilinearity function. However, there are other changes of polarization
present in any one given scale. Therefore, to capture only the most linearly polarized por-
tion of a wave (which should be the P phase arrival), a composite rectilinearity function is
developed by combining the rectilinearity functions of each scale. This function is defined

as:
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C. = HF’ @

Forj> 8, Fl is uniformly close to unity (for our data set) which does not contribute to
C . Thus, a wavelet decomposition of eight scales is carried out for the calculation of
C - This function represents an inter-scale comparison of rectilinearity. The position at
which this function is a maximum is chosen as the P arrival time. This proves to be an
excellent method for determining P arrival time as can be seen in the case shown in Figure
10. Refer to the results section for more details about the effectiveness of C. in locating P

arrivals.

The eigenvector associated with the maximum eigenvalue at the estimated P arrival
time is used to calculate the back azimuth (Jarpe and Dowla, 1991). This calculation is
carried out at each scale as well as on the original signals. Since the original three compo-
nent seismogram often contains noise it is found that a more accurate back azimuth is
found by looking at the third scale and higher. This is due to the fact that high frequency

noise shows up in the first one or two scales, and higher scales are “cleaner”.
ii) Part 2: Identification of the S Arrival

The S phase arrival represents a shear wave with particle motion in the transverse direc-
tion (Kanasewich, 1981) with a velocity that is approximately 50-60% that of the P phase
velocity. Since the S phase motion is in the transverse direction, it generally has a higher
amplitude in the transverse component relative to its amplitude in the radial or vertical

component. Thus, to locate this phase arrival the amplitude ratio of the transverse to radial



components of the seismogram is analyzed. The first step is to rotate € and sn into the
radial and transverse directions using the back azimuth () found in part 1 and the follow-

ing relation for each point i:

sr[il| — | sin® cos0||se[i]
st[i] —cos0 sin®||sn[i]

®)

These rotated components are then processed by the wavelet transform resulting in the

wavelet coefficients dlr and tft . Here a ten scale decomposition is taken. It may seem that
di and d’t could have been more easily obtained by just rotating the coefficients d’e and
di . However, it turns out that for part 2 various wavelets are tested, thus, it is necessary to

reprocess with the wavelet transform. At each scale the following ratio is calculated:

env (dJ)
env (d]) +env(d))

tr =

6

where env (x) is called the envelope function and is defined as:

env(x) = Jx2+ h? @

where A is the Hilbert transform of X . The envelope function is used to avoid divide by
zero problems. For the data in the test set, the function ttri becomes very “flat” for

j > 10. Therefore, it is not necessary to decompose beyond ten scales, as no features are
present in the ﬁigher scales. A composite function C, is constructed in the same manner

as CF:
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c, =[]« @
j .
By using a very simple thresholding method, the function C, is used to locate the point of
the S phase arrival. The first point after the P arrival time that has a value that is at least
one-half the maximum of C, is chosen as the S onset time. The peak of C, itself is not

used, because it locates the time at which the S arrival attains its highest magnitude, which

is a few seconds after the onset time. Figure 11 shows two examples of the use of C ‘-

As mentioned earlier, various wavelets are used in the wavelet transform decomposi-
tion. The choice of wavelet used in processing is important in how well C , locates the S
arrival onset time. The wavelets shown in Figure 4 are each used and the resulting C , that
has the highest amplitude peak is used in locating the S arrival. The idea behind this is that
the wavelet that is closest in shape to the S phase will produce the best match in the wave-
let scales and thus produce the C , with the greatest dynamic range. Refer to the results

section for an elaboration of which wavelets were successful for the test events.

3.2.4 Possible Refinements of Algorithm

As argued in an earlier subsection, the P arrival and the S arrival should generally be of
similar shapes. Thus, the next step would be to design a wavelet directly from the P phase
arrival and use it to construct C ;- A thorough presentation of this idea is given in Chapter
5 which focuses on the wavelet design issue. Here a preliminary investigation of this idea

is carried out. For a few cases where the wavelet choice proved especially important, a



pseudo-wavelet is constructed from the P phase arrival (as located by C r) and is used in
part 2 of the algorithm to produce C ;- Itis being called a pseudo-wavelet because the per-
fect reconstruction and regularity conditions have been ignored. The only conditions being
imposed are that of finiteness and zero-mean, as well as a tapering to zero. This is partially
acceptable since the algorithm being used does not involve any reconstruction. However,
because the perfect reconstruction and regularity conditions are not met these pseudo-
wavelet will not retain their shape across many scales (refer to Chapter 2 as well as to
designed wavelets of Chapter 5), and thus the resulting decomposition will not be of the
subband type. In addition the lack of regularity could lead to the introduction of artificial
discontinuities (due to the filter and not the signal) in the decomposition domain. Nonethe-

less, for this preliminary test, the few conditions imposed will be sufficient.

Figure 8 shows a pseudo-wavelet that is constructed from the P arrival. Below it is the
biorthogonal-18 wavelet, which is the wavelet that produced the maximum peak in C , for
the particular event. Figure 9 shows the C , produced by the pseudo-wavelet as well as the
C, resulting from the use of the biorthogonal-18 wavelet. Both functions find the S arrival
time to within one second of the analyst pick. In contrast, using the Vetterli-22 wavelet to
produce C, for this event resulted in an S arrival time that was significantly different than
the analyst pick. This is due to the fact that for this event the biorthogonal-18 wavelet is

"c'ltf)sest in shape to the arrival shape and thus produces the maximum peak in C ; (and the
best S arrival pick time). The main purpose of this illustration is to show that it is possible

to locate the S arrival using information about the P arrival shape, and that this can be
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done by either using known wavelets to closely match P arrival shape (similar to the
expected S arrival shape), or design a wavelet directly from the P arrival shape. These
observations are reinforced in Chapter 5 where a wavelet design algorithm is utilized to
design actual wavelets (perfect reconstruction and regular) based on the P arrival in order

to locate the S arrival.

3.3. Results

The methods described in Section 3.2 are applied to a set of actual seismic data and the
results are presented in this section. The data used is from a group of events recorded from
a single station (39.68°N, 3.96°W) in the Sonseca array in Spain and covers a five year
period beginning in 1990. The data set consists of east, north, and vertical short period
components sampled at 20 Hz. A map of the event locations is shown in Figure 12. The
test set contains 23 events, all of which are within 2500 kilometers from the recording sta-

tion. A bulletin presenting information about each of the events is presented in Table 1.

2.3.1 P Locator Results

As mentioned in Section 3.2, Cp, is extremely effective at locating the P arrival time. A
compilation of P locator results is shown in Table 2. The algorithm pick times are com-
pared to analyst pick times. IASPE91 model pick times are also presented in the fourth
column of Table 2. An illustration of how C F 1s used as a P locator function is shown in

Figure 10. A comparison is made between the performance of this algorithm and the
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short-term-average to long-term-average (STA/LTA) method (Earle and Shearer, 1994).
This is presented in Figure 13. As can be noticed, the algorithm compared favorably with
STA/LTA. There were two cases for which STA/LTA produced a significant error (-89.61
seconds and 82.43 seconds) in P arrival time. The fact that these cases had low signal-to-
noise ratios highlights the advantage of providing a pick time based on analysis of infor-
mation over several wavelet scales. As mentioned earlier, signal noise in the wavelet
domain tends to be concentrated in the first few scales. The results show that using C, is

a consistently accurate method to automatically find the P arrival time.

TABLE 1. Bulletin information for test set cases
Case Latitude Longitude Depth (km) Magnitude Distance (km)

1 35.63 11.66 22,0 48 1447.3
2 34.16 8.33 10.0 53 1253.3
3 31.36 432 29.0 53 923.7

4 36.41 9.33 10.0 45 1220.4
5 35.04 1237 10.0 5.0 1532.6
6 37.43 20.62 26.0 53 2146.7
7 40.67 23.47 28.0 5.1 2329.7
8 40.03 21.66 14.0 52 2181.7
9 35.33 8.25 10.0 47 1181.3
10 34.48 14.48 10.0 53 1734.7
1 31.30 -4.43 25.0 5.1 931.8

12 34.83 12.44 10.0 4.7 1548.4
13 39.16 15.18 291.0 5.9 1646.3
14 38.39 21.99 10.0 5.0 2243.8
15 35.95 21.91 33.0 5.3 2307.0
16 45.38 21.05 10.0 5.0 2141.0
17 - 45.34 21.04 25.0 54 2139.0
18 51.16 5.82 20.0 54 1484.0
19 39.82 24.39 7.0 49 2419.0
20 40.98 22.34 18.0 5.8 2228.0
21 37.20 15.50 10.0 54 1710.0
22 38.58 14.95 246.0 53 1636.0
23 40.18 13.80 401.0 5.4 1519.0
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TABLE 2. P arrival time estimates in seconds
Case | Algorithm Analyst Model Analyst Comments
1 182.95 186.19 185.83
2 165.15 164.51 162.94
3 128.55 120.78 119.72 weak first motion
4 152.90 160.42 158.83
5 200.20 197.56 197.85
6 270.50 265.37 273.19 weak first motion
7 290.70 283.10 284.33 very small and emergent P
8 280.90 268.51 279.05 poor quality signal
9 159.10 155.65 153.93
10 226.55 222.27 223.12
11 121.45 120.61 121.00
12 211.05 202.39 199.82 poor quality signal
13 194.85 197.30 195.36
14 272.30 275.49 274.68
15 278.45 280.32 277.87
16 272.10 266.36 273.84 weak signal
17 265.55 264.40 273.82
18 185.40 187.43 190.58
19 301.25 293.68 294.74
20 272.20 273.39 272.72
21 223.40 219.91 221.56
22 200.40 197.73 196.79
23 180.05 179.75 177.81

3.3.2 S Arrival Locator Results

The S phase arrival is significantly more difficult to locate than the P phase arrival. In
fact, analysts found it much more difficult to pick S arrival times versus P arrival times for
the cases in the test set. In cases where analyst pick times are not available, the IASPE91

model is used for comparison. Though the S arrival algorithm estimates are not as accu-
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rate as the P arrival estimates, they are quite promising because of the increased difficulty
in locating S arrival onset. Figure 11 shows a couple of illustrations of how C , isused to
locate the secondary arrival time. Table 3 shows a compilation of secondary arrival locator
results. Figure 14 is an error plot based on the data iﬁ Table 3. Since the STA/LTA method
uses long-period data to locate secondary arrivals, a comparison of STA/LTA with our
algorithm is not possible with regards to secondary arrival times. The data of interest in
this study is the short-period data, and the algorithm presented strictly uses this type of

data to locate arrival times.

As stated in Section 3.2, several wavelets are independently used in the wavelet decom-
position of part 2, and the resulting C, with the greatest dynamic range is chosen to locate
the secondary arrival. For 9 (out of 23) of the events the Vetterli-22 wavelet was the best
choice, but for the other events one of the other wavelets shown in Figure 4 resulted in a
more accurate S arrival time. This is most likely due to the arrival shape in many cases
being similar to the first example in Figure 5, but in the other cases the arrival shape is dif-

ferent and may look more like the third example shown in Figure 5.

From Figure 14 it can be seen that there are four cases (6, 13, 17, 23) for which the
errors were significantly large (greater than 15 seconds). Cases 6 and 17 have very poorly
recorded S arrivals, in fact the analyst could not read an S arrival for case 6 (for this case
the IASPE91 model S onset times is used for comparison). Cases 13 and 23 are very deep
events (refer to Table 1). For both these events the strongest arrival in the transverse com-

ponent is a secondary S arrival which is due to a refraction from the upper mantle bound-
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ary at 660 km depth and which is approximately 15 seconds after the much weaker
primary S arrival. The analyst has stated that this is an uncommon occurrence, and thus
these events are aberrations. Therefore, overall, the results are quite favorable, especially

when the difficulty in locating S phase arrivals in short period seismograms is taken into

account.
TABLE 3. S arrival time estimates in seconds
Case Algorithm Analyst Model Analyst Comments

1 329.10 324.86 331.82

2 302.15 302.91 290.66

3 221.70 220.89 213.62

4 293.25 No pick 283.31 Sn time poor

5 346.85 346.33 353.15

6 470.75 No pick 488.19 S arrival could not be read
7 513.10 509.06 513.62

8 479.15 486.03 498.47

9 281.95 272.22 274.54
10 390.10 387.65 398.37
11 223.40 221.23 215.96
12 361.50 353.10 356.67
13 380.50 357.83 373.84 weak S, strong “triplicate” S
14 498.95 490.14 502.16
15 523.95 518.61 508.53
16 488.25 481.94 489.17
17 454.45 484.31 489.11 S poorly recorded

18 326.90 328.96 340.30

19 540.55 525.87 540.08
20 485.00 479.44 498.63
21 391.30 382.31 404.21
22 352.20 356.02 359.80
23 356.35 325.00 339.55 weak S, strong “triplicate™ S




3.4 Discussion and Conclusions

There are two important ideas that have been presented in this chapter. The first is the
idea that by analyzing information over several resolutions or scales important features in
the seismic signal can be identified. This is due to the concept that strong features in a sig-
nal will be maintained over several scales, while weaker features will be present in only a
few scales or just one scale. In the algorithm presented this type of inter-scale analysis of
polarization information and transverse/radial amplitude ratio information has been shown
to be an effective means of identifying P and S phase arrivals. The second important idea
is that one can match the wavelet to the arrival shape to help locate the arrival in the seis-
mic signal. This proved to be especially important in the problem of locating the S phase
arrival, and is confirmed by the effectiveness of using a pseudo-wavelet constructed from
the P arrival shape to locate the S arrival. The overall result of using thése ideas is the
development of a wavelet transform based method that automatically locates primary and
secondary arrivals by analyzing just single station three component short-period seismo-
grams. The key contribution is the introduction of an additional tool for the analysis of
seismic signals. As the S arrival is more difficult to locate, methods that help locate this
phase are of more interest to the seismological community. Further work will concentrate
on further developing and refining the methods used to locate the S arrival, with particular
emphasis placed on the idea of designing wavelets specially suited to the seismic signal

being analyzed (refer to Chapter 5).
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Appendix 3.A Example of Conservation of Polarization Through Scales

Consider the following two signals that make up a wave:

x(?) = exp(j(at+9))) ®

y(8) = Aexp (j(0t+9,)) (10)
In this case there are two phase terms. For ¢, = @, the two components above represent
a linearly polarized wave, and for 0 < ¢, — @, <7/2 they represent a elliptically polar-
ized wave where equality to n/2 will lead to a circularly polarized wave. To find the
polarization of this example two-component signal, first determine the covariance matrix
and then find the eigenvalues and eigenvectors of the matrix. The eigenvector associated
with the largest eigenvalue gives the direction of polarization of the wave. The covariance

matrix for a two-component signal has the following form:

[ Var (x) Cov(x,y)] =M (1)
Cov(y,x) Var(y)

where Var (x) = Cov(x,x) and Var(y) are the variances of x (¢#) and y (¢) respec-

tively, and

172

Cov(x,y) = Tli_rflwlT [ x@@wa -
~T/2

is the covariance of x (¢) and y (¢) . With the signals in this example this matrix becomes:




1 Aexp (j (o,-9,))

dexp (G(oy-9,)) A

M=

The eigenvalues are determined by using the following relationship:

det(M—\I) =0

Using the above relation it is found that:

A —(42+1)) =0

Therefore 7\.1 = 0 and X2 = A2+ 1.

To find the eigenvectors solve for # in the following equation:

M—-ADu =0
Thus, for A, we have:
1 AeXp(]'((Zl'“(Pz)) [u(l)] -0
Aexp (7 (9, —9,)) 4 “(2)
and for A, we have:
42 Aexp (G (¢;—9,)) [u(l)} =0
Aexp (;j((Pl_(Pz)) -1 “(2)

The resulting eigenvectors for A, and A, respectively are:
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(13)

(14)

(15)

(16)

(17)

(18)
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—GACXp(j((pl—(pz)) and o
o aAexp (‘_j((Pl “(Pz))

(19)

We now determine what happens to the polarization when the components are pro-
cessed by the wavelet transform. Let us determine the wavelet coefficients of the original

components (9) and (10). Plugging x () and y (#) respectively into the definition of the

CWT (Chapter 2) we get:
Jmt t—b
W, (ab) = j°° Og( - )dt @)
®,!
W( ,b) = —ro J 0 (tab) dt @1

Now let us define the Fourier transform of a periodic signal as:

F(ao,) = j:f(t) ejmotdt (22)

Using (22) and Fourier transform properties, (20) and (21) can be written as:

Wx(b) = Alexp(j((oab+(p1)) (23)

Wy (b) = A,exp (J (wab + (pz) ) (23)
where 4| = JaG (aw,y) and 4, = A4, and a redefined as 1 /a. Equations (23) and
(24) have been written as functions of just b, the translation parameter, because we will
be evaluating the covariance matrix for each scale, @, in terms of b. Now we proceed

with finding the covariance matrix for W, (b) and Wy (b) and then determining the

eigenvalues and eigenvectors. The covariance matrix is:




1 Aexp (G (9,—9,))
M, = 44> 9 (25)
Aexp (_] ((pl ‘(pz)) A
Using (14) it is found that:
l(l—(AlAl*A2+A1AI*J) =0 (26)

2
Therefore 7‘1 = 0 and }“2 = AlAl*A +A1A1*.

Using (16) to find the eigenvectors we have for A, and A, respectively:

-

1 Aexp ( (0, —0,))|
44> ., ' 21 ? [v (;)} =0 @)
Aexp (7 (0 —9,)) 4 |
A4 * _Az Aexp G (¢ —9,)) [V(l):| =0 28)
Aexp (7 (91— 9,)) —1 @

Since the term in front of the matrix is going to divide out, it can be seen that the eigenvec-

tors that result are the same as those in (19).

Thus, from the example above it can be seen that the polarization of a wave is con-
served as it is processed by the wavelet transform. To visually illustrate this, the real parts

of equations (9) and (10) were used to synthetically produce a polarized wave (with

A = 2 and with ¢, — @, = 7/4). The resulting wave was processed using the wave-

let transform. The resulting x versus y plots for each scale (scale 0 refers to the original
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wave) are shown in Figure 15. The shape and orientation of the ellipses are the same, so

polarization is conserved.

Appendix 3.B Determination of Window for Polarization Calculation

As stated in Section 3.2, a covariance matrix M [i] is calculated at each point i of
di . di, , and dlz over a T point window. The size of the window affects the ultimate out-
put, C - The goal is to obtain a C r that has only one prominent spike with a minimum of
secondary spikes. This can be seen as trying to minimize the entropy of C r- Thereisa
measure called the varimax norm (Wiggins, 1978) which can be used for this purpose. The
higher the varimax norm of a signal, the fewer spikes the signal has. The varimax norm of

C - is calculated as:

(zetn)
v, = (ZC;[I'] )2

i

(29)

Therefore, before choosing the size of the 7' point window, several size windows are

tested in order to maximize V .- The window resulting in a C . with the highest varimax
norm is chosen as the window for the particular event. Wilndows ranging from 2.5 seconds
to 25 seconds are used with a step of 2.5 seconds. Figure 16 is a plot of the varimax norm
of C 7 versus the window size used to construct the covariance matrix. For this particular

event 12.5 seconds is chosen as the window length.



Appendix 3.C Use of the Wavelet Transform as a Glitch Detector

In going through the data it has been found that the wavelet transform can be used as a
glitch detector to eliminate bad data. Coincidentally, several researchers have expressed
an interest in a method to easily determine the location of glitches in seismic signals. It
turns out that glitches (unnatural discontinuities) in the original components show up as
very prominent spikes in the first one or two wavelet transform scales. This makes sense,
since such very high frequency behavior will manifest itself strongly in the lowest scales
(which represent high frequency information). The position of these spikes is the exact
position of the glitches in the components. This was very useful in eliminating bad data.
Figure 17 shows an example of how glitches show up in the low scale wavelet transform
coefficients. Cases with glitches were not used in the test set (an area of future research
could be to reconstruct the original data by modifying the wavelet coefficients at the spike

locations).
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FIGURE 1. One component of a seismogram showing P and S arrival locations
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FIGURE 2. Multiresolution tree used to obtain wavelet coefficients with equal number of samples
(i.e. length (& * 1) = length (&) ). Downward arrows indicate downsampling by two and upward
arrows indicate upsampling by twe. The outputs (/) are the interpolated coefficients.
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FIGURE 3. One component of a three component short-period seismogram and the interpolated
wavelet coefficients for 8 scales.
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FIGURE 4. Wavelets used in this study
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FIGURE 6. P and S wave motions
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FIGURE 8. Pseudo-wavelet function obtained by cutting P phase arrival from a vertical short-
period component, removing the mean, and tapering to zero at the ends. Also, the biorthogonal-18
wavelet function.
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FIGURE 9. Three component short-period seismogram, secondary arrival locator function, C,
resulting from processing with pseudo-wavelet shown in previous figure, and C , resulting from
processing with biorthogonal-18 wavelet.
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FIGURE 10. Three-component short-period seismogram (east, north, and vertical
components) and the function C.. The peak of this function is used to
locate the P phase arrival.
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FIGURE 11. Two examples of three component short-period seismograms and the
secondary arrival locator, C, . This locator function is used to locate
the secondary phase arrival.
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FIGURE 13. P phase arrival residual plot. The circles represent the error between
algorithm pick time and the analyst pick time. The asterisks represent
the error between the STA/LTA pick and the analyst pick.
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FIGURE 14. S phase arrival residual plot. The circles represent the error between the algorithm pick
time and the analyst/model pick time.
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FIGURE 15.
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FIGURE 16. Plot demonstrating the effect of window size used to calculate the covariance matrices,
MJ[i] on the varimax norm of the composite rectilinearity function, C. For this particular event
a window length of 12.5 seconds is chosen.
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FIGURE 17. One component of a three component short-period seismogram and the wavelet
coefficients for the first two scales. The sharp peaks mark the exact locations of glitches in the
original signal.
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CHAPTER 4 Compression of the
ECG using the Wavelet
Transform and Vector

Quantization

4.0 Summary

The previous chapter described a method of using the wavelet transform to detect and
identify phase arrivals in the seismogram. That was a feature identification application of
the wavelet transform. This chapter shows how the wavelet transform can be used for effi-
cient signal representation, better known as signal compression. The signal of interest in
this case is the electrocardiogram (ECG). The ECG represents the electrical activity of the
heart and will be described in some detail in Section 4.3. The focus of this chapter will be

the presentation of an improved wavelet compression algorithm for ECG signals which [
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developed by using vector quantization on wavelet coefficients. The results indicate that
the proposed method excels over standard techniques for high fidelity compression, with a

low bit-per-sample rate and the retention of important ECG features.

The organization of this chapter is as follows. The first two sections (4.1 and 4.2) dis-
cuss transform based compression methods in general. Sections 4.3-4.5 introduce the ECG
and ECG compression teéhniques. Section 4.6 describes the ECG compression method
that I have developed which shows the advantage of using the wavelet transform (in com-
bination with vector quantization) to code the ECG. One of the important results (Section
4.7) is the dependence of coding gain on the wavelet used. This is discussed in the last sec-

tion of the chapter.

4.1. Compression Methods using Linear Transforms

As mentioned in Chapter 2, the type of compression method that is of concern in this
thesis is lossy. In other words, only information that is defined to be significant is retained,
while other information is not, for the purpose of maximum compression. The information
that is not kept is unrecoverable. The basic procedure used in transformation based com-
pression is shown in the block diagram of Figure 1. A signal x is operated on by a linear
transform, T. The output, y = Tx, is processed using methods such as thresholding and
quantization. After this processing, the reconstructed signal, X, is obtained by using the
inverse transform, 7! . It is standard procedure to add a lossless compression step such as

entropy encoding before the inversion step (Vetterli and Kovacevic, 1995; Welch, 1984).




Let us first discuss the techniques implemented in the processing of the transform coeffi-

cients (the second box in Figure 1).

Thresholding: There are many thresholding techniques, with the simplest being hard
thresholding:

S0l = {x[n], x> T
0, Ix[n]l<T ™

n=012..,N-1
where y is the thresholded output and 7 is some positive value based on the statistics of
x . For example, T can be chosen to be some fraction of the maximum value of x . A more
sophisticated thresholding method that has proven effective, particularly in conjunction

with the wavelet transform is called soft thresholding:

y[n] = sgn(x[n]) (x[n]|-T), @
where the plus sign here means that the argument in brackets is non-zero only when it is
positive. The effect of the relation above is to set to zero data that is below 7 in absolute
value, while data that is greater than T in absolute value is shifted towards the origin by an
amount 7. Soft thresholding of wavelet coefficients using 7' = cJZloT]\lf)/Nf (where
o is a measure of noise level, and &V equals the number of points in each scale ;) has
been used for the purposes of noise reduction, where the goal is to recover an unknown
signal from noisy data. Using arguments based on statistics, Donoho and Johnstone
(Donoho and Johnstone,1994; Donoho, 1995; Donoho and Johnstone,1995) have shown
that soft thresholding is “near optimal” for this purpose. In addition, their work provides a

good overall review of thresholding method selection from a statistical point of view.
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Quantization: The mapping of real numbers to discrete values is termed quantization.
When samples are quantized individually the term used is scalar quantization. A common
type of scalar quantization is the representation of a real number by the nearest integer.
The range and resolution of discrete values used to represent a real number determines the
bit-per-sample rate. For example, in the case of a binary representation where a choice of
N discrete values are used to represent any sample x [#] , the bit-per-sample rate (number

of bits needed to represent each sample) will be log,N.

Scalar quantization can be seen as a subset of vector quantization (VQ) (Gersho and
Cuperman, 1983; Gray, 1984; Gersho and Gray, 1992). Instead of quantizing each individ-
ual sample, in vector quantization a block of samples is represented by a single discrete
value. When the size of this block or vector is equal to one we have the situation repre-
sented by scalar quantization (vector quantization of order one). Refer to Figure 2 for a
simple illustration of the difference between scalar and vector quantization. One drawback
of VQ is that the construction of the library of vectors or codevectors is a more compli-
cated task. With scalar quantization the set of codevectors (codebook) consists simply of a
set of discrete values, for example the integers from 0 to (2 —1) . With VQ the code-
book has to be constructed using information about the data and generally some type of
clustering algorithm. For example, in this work a training set of ECG data and k-means
clustering is used to construct the codebooks (refer to Section 4.5 for details). The higher
the order of the vectors used, the greater the complexity of the codebook. Given a code-
book, each block of a signal is quantized by matching it with the codevector (which is rep-

resented by a discrete pointer) that is closest based on a distance measure.

Shannon (1959) showed that the limit on data compression performance (minimization
of distortion for a given bit-per-sample rate) can be approached arbitrarily closely by

quantizing vectors as in VQ instead of quantizing scalars. In particular the main advantage
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of VQ is that by quantizing blocks of data, instead of individual samples, fractional bit-
per-sample rates can be achieved. For example, if a function x is represented by N vec-
tors of length k, then the bit-per-sample rate is (log,N) / k. Therefore, at least theoreti-
cally, bit-per-sample rates below one (the Holy Grail of scalar quantization) can be
achieved. Achieving the minimum bit-per-sample rate while retaining signal features that
are deemed important is the goal of any compression scheme. Vector quantization has
proven to be successful in the areas of speech, image, and video compression (Gersho and
Cuperman, 1983; Lookabaugh et al., 1993), and in this work it will be shown to be a

promising method, in conjunction with the wavelet transform, for ECG compression.

4.2. The Wavelet Transform and Compression

We have not yet discussed why the compression procedures mentioned are applied in
the transform domain instead of directly on the raw signal. One reason is that usually the
data as a function of time in its original form has a varying degree of correlation. How-
ever, it is possible to make the coefficients in the transform domain uncorrelated. This can
be understood in terms of the diagonalization of the autocorrelation matrix (as defined in
Appendix 5.B). Defining the autocorrelation matrix of x to be R_, the autocorrelation

matrix of y = Tx is:

R = TR.T @

where 7’ is the transpose of the linear transform matrix (7 is unitary so, =T ! ). For
maximum decorrelation T should be chosen so that Ry is diagonal. This is accomplished
by having the rows of T equal to the eigenvectors of R_. The transform that realizes this

optimally is called the Karhunen-Loeve transform (KLT) (Gersho and Gray, 1992). How-



ever, the calculation of the KLT is computationally expensive, requiring N2 operations
(where N here is the length of x). Approximations to the KLT such as the discrete-time
cosine transform (DCT) (Ahmed et al., 1974) can be implemented using fast algorithms,
but the DCT is a Fourier based decomposition and the disadvantages of such decomposi-
tions when compared to wavelet decompositions have been discussed in Chapter 2 and is

discussed further in this section.

The decorrelation property of transforms leads to a more efficient representation of the
data and thus improved compression can be obtained. Though there is no formal result
that guarantees improved compression, in practice the quantization of decorrelated trans-
form coefficients is more efficient than the quantization of the original data. Another
advantage is that often information in the transform domain is easier to deal with in terms
of coding operations. An example of this is the representation by scales provided by the
wavelet transform. The different scales represent different frequency characteristics of the
original data. The scales in which features of interest are not present can be neglected.
This type of task would be much more difficult, if not impossible, if one was only operat-

ing on the domain of original data.

The advantage of the WT for compression over other transforms is that it can be imple-
mented via fast algorithms, and most importantly it has the power to decorrelate more effi-
ciently than Fourier based transforms, producing a more efficient representation of the
original data. To understand why this is so let us again look at the relations for the inverse

FT and the inverse WT from Chapter 2. The inverse FT is expressed as:
I .
x(t) = -ZTI.[—OOX((D) exp (jot) do 0]

and the inverse WT is:
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Looking at (4) it can be seen that x (¢) is essentially expressed as a summation of sinuso-
ids. As stated earlier, for transient signals this is not an efficient representation, since tran-
sients will require many weighted sinusoids in order to be described by (4). On the other
hand, (5) is a representation of x () based on wavelets. Since wavelets are finite and zero
mean, and thus more representative of actual signal features than sinusoids, it can be seen
that (5) will lead to a representation where the wavelet transform coefficients will be more
“concentrated” than the Fourier coefficients of (4). In other words, significant information
will be contained in only a few of the wavelet coefficients. The closer the wavelet is to the
actual signal features, the more concentrated the representation. This is often referred to as
a sparse representation. This “sparseness” can be maximized by using a wavelet that
closely approximates the features of the signal being analysed. For example, in the ideal
situation where a signal x is made up of one feature f at different scalings, then if the
wavelet g = f the number of nonzero wavelet coefficients W, needed to represent x in

the wavelet domain is a minimum.

Several researchers have shown (mathematically and experimentally) that the wavelet
transform leads to greater compression than traditional methods (DeVore et al., 1992;
Desarte et al., 1992; Wickerhauser, 1992). The conclusions made in these works follow
some of the same arguments that have been made in this section, namely that sharp dis-
continuities or transients, which are well localized in time can be represented more com-

pactly with the WT than with Fourier-based transforms (such as the DCT).

Due to the benefits that result from using the wavelet transform for compression it has

found many successful uses in compression applications, particularly speech compression
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(Evangelista, 1993), image compression (Yang, 1995), and video compression (Zafar,

1993), and as will be shown below, ECG compression.

4.3. The ECG as a Representation of Heart Function

In this work the focus is on the compression of the electrocardiogram (ECG), and,
therefore, in this section a description of the ECG signal is given as well as what it repre-

sents.

The ECG is a recording of the electrical activity of the heart recorded via electrodes
placed on the body surface, and thus is a plot of the changing potential differences
between the electrodes. The primary features of the ECG are the P-wave, the QRS com-
plex, and the T-wave (refer to Figure 4). Analysis of these features gives information
about the functioning of the heart. The heart is composed of four chambers. The upper
chambers are known as the left and right atria, while the lower, larger chambers are known
as the left and right ventricles (refer to Figure 3). Each of these chambers contracts when
an electrical impulse travels across it, due to the depolarization (followed by repolariza-

tion) of muscle cells.

The electrical impulse originates in a small group of specialized cells located in the
right atrium known as the sinoatrial (SA) node. This impulse first travels through the mus-
cle cells of the right and left atria causing these chambers to contract, and force blood into

the ventricles. The P-wave on the ECG represents this electrical activation of the atria.



The impulse then reaches the atrioventricular (AV) node, where conduction is extremely
slow, thereby delaying the impulse to give time for the ventricles to fill with blood. The
short period of inactivity between the end of the P-wave and the beginning of the QRS
complex on the ECG represents this AV node conduction time. The electrical impulse is
then passed to the bundle of His (refer to Figure 3), which is a strand of specialized muscle
tissue providing the only normal conduction pathway between the atria and ventricles. The
impulse moves down the bundle of His and then along the strands of the right and left bun-
dle branches. At the end of each of these branches is a system of fine electrically conduct-
ing fibers known as the Purkinje fibers which spread the impulse evenly through the
muscle cells of the ventricles, causing them to contract and force blood out of the heart
and into the body. On the ECG, the QRS complex represents this electrical activation of

the ventricles (Katz, 1992).

The QRS complex (composed of the Q, R, and S waves) is the most identifiable feature
of the ECG (refer to Figure 4), and has a much greater amplitude than the P-wave because
of the larger mass of the ventricles compared to the atria. It is of about the same duration
as the P-wave because the bundle branches and Purkinje fibers facilitate the rapid move-
ment of an electrical impulse through the ventricles. The T-wave represents the repolariza-
tion of the ventricle muscle cells (Passman, 1976; Plonsey and Barr, 1988). There is also a
wave representing atrial repolarization, however it is masked by the QRS complex. The
amplitude, duration, and rhythm of the ECG features (particularly the P-wave and the

QRS complex) are used to aid in identifying abnormalities.



Individual ECG records (containing multiple ECG cycles) used in clinical diagnosis
can range from a few seconds to many hours. There can be varying degrees of noise
present due to machine noise and/or patient movement. The analog ECG is typically sam-
pled at a sampling rate that can vary from 250 Hz to 500 Hz. This range in the sampling
rate is sufficient as most of the important information in an ECG is confined to frequencies

below 100 Hz (Riggs et al., 1979).

The ECG data used in this work is from the MIT-BIH Arrhythmia Database (MIT-BIH,
1992), which contains data recorded using 24 hour Holter monitors. The digitized data in
this database is a result of the sampling the analog recording at 360 Hz. The values of this

digitized ECG data range from 0 to 2047, and thus the bit-per-sample rate is 11.

4.4. Background on ECG Compression Techniques

Efficient coding of the ECG is an important problem in biomedical signal processing
because of storage and transmission limitations. This is especially the case for long dura-
tion ECGs (such as those resulting from Holter monitors), and for ECGs that need to be
transmitted using low bandwidth telephone lines. The goal of ECG compression is to
reduce the bit-rate significantly while keeping signal distortion at a clinically acceptable
level. For the ECG, this means minimizing the distortion in the P-wave, QRS complex,
and the T-wave, the features of most interest in terms of clinical diagnosis. Traditional

methods used to code the ECG include DPCM, entropy encoding, and transform methods
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such as Fourier and Walsh. An excellent overview of the application of these methods to
the ECG is given by Jalaleddine et al. (1990). The conclusions that can be drawn about the

effectiveness of these methods for the ECQG are as follows:

DPCM (Differential Pulse Code Modulation) - Instead of coding the raw signal x, an

error signal e = X —x is used, where % is an estimate of x using the polynomial predic-

tor:

£[n] = x[n—1] +Ax[n—1] +A%x[n—=1] + ...+ A [n—1] ©)

where Ax[n—1] = x[n—1] —x[n—2] and for k> 1 (where k is the order of the pre-

k—1 . . . .
x[n—2] . A simple implementation of this

dictor), A'x[n—1] = A¥ 'x[n—1]1-A
method (first order) is to set X [n] = x[n—1] . In such an implementation the error sig-
nal represents the difference between successive samples of x . Higher order predictors
can be used such as the difference equation, x [#] = 2x[n—1] —x[n—2] , however
using higher order difference equations have been shown not to result in any significant
increase in compression of the ECG (Jalaleddine et al., 1990). DPCM with thresholding
does not result in significant compression for the ECG and can lead to significant distor-
tion in the P-wave (Jalaleddine et al., 1990; Stewart et al., 1973). One interesting thing to

note is that the error signal can be viewed as the first detail scale of a wavelet transform, as

this is often known as a difference signal.

Entropy coding - This lossless coding method is typically used as a follow up to trans-

form based coding (and is applied in this study as well). In this work adaptive entropy
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coding (Ziv and Lempel, 1977; Welch, 1984) has been applied as the last step of the algo-
rithm (refer to the Methods section).

Fourier based transform methods - Based on the comparison of Fourier based tech-
niques and wavelet transform based techniques with regards to transient signals, and on
Section 4.2, these methods do not offer the potential for compression that is possible from
wavelet based methods. Previous work has shown that FT based methods result in
decreased performance when compared to direct compression techniques such as DPCM.

(Shridhar and Stevens, 1979).

4.5. The Wavelet Transform, Vector Quantization, and ECG Compression

Due to its transient nature, the ECG is a good candidate for study using the wavelet
transform. The idea to use the wavelet transform to process ECG signals was initially put
forth in the early 1990°s (Morlet et al., 1991; Crowe et al., 1992; Michaelis et al., 1993;
Anant et al., 1994). Recently, some preliminary studies into the use of wavelet transform
based methods for ECG compression have been carried out (Thakor et al., 1993; Chen et
al., 1993; Crowe et al., 1992). These preliminary works demonstrated the potential that the
wavelet transform has in terms of ECG compression.

The work presented in this chapter links modern transform methods (the wavelet trans-
form) with advanced quantization methods (vector quantization) in developing an ECG
compression method. The advantages of these methods were discussed in Sections 4.1 and

4.2. This work extends previous wavelet-based ECG compression techniques by using VQ
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on the wavelet coefficients.

In developing the method I have found that the best reconstruction results are obtained
with VQ on scales with long duration and low dynamic range (low scales), and scalar
quantization (VQ of order one) on scales of short duration and high dynamic range (high
scales). This is reasonable since the highest scales have the fewest points yet high
dynamic range means that these scales contain transitions of greater magnitude than in the
lower scales. These types of transitions prove to be difficult to consistently model using
vectors. Though theoretically VQ should give superior performance over scalar quantiza-
tion for even such situations (follows from the basic Shannon source coding theorems and
is demonstrated in Gersho and Gray (1992)), in this application the potential benefit was
not worth the cost of VQ coding for the highest scales (refer to Section 4.6.2).

To study the effect of wavelet choice, three different wavelets are used as basis func-
tions and the results are compared. The three wavelets are labeled as Daubechies-12, Bior-
thogonal-18, and Vetterli-22, and have been obtained from recent literature (Daubechies,
1992; Vetterli and Herley, 1992). As the biorthogonal wavelet produces a redundant repre-
sentation, it is expected that its use will not lead to the “best” compression when compared
to the orthogonal wavelets (Daubechies-12 and Vetterli-22). In terms of the orthogonal
wavelets, the wavelet that has the highest degree of regularity (“smoothest”) should lead
to better results. There are two reasons to expect this. First of all, as has been argued by
Rioul (1993), the less regular a wavelet is, the greater the chance that quantization errors
will be magnified in the reconstruction. In addition, a wavelet with a higher degree of reg-

ularity will lead to less correlation between the resulting wavelet coefficients (Tewfik and



Kim, 1992), and the decomposition will more closely approximate the optimal decorrela-
tion of the KLT expansion.

The theory discussed in the previous sections led to an ECG compression method (pre-
sented in the following section) which results in a low bit-per-sample rate compared to

conventional techniques, with minimal increase in cost for initial coding.

4.6. Method

4.6.1. Some Notation and Nomenclature

In order to simplify the remaining presentation, a few definitions from Chapter 2 will
be restated, and a few new definitions will be introduced. The raw signal (i.e. before wave-
let decomposition) will be viewed in terms of the discrete-time sequence: c?

(i =0,...,N—1), where N is the number of samples in the ECG. The discrete-time
wavelet transform (DTWT) is implemented using the subband coding scheme that was
presented in Chapter 2; where the wavelet is the high-pass filter (g ), and the low-pass fil-
ter (h) is the scaling function. As a reminder, there are two outputs at each stage of this
procedure:

Wavelet Coefficients:

di,” = Zg(2n—m) c’;,l @

Scaling Coefficients:
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c{:l = Zh(Zn—m)c{n ®

where j represents scale number. The output scaling coefficients become the input to the
next stage in the DTWT. (Refer to Figure 5). The reconstruction is accomplished using the

reconstruction filters, g and h, (as defined in Chapter 2) and the following formula:

= ZI;(n—Zm)cl;n+Z§(n~2m)d’;’1 ®

Therefore, the DTWT decomposes the initial sequence, c? , into a set of subsequences: d:l
(n=0,..,(N/2)-1), di (n=0,..(N/4)-1),..., dzl
(n=0,..., (N/2M) —1),and cﬁl (n =0,..., (N/2M) — 1), where the decomposition

order (total number of scales) is M.

4.6.2. Development of Method

The first issue in the development of the method was the construction of the set of code-
book vectors. A total of 100 ECG segments, each containing 1024 samples and three to
four ECG cycles (i.e. P-wave, QRS complex, and T-wave) were used to develop the train-
ing set. Each of these ECG segments was decomposed into five wavelet scales, 4
G=1,..5)and c5 . It should be clear from the formula in (9) that these are the only
coefficients needed for reconstruction. These coefficients are used to develop the training
set. Each aV (and c5 ) is divided into vectors of length k. These training vectors are then
grouped using k-means clustering (which is also known as the Generalized Lloyd Algo-

rithm (Gersho and Gray, 1992)). K-means clustering groups the initial set of vectors based
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on nearest neighbor partitioning (Duda and Hart, 1973; Selim and Ismail, 1984). Nearest
neighbor based encoders have been shown by Gersho and Gray (1992) to be optimal in
terms of minimizing average distortion. This is the case for both vector quantization as
well as scalar quantization. In k-means clustering the initial N training vectors are initial-
ized as the N cluster centers (where the number of cluster centers desired is pre-deter-
mined). The remaining training vectors are then grouped in the clusters based on their
distance from the cluster centers. The cluster centers are then recomputed and then the
vectors are again clustered. This process continues until the cluster centers converge. A
more detailed description as well as an example of this process is provided in Appendix
4A.

The number of training vectors used in the clustering was more than sufficiently large,
ranging from 1,700 to 13,000, depending on the scale number. (Since at higher scales the
number of samples are fewer than at lower scales, the number of training vectors
decreases with scale). The cluster center vectors are chosen as the codebook vectors, each
of which has length k. A codebook, B/, was developed for each scale, j. Each codebook
contained N/ k2j vectors with each vector represented by a pointer ‘/n
(n =0, ..., (N/k2) — 1), where N is the length of the original ECG.

One of the key issues regarding the use of VQ is the choice of the vector length, k.
Since VQ is being applied to the wavelet coefficients, 4/, at several scales, j, and since
each @& will have different characteristics (number of points, dynamic range, etc.), it is to
be expected that the value of k£ will be dependent on scale. To determine the values of £ a

preliminary analysis using one test ECG segment was required. This segment was pro-
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cessed by the wavelet transform and each scale was coded (the coding procedure will be
described in detail in the next subsection) using codebooks based on the same value of

k = 6 for each scale. It was initially decided to have 256 vectors in each codebook
(meaning 8 bits are required to point to any vector in a given codebook). Upon decoding
and reconstruction of each d’ (and c5 ), it was found that there was significant error in the
reconstruction of the higher scales (low frequencies). Increasing the number of vectors in
each codebook to 512 (9 bits) did not change the error in the high scales significantly.
However, by using a lower value of k for the higher scales, the error in the reconstruction
of these scales was reduced drastically. The conclusion drawn from this analysis is that the
value of k& to be used in VQ coding is dependent on scale number, and the higher the scale
the lower the necessary value of & to achieve minimal error in reconstruction of the coef-
ficients. As was noted previously this variation of the value of £ to use by scale is due to
the fact that the dynamic range of the coefficients increases with scale. In the next subsec-

tion it will be shown how these observations were used in the coding of the test set.

4.6.3. Application of Method to Test Set

The test set consisted of 100 ECGs similar, yet completely separate, to those in the
training set. The first step was to decompose each ECG into five wavelet scales. The
wavelet decomposition of a test ECG using the Vetterli-22 wavelet is shown in Figure 6.
Three different wavelet filters were tested and the performance between them was com-

pared. As mentioned in Section 4.5, the wavelets used were the Vetterli-22, Biorthogonal-
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18 (Vetterli and Herley, 1992), and the Daubechies-12 (Daubechies, 1992) wavelets.
These wavelets are shown in Figure 4 of Chapter 3.

The subsequences lf and c5 resulting from the wavelet decomposition were each
divided into vectors of length k. These vectors were compared to the appropriate set of
codebook vectors (utilizing the codebooks, B), and a codebook vector was chosen based
on the squared Euclidean distance measure. The codebook vector closest to the vector
being coded was chosen, and, the coded vector was represented by the appropriate pointer,
qft . Using the observations of Section 4.6.2, the codebooks for the low scales contained
different length vectors than the codebooks for the two highest scales. In addition it was
found that only 64 (6 bit descriptor) vectors were needed for each B . Using fewer vectors
resulted in significant increases in reconstruction PRDs while using more vectors per
codebook increased the bit-per-sample rate and did not result in noticeable decreases in
PRD.

To encode d’ (j = 1,2, 3), three different values of £ (4, 6 and 8) were tested and the
results compared, while for d’ (G = 4,5), as well as for c5 ,avalueof £k = 1 was cho-
sen. All the 100 test ECGs were coded in this manner, and in the end the only data stored
was the set of pointers, q’n , for each ECG. The final step was to use apply entropy coding
to the set of q'n to minimize any redundancies. As mentioned earlier, this is a standard step
in any transformation based coding procedure (Vetterli and Kovacevic, 1995). The
entropy coding was achieved using a Lempel-Ziv-Welch compress utility (Welch, 1984).

For reconstruction of the each test ECG, the compressed data was first uncompressed

resulting in the appropriate set of ql , values which were used in conjunction with the
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codebooks to reconstruct the wavelet and scaling coefficients. These coefficients, d (and
.5 . . .
¢ ), were then processed by the inverse DWT. A block diagram representation of the

method described in this section is shown in Figure 7.

4.7. Results

Two performance criteria were used to evaluate the effectiveness of the method
described in the previous section. One was the bit-per-sample rate and the other the per-
cent root mean square difference (PRD). The bit-per-sample rate measures the degree of
compression while the PRD measures the error between the reconstructed ECG and the
original ECG. To calculate the bit-per-sample rate, the storage size in bits of the com-

pressed data was divided by the number of samples in the original data.

Size of compressed data in bits
Number of samples in original data

bit-per-sample rate = (10)

The PRD was calculated in the usual manner (Lynch, 1985):

(1)

where x represents the original sequence and %, the reconstructed sequence. This is a



standard error measure used in ECG analysis (Jalaleddine et al., 1990; Cetin et al., 1993;
Shahein and Abbas, 1994). As stated by Shahein and Abbas (1994), the PRD is a fairly
good error measure for the ECG, but it may sometimes be misleading, particularly when
significant noise is present in the original data. This will be seen in an illustration below,
where a good reconstruction from a clinical point of view has a higher than average PRD.

By using a value of £ = 4 to encode d (j = 1,2, 3), the resulting bit-per-sample rate
was 1.5, for k = 6 the bit-per-sample rate was 1.2, while for £ = 8 the rate achieved was
down to 1.1. Even with a rate as low as 1.1 there were several test set cases with PRDs
below 5.5% with one case having a PRD of 4.8%. Another variable of interest was the
wavelet used to decompose the ECG, and the results are, thus, arranged according to
wavelet in the tables below. Tables 1 and 3 show the overall results for the 100 case test
set, while Table 2 shows the PRD results for one particular case in the test set. Table 1
shows the average PRD for the test set versus bit-per-sample rate achieved and wavelet
function used in the decomposition step. Plots of the data in Table 1 are presented in Fig-
ures 10-12. Table 3 shows how the three different wavelets performed on a case by case
basis.

For each case, three different PRD results were available based on wavelet used for the
decomposition. The wavelet that produced the lowest PRD for each case was noted and
the result of this compilation is what is presented in the table. For example, the second row
shows that for 65 of the 100 test cases the Vetterli-22 wavelet led to the lowest PRD (for
an encoded bit-per-sample rate of 1.2). In Figures 8 and 9 are shown original ECGs and

their respective reconstructed ECGs, i. €., % and &0 (an example of this can also be found
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in Figure 7). Figure 8 is a presentation of a case where a below average PRD was achieved
using the Vetterli-22 wavelet and a value of ¥ = 8 in the VQ step. Figure 9 is again a pre-
sentation of a case that used the Vetterli-22 wavelet and £ = 8, but the resulting PRD
(17.07%) was well above average. In fact, based on the PRD this case produced one of the
worst results. However, as can be seen from the plot, the reconstruction looks quite good,
particularly when viewed from the perspective of a clinician. There does not seem to be
any possibility that &9 in Figure 9 would lead to different diagnostic conclusions than ¢9.
Even for such a noisy ECG the key features (P-wave, QRS complex) retain their integrity
after processing. Thus, for a case such as this just using PRD is not the best way to mea-
sure the success of the method.

From the results as presented in the tables it can be seen that, overall, the Vetterli-22
wavelet produced significantly better PRD results than the other two wavelets that were
used. This is particularly highlighted in Table 3. The Biorthogonal-18 wavelet produced
the worst results of the three wavelets. This is the result predicted in Section 4.5 and will

be discussed further in the next section.
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TABLE 1. Average PRD (%) for 100 case test set (standard deviation appears in brackets). Each
column represents the PRDs for a different wavelet used in the decomposition step.

BITS/

AVERAGE PRD(%) FOR TEST SET USING X

WAVELET
SAMPLE
X=VET-22 | X=BIORTH-18 | X=DAUB-12
1.1 9.44 (3.76) 9.85 (3.89) 9.50 (3.49)
1.2 8.26 (2.97) 9.00 (3.11) 8.67 (3.12)
1.5 6.27 (1.79) 6.71 (1.73) 6.72 (1.78)

TABLE 2. PRD (%) data for one particular ECG segment.

BITS/ PRD(%) FOR SIG115 USING X WAVELET
SAMPLE | x-vET22 | X=BIORTH-18 | X=DAUB-12
1.1 5.12 5.64 5.19
12 4.78 5.50 4.82
15 4.08 5.15 4.46

TABLE 3. Comparison of PRD values for 100 case test set. Table is divided based on wavelet used in
decomposition step and bit-per-sample rate.

% OF CASES WHERE USE OF X WAVELET
BITS/ RESULTED IN LOWEST PRD
SAMPLE
X=VET-22 X=BIORTH-18 | X=DAUB-12
1.1 44 21 35
1.2 65 13 22
1.5 61 19 20

4.8. Discussion and Conclusions

The results above show that using VQ on the wavelet coefficients of ECG signals leads

to very low bit-per-sample rates while retaining feature integrity in the processed signal.
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Even with relatively high resultant PRDs, the important signal features are retained as is
demonstrated in Figure 9. This happens to be the goal of ECG compression techniques as
stated in Section 4.4. The algorithm described produces results that can be viewed favor-
ably when compared to results from other techniques (Jalaleddine et al., 1990). Both the
use of VQ and the wavelet transform have contributed to the success of this method. Vec-
tor quantization made possible the very low bit-per-sample rates, since this rate is gov-
emed by (log,N) /'k (refer to Section 4.1). The use of the wavelet transform was helpful
because of its power to decorrelate data and produce a resulting compact representation
(refer to Section 4.2).

The choice of wavelet was shown to be important, as was expected. As stated in Sec-
tion 4.7, the Biorthogonal-18 wavelet produced the worst PRD results when compared to
the results produced from the use of the other two wavelets. This is not surprising, since
the decomposition resulting from the use of biorthogonal wavelets is redundant, while
orthogonal wavelets such as Vetterli-22 and Daubechies-12 produce non-redundant, effi-
cient representations in the wavelet domain (refer to Chapter 2). Though the results in
Table 1 and 2 show that the performance of the Vetterli-22 and Daubechies-12 wavelets is
similar, when the information from Table 3 is taken into account, it is clear that the best
performance was achieved with the use of the Vetterli-22 wavelet. This is also an expected
result as the Vetterli-22 wavelet is “smoother” than the Daubechies-12 wavelet and thus
has a higher degree of regularity, which is an important factor in terms of compression
(refer to Section 4.5). In addition, the fact that the Vetterli-22 wavelet is the smoother

wavelet means that it produces a set of bandpass filters that are better defined in the fre-
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quency domain (refer to Figure 13), which also implies a more efficient decomposition.
Thus, the importance of regularity has been confirmed in terms of wavelet choice for ECG
compression. This can be expressed either in the time domain (“smooth” wavelet func-
tions) or in the frequency domain (well defined frequency selection of the bandpass fil-

ters).

Appendix 4.A K-means clustering

K-means clustering is a nearest neighbor based clustering algorithm, which means that

the distance between vectors:

=yl = [(x(1) —y(1))2+ (x(2) =y (2))2+...+ (x(B) =y (k) 2] 12 (2

is used to group the vectors. Given the set of training vectors Xy X0, Xgs oy X where L is

the size of the training set, the initial cluster centers vectors, RJQ , are chosen as:

0 = ] =
Rj xj j=123,..N (13)
where N equals the number of desired clusters. The remaining training vectors,

x;: i= N+ 1,N+2,...L are grouped into the appropriate cluster using the following

measure:

x; belongs to Rj’? for the j such that "xi —Rj’.’“ is a minimum (14)
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remembering that n = O for the initial set of cluster centers. The cluster center vectors are

then recalculated using the following relation:

N.
J
1
Rj = 17,2 O, (1) %;:(2), %, 3), o0 3 1 () 15)
i=1

where N] is the number of vectors in cluster j, k is the length of the vectors, and x i is
the i** vector in cluster j . This can be seen as finding the centroid of the cluster. The
entire training set is then read again and the vectors are regrouped using (14) and new
cluster center vectors are computed using (15). This process is iterated until the cluster

center vectors converge.

As an example of the above procedure consider the following set of vectors:

x, = (0.1,0.2)
x, = (0.3,1.0)
x; = (0.1,0.0)
x, = (0.9,0.8)
xs = (1.0,0.1)

Let’s set the desired number of clusters to N = 2. So, using (13) we have: R‘l) = x, and
Rg =X,. Using (14) it is found that cluster 1 consists of x,, x, x5 and cluster 2 contains

the vectors, x,, x,. The cluster center vectors are then recalculated using (15):

Rl = 2{(0.1+0.1+10), (02+00+0.1)} = (04,0.1) (16)

1
3
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Rl = %{(0.3 +09), (1.0+0.8)} = (0.6,09) an

The vectors, X, X9, Xq, Xy, X5, ATC then reclustered using (14) and the procedure is iter-
ated until R?} and R3 converge. In this particularly simple example the cluster centers
have already converged, since by using the new cluster centers computed in (16) and (17)
it can be seen that cluster 1 still contains X, X3, X5 and cluster 2 contains Xy, Xy Thus,
the cluster centers for the second iteration will be the same, i.e., R% =R } and R% = R21 .
For more complicated cases (greater number of vectors, higher dimensions) more itera-

tions would be required.
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FIGURE 1. Basic transformation based compression procedure
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FIGURE 2. Scalar quantization and vector quantization; scalar quantization maps a single sample
to a discrete value, while vector quantization maps a block or vector of samples to a discrete value
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FIGURE 3. A cross section of the human heart (Gruener, 1996) -
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FIGURE 4. The ECG and its important features (P wave, QRS complex, and T wave)
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FIGURE 5. Two scales of wavelet decomposition of ECG, c°.
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FlgURE 6. A test ECG and its wavelet decomposition of five scales. The original signal is labeled
¢", the wavelet coefﬁciesnts arelabeled @ (j = 1,2, 3, 4,5), and the scaling coefficients at the
final scale are labeled c”.
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FIGURE 7. Block diagram of method
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FIGURE 8. Original ECG and reconstructed ECG from a case resulting in a below average PRD
(5.43%).
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FIGURE 9. Original ECG and reconstructed ECG for case with above average PRD(17.07%).
Notice how ¢V and &9 still look very similar and in particular the key features of clinical
importance are retained.
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FIGURE 10. PRD as a function of vector length used for biorthogonal-18 wavelet
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FIGURE 11. PRD as a function of vector length used for Vetterli-22 wavelet
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FIGURE 12. PRD as a function of vector length used for Daubechies-12 wavelet
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FIGURE 13. Frequency domain decomposition of Vetterli-22 and Daubechies-12 wavelets by scale.
Notice how the bands for the Vetterli-22 wavelet are “sharper”.
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CHAPTER 5 Wavelet Design by Linear Predic-
tion Lifting

5.0 Summary

As should have been noticed from Chapters 3 and 4, the choice of wavelet in applica-
tions of the wavelet transform can significantly influence results. Therefore it is not sur-
prising that an ongoing area of interest in wavelet research is wavelet design using
information about the signal being analyzed. Many of the design methods involve match-
ing the Fourier spectrum of the wavelet with the signal. Due to the constraints in these
design methods, the resulting type of wavelets are limited and usually do not offer any
advantage over existing “library” wavelets. A strictly time domain wavelet design method
has recently been introduced by Sweldens (1995). In this chapter, a modification of this
method is developed by introducing a linear prediction step into the design algorithm. The
resulting filters are perfect reconstruction and regular and thus qualify as wavelet filters as

defined in Chapter 2.
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5.1 Introduction

Throughout this thesis a recurring issue has been the choice of wavelet basis. As men-
tioned in the previous chapters, analyzing wavelets can be chosen from a library of exist-
ing wavelet functions (which are constructed mathematically and are not based on signal
or feature matching) or can be designed independently (using signal or feature informa-
tion). In Chapter 4 it was found that promising results were obtained by using existing
wavelets. Orthogonal wavelets provided the best compression results. In Chapter 3, library
wavelets provided good results for most cases, but evidence was provided that pseudo-
wavelets designed directly from the P arrival of the seismic signal could provide improved
results particularly for some of the problem cases. These pseudo-wavelets lacked perfect
reconstruction properties and thus were only used to test the hypothesis. In this chapter, I
have taken this idea of wavelet design one step further by introducing an algorithm that
allows for the design of perfect reconstruction wavelets based on the feature of interest by
using linear prediction. These wavelets are applied to the problem cases of Chapter 3, with
positive results. The algorithm that I present is based on a modification of a recently
developed time-domain based wavelet design method called the lifting scheme (refer to
Section 5.3). In Section 5.2 and 5.3 existing wavelet design methods are reviewed. Sec-
tions 5.4 and 5.5 contain the theory and application respectively of a wavelet design

method using the lifting scheme and linear prediction.
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5.2 Wavelet Design Methods: Fourier Transform Based

Most current wavelet design methods are Fourier transform based and involve the use
of popular filter design methods such as that introduced by Parks and McClellan (1972).
Such a wavelet design method is presented in detail by Vaidyanathan (1993). It is based on

the following relation that was presented in Chapter 2:

HE@H(zY) +H(-2)H(—)) =2 (1)

which can also be written as:

P(z)+P(-z) =2 @
where P(z) = H(z)H(z1) . The goal is to design P (z) and then use spectral factor-
ization to get H (z) . Here the term spectral factorization refers to the method by which
the real coefficient minimum-phase spectral factor, H (z) , is separated from P (z) . This
is accomplished by finding the zeros of P (z) and then retaining all the zeros that are in
the unit circle (in the z-plane) and one out of every double zero on the unit circle. The rep-
resentation in the time-domain, 4 [#n] , is found by simply using the inverse transform.
The remaining analysis filter, g [n] , as well as the reconstruction filters, g [#] and
h [n] , are easily obtainable using relations (27) and (38) from Chapter 2. The algorithm
and code that implements the above described design method is presented in Appendix

5.A.

Theoretically, by using information about the frequency response of the signal or fea-

ture being analyzed, the above described method can be used to design wavelets that have
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similar frequency responses. In practice, this is very difficult, as it is rare for the frequency
response of a real signal to be well defined. In addition the constraint that o, to =7
(refer to Appendix 5.A) leaves little room to develop a great variation of wavelets. In addi-
tion, given the design algorithm of Appendix 5.A, for a given order of desired filter,
designing more than a few perfect reconstruction filters is difficult. Figure 1 illustrates
three filters designed using N = 10; and ®, = 0.2n, ®, = 0.25n , and ®, = 03r.
Varying the passband frequency, © > further resulted in filters that were not perfect recon-
struction. As can be seen, the filters in Figure 1 are not that different, which is due to the
design constraints mentioned above. Also, as has been stated previously, the Fourier-
domain is a rather abstract domain, and thus a time-domain based design method (the

topic of the next sections) would be preferable to a Fourier based one.

5.3 Wavelet Design Methods: Lifting Scheme

Recently a new method, known as the lifting scheme, has been developed for construct-
ing wavelet transforms as well as designing wavelets strictly in the time-domain (Sweld-
ens, 1995; Sweldens, 1996a; Sweldens, 1996b). The lifting scheme is a way to execute the
wavelet transform involving three steps: split, predict, and update. The wavelet in this
procedure is the transfer function resulting from the combination of these three operations.
A description of these steps is given below. The notation used is consistent with that used

in Chapter 2, while some new terminology is introduced from the references listed above.
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1. Split - In this step the function, ¢/ (where c? is the original signal), is split into even
and odd samples. The even-indexed samples are kept as the scaling coefficients while the

odd-indexed samples are kept as the wavelet coefficients.

M) = 12n) @
d M m) = dan+1] @
Both these sets of coefficients will be modified in the remaining steps of the lifting
scheme. The implementation of the split phase as represented by (3) and (4) is termed the
Lazy wavelet implementation. This phase can also be implemented by using other meth-
ods such as average and difference operations (Haar wavelet) to accomplish the splitting.
The split phase can be seen as analogous to the conventional implementation of the wave-

let transform.

2. Predict - To decorrelate the data further and to decrease the energy in the wavelet
coefficients (&/ * 1), a predictor is used to predict the odd-indexed samples of ¢/, and then
to encode &/ * ! as the difference between the predicted samples and actual samples.

Thus, in this step the scaling coefficients are used to obtain the wavelet coefficients, i.e.:

d M nl = d2n+1]—2(d [2n+1]) )
where Pis the prediction operator. Refer to Figure 2 for an illustration of how the above

equation is applied. In the lifting scheme implemented by Sweldens (1995) the prediction

operator is a polynomial predictor whose order can be chosen. N samples are used to con-
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struct polynomials of degree N— 1. For example, the simplest predictor is implemented

byusing N = 2:

4 ) = d2ne 1]~ (G (] + I [nr 1) ©

Higher order polynomial predictors simply use more of the samples from ¢/ * 1 (with the
appropriate weight factors) for the prediction. In this implementation the prediction is
always symmetric. With a good predictor a compact representation of the original data can

be realized.

3. Update - To maintain some global properties of the original data (such as the mean)
in the scaling coefficients, ¢/, these coefficients are lified using the wavelet coefficients,

d,ie.:

d =+ ud) 't
where U is the update operator. The result of this step is to preserve the moments of J at

every scale. For example to preserve the first order moment (the mean) it is required that:

Zc’i+l[n] = %ch[n] ®)

The update equation (7) then becomes:

Jtn) = d1m + 3@ n-1] +d [n]) ®
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Again, just as in prediction, higher order moments can be preserved by using more wave-
let coefficients with the relevant weightings. Also just as in the prediction, the lifting is

applied in a symmetric manner.

Figure 2 illustrates, in block diagram form, the steps outlined above. These steps are
repeated for the number of scales, j , that are desired. Also in Figure 2 are examples which
illustrate the application of each of the lifting method steps. The reconstruction is accom-
plished by reversing the order of the above operations (with opposite signs in (5) and (7)).

Of course, in the reconstruction, the split step becomes a merge step.

As mentioned earlier, the wavelet in the lifting scheme is the transfer function that
results from the combination of the operations above. The variables are the order of pre-
diction, and order of update. In practice the order of update is best left as in (9). The wave-
let is obtained by executing the inverse with only a delta function in the last &/ . Figure 3
shows two wavelets resulting from using different degree polynomials in the prediction

step.

Implementation details of the lifting scheme, including detailed code and examples, are

given in a detailed report by Fernandez et al. (1996).



118

5.4 Linear Prediction and Lifting for Wavelet Design

5.4.1. Linear Prediction for Predict Step of Lifting Scheme

One advantage of the lifting scheme is that the predictor in the predict step can be mod-
ified so that it reflects the characteristics of the data being analyzed. The goal is for the
resulting wavelet to thus be geared to the data. In this section a modification of the predict
step is introduced that realizes this goal. The prediction method chosen is known as linear
prediction, and is defined as the prediction of a data point using a linear combination of

the m past values (Makhoul, 1975; Strobach, 1990; Gersho and Gray, 1992), 1.e.:

m

3[n] = —Z a[k]x[n—k] (10)

k=1

where the above represents forward prediction and a [k] are known as the forward pre-

diction coefficients. Similarly, backward prediction is represented as such:

i[n-m—1] =—Zb[k]x[n—k] (1)
k=1

where b [k] are the backward prediction coefficients. Under certain stationary assump-
tions the backward prediction coefficients are just the forward coefficients reversed in
time, thus it is necessary to only obtain a [£] . Numerically, these coefficients are found
by solving the normal equation, Ra = —r, where R is the autocorrelation matrix, a is the

vector of prediction coefficients, and r is the correlation vector of the first m lags. A more
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detailed description of how the prediction coefficients are determined is given in Appen-

dix 5.B.

I have incorporated linear prediction into the lifting scheme using two separate imple-
mentations. One implementation which shall be called the asymmetric implementation
uses only forward prediction (10), while the other implementation is symmetric and uses
both forward and backward prediction, (10) and (11). Thus, for the asymmetric implemen-
tation, 2(¢/ * 1 [n]) , in (5) becomes:

m

AR L)) =—Za[k]cf+l[n—k+1] 12)
k=1

and for the symmetric implementation we have:

m m

s (1 [n]) = - Za[k]cj+1[n—k+ 1] — Za[k] Jd+1[n+k] (13)
k=1 k=1

The asymmetric implementation results in wavelets that are asymmetrical, while symmet-

rical wavelets result from the symmetric implementation.

5.4.2 Using Linear Prediction and Lifting to Construct Filter Bank Filters

The wavelet (highpass) filters are obtained by setting:

d=0 for all j
=0 (14)
d’ [ (length (d/)) /2] = 1



120

and then executing the lifting scheme in the reverse direction (i.e., update, predict, merge).
The lowpass filters are obtained in a similar manner except that the last line in (14) is
replaced by ¢’/ [ (length (¢’)) /2] = 1. Using standard notation let us call these filters
g and h, respectively. These filters can then be used in the conventional filter bank imple-
mentation of the wavelet transform (refer to Chapter 2) and are perfect reconstruction in

that:

g*a+h*h = & (15)
where the * represents convolution and 8 is the delta function, and g, g, A, h are the com-
ponents of a two-band filter bank. As stated in Chapter 2, in addition to perfect reconstruc-
tion the filter bank filters must also meet the regularity condition in order to qualify as
wavelet filters. This condition states that the iteration of the filter bank filters as repre-
sented by g; [n] should converge to a continuous function as j — o, where
g1 [n] = Zgj (k] A [2k—n] and g, [n] = gln] (refer to Chapter 2, Section

k
2.3.2). Rioul (1992; 1993) has expressed this condition in the following manner:

lim mangj[n +1] —gj[n]l =0 (16)
j—o®

Thus, as the iteration stage, j, increases, the difference between adjacent points in the
resulting function should approach zero. The filters resulting from the design method

described in this section are indeed regular and thus do lead to wavelet functions as is

illustrated below.
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Figure 4 shows an asymmetric wavelet at several scalings along with the corresponding
spectrums resulting from using the asymmetric implementation of the design method with
x being a sample seismic segment (P arrival) and m = 6. Figure 5 shows the same infor-
mation resulting from the symmetrical implementation using the same seismic segment
and m = 4. As can be noticed, the shape of the asymmetrical wavelet deteriorates some-
what at higher scalings, while the symmetrical wavelet shows little deterioration with
scale. Also, the spectrum of the symmetrical wavelet at each scale is “sharper” than that of
the asymmetrical wavelet. This is due to the fact that the degree of regularity (how fast the
iterated filters converge to continuous functions) is higher for the filters of the symmetric
implementation. This is demonstrated in Figure 6 which shows a plot of
max| g; [n+1] — g; [n] | versus scale. As can be seen the slope of the symmetrical case
curve indicates a faster rate of convergence. It should be noted that in both the asymmetri-
cal and symmetrical cases the filters are part of a biorthogonal filter bank, and not an

orthogonal one.

The strength of this design method is that since a model of the feature in question
(using linear prediction) is being used to design the wavelets, these wavelets are such that
they ought to match the particular feature, f (which is the seismic P-arrival in the exam-
ples of Figures 4 and 5). Thus, the application of these wavelets to some signal s should
lead to a high degree of correlation at the point where f is present, and this will be

reflected in the wavelet coefficients of s.
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5.5 Test Application: Problem Cases from Chapter 3

In this section wavelets designed using the methods outlined in the previous section
(instead of “library” wavelets) are applied to three problem cases of Chapter 3. The cases
were chosen based on the degree of error in S arrival time estimates and the fact that there
was nothing unusual or atypical about the location or magnitude of the events that the
cases represent. Information from Chapter 3 about the S arrival time estimates (using

“library” wavelets) as well as wavelet used is given below in Table 1.

TABLE 1. S arrival estimate information (in seconds) for three test cases (Algorithm refers to that
used in Chapter 3 to estimate S arrival time, Analyst refers to analyst pick, and Model refers to
TASPE91 model pick). The case numbers are those from Chapter 3.

Algorithm Error: Wavelet
(using “library” Algorithm used in Analyst
Case wavelet) Analyst Model -Analyst | Algorithm Comments
9 281.95 27222 274.54 9.73 Daub-12
17 454.45 484.31 489.11 -29.86 Vett-22 S poorly recorded
19 540.55 525.87 540.08 14.68 Daub-20

For each of these cases, the P arrival is used to construct a set of wavelet filters using
the methods described in the previous sections. These wavelets are then used in the Algo-
rithm (Part 2) of Chapter 3, the result of which is a S locator function, C,. A block dia-
gram of these steps is presented in Figure 7. Remember from Chapter 3 that C, is used to
locate the S arrival. Figures 8, 9, and 10 show the results of this application. In each figure
is the P segment that is modeled to find the linear prediction coefficients, the resulting fil-

ters, and C,. Also, in Table 2 are the quantitative results of this application.
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TABLE 2. S arrival estimate information (in seconds) for three test cases using wavelets designed by
methods of Sections 5.3 and 5.4 (refer to Figures 8, 9, and 10).

Algorithm Error:
(using designed Algorithm
Case wavelet) Analyst -Analyst
9 276.70 272.22 448
17 490.50 484.31 6.19
19 540.75 525.87 14.88

It can be seen from the results in Table 2 that for two of the cases (9 and 17) the S
arrival estimate accuracy showed a very significant improvement, while for the third case
the accuracy remained about the same. Case 17 should be particularly noted, in that the
use of a “library” wavelet resulted in an unacceptable pick error, while the use of a
designed wavelet resulted in a good pick. Overall, it can be stated that for this application
the use of designed wavelets (based on the P-arrival information) had a positive impact on

the feature (S arrival) location results.

5.6 Discussion and Conclusions

In this chapter a new wavelet design method has been introduced that uses linear pre-
diction in combination with Jifting. The important advantage of the method is that infor-
mation about the data being analyzed is used to design wavelets adapted to the data. These
adaptive wavelets are constructed purely in the time domain, which leads to a more robust
design method than conventional Fourier based methods. This design method was applied
to a few problem cases from Chapter 3 with very promising results (major reductions in S

location estimate error for two out of three cases). These seismic results not only show
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that the wavelet design method is effective, but also further reinforce the idea brought up

in Chapter 3 regarding the use of P arrival information to help locate the S arrival.

Of course, the design method introduced here can be applied to seismic signals, as well
as to other types of signals. The steps in the design method that has been presented do not
depend on the #ype of signal. In fact linear prediction has had applications in a wide vari-
ety of areas other than geophysics including neurophysics, speech processing, and even
economics. Thus a linear prediction based wavelet design method should find applications

in these areas as well.

Appendix 5.A Fourier Based Wavelet Design Method
Design Recipe

1. Using the Parks-McClellan algorithm, construct a finite length linear phase half-band
filter, f[n] , with length 2N where N is the desired length of the analysis lowpass filter,
h [n] . The term half-band signifies that the amplitude response, F (@) , has a symmetry
around the half-band frequency, ® = n/2. This means that the following constraint must
be met: ®, to =™, where @, is called the passband frequency and @ is called the

stopband frequency.
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2. The next step is to shift the amplitude response F () by a factor 8 so that the

resulting response, P (®) , is greater than zero for all @ . Thus:

P(w) = F(w) +9 (17)
3. The last step is to find the spectral factor, H, of P. This is the most complicated part

of the method and is implemented in the following manner:

i). Multiply p [n] by a decay factor, B, i.e.:

a[n] = B p[n] (18)
where n = 0, 1, 2, ..., 2N. Vaidyanathan (1993) has found experimentally that 1.02 is a

good value to use for the decay factor.

ii). Take the cepstrum of a [n] to get a [n] . Cepstrum analysis is defined and dis-
cussed thoroughly in Chapter 12 of Oppenheim and Schafer (1989), and a program that is
commonly used to calculate the cepstrum of a function is written by Tribolet and Quatieri

(1979).

iii). Add the causal part of a [n] to the folded anti-causal part of @ [n] and divide by

two, with the result being hin].

iv). The following two relations are used to get the desired analysis lowpass filter,

hin]:
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h[0] = exp (h[0])

h[n] = Z

(K] A [n—K] a9

SIPT‘

The code used to execute the above steps is given below.
Code based on design recipe

The code below is the pre-cepstrum part of the Fourier based design code. This pro-
gram takes an initial symmetric real coefficient filter produced by Parks-McClellan and
then 1) computes the frequency response of the filter, 2) shifts the frequency response so
that it is strictly greater than zero, 3) finds the impulse response corresponding to this new

frequency response and then 4) multiplies this new impulse response by a decay factor.

/* Program input: filt
Program output: H_omega (shifted freq. response)
h n (new impulse response)
g n  (b_n multiplied by decay factor)
Subroutines called: fft.c

#tinclude <stdio.h>
#include <math.h>
#define LENFFT 1024

main()

{

FILE *fopen(), *fp, *{p2;

float min,max;

int i,j,Nx, Nxdlv base2Nx;

float x[LENFFT] unx[LENFFT] xtemp{ 100],h{100],g{100],negi,rho;

/* initializing */

min = 9999999 ;

max = -9999999 ;
for(j=0;j<LENFFT;j++) x{j] = 0.0;

/* read filter resulting from Parks-Mcllelan*/

fp = fopen(“filt”, “r”);

Nx =0,

while (fscanf(fp, “%f”, &xtemp[Nx])!= EOF) Nx++;

fclose(fp);

fprintf(stderr, “PRECEPS: Read%d input data points from ascii file \n”, Nx);

*” “ ”)

fp = fopen(“optlen”,
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fprintf(fp, “%d\n”, Nx);
fclose(fp);

/* zero pad input filter */
for (i=0; i<(Nx+1)/2; i++) x[i] = xtemp[i+((Nx-1)/2)};
for (i=LENFFT-((Nx-1)/2); i<LENFFT; i++) x[i] = xtemp[i-LENFFT-(Nx-1)/2))];

for (i=0; i<LENFFT; i++) imx[i] = 0.0;
/* call forward fit */
Nxdiv = LENFFT,;
base2Nx =0,
while (Nxdiv!= 1){
Nxdiv = Nxdiv/2;
base2Nx +=1;

)
fit(x,imx, LENFFT,base2Nx,0);

/* find min of freq. response and shift response
by 1.1 times min */

for (i=0; i<LENFFT; i++){
if (x[i] < min) min = x[i];

printf(“The min equals:%f\n”, min);

for (i=0; i<LENFFT; i++) x{i] += fabs(min)*1.1;
fp = fopen(“H_omega”, “w™);

for(i=0; i<LENFFT; i++) fprintf(fp, “%f\n”, x[i]);
fclose(fp);

/* call inverse fft to find new impulse response */
fit(x,imx, LENFFT,base2Nx, 1);

for (i=0; i<((Nx+1)/2); i++) h[i+((Nx-1)/2)] = x[i];
for (iSLENFFT-((Nx-1)/2); i<LENFFT; i++) h[i-(LENFFT-((Nx-1)/2))] = x[i};

/* multiply new impulse response by decay factor */
rho = 1.02;
fp = fopen(“h_ ”’ “W”);
fp2 = fopen(‘6g—n7” “W”);
for (i=0; i<NXx; i++){
fprintf(fp, “%f\n”, hli]);
negi = -1;
gli] = pow(rho,negi)*h[i];
fprintf(fp2, “%f\n”, g[i]);

f}‘close(fp);
fclose(fp2);

}

The results of the above code are input into the cepstrum code of Tribolet and Quatieri,

(1979). The code below is the post-cepstrum part of the Fourier based design code. This
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program takes the output of the cepstrum program and produces a minimum phase filter,

hin] .

/*Program input: ghat n
Program output: h0_n
Subroutines called: none */

#include <stdio.h>
#include <math.h>
#define LEN 10000

main()

{

FILE *fopen(), *{p;

int i,j,k,n,Nx,Nghat;

float ghat[LEN],xhat[LEN],hnot[18],realk realn,sum;

/* read output of cepstrum program */
fp = fOpen(“ghat_n”, “ri,);
Nghat = 0;

gha — VY
while (fscanf{fp, “%f”, &ghat[Nghat])!= EOF) Nghat++;
fclose(fp);
fprintf(stderr, “POSTCEPS: Read%d input data points from ascii file \n”, Nghat);

/* fold anticausal part of ghat and add to causal part */
for (i=0; i<512; i++) xhat{i] = 0.5*(ghat[i] + ghat[Nghat-i]);

fp = fopen(“optlen”, “r”);
fscanf{fp, “%d”, &Nx);
fclose(fp);

/* finally, find spectral factor hnot using xhat */
hnot[0] = exp(xhat[01);
for (n=1;n<((Nx+1)/2);n++){
for (k=1;k<n+1;k++){
realn = n;
realk = k;
hnot[n] += (realk/realn)*xhat{k]*hnot[n-k];

}

}

/* normalize filter */
sum = 0.0;

for (k=0; k<((Nx+1)/2); k++) sum += hnot{k]*hnot[k];
for (k=0; k<((Nx+1)/2); k++) hnot[k] = hnot[k]/sqrt(sum);

m — fopen(“ho_n,3’ (‘w7’);
for(i=0; i<((Nx+1)/2); i++) fprintf(fp, “%f\n”, hnot[i]);
fclose(fp);

}
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Appendix 5.B Calculation of the Linear Prediction Coefficients

(Makhoul, 1975)

The prediction coefficients, a [k] , are found by using the method of least squares to
model x. The coefficients are obtained by minimizing the total squared error between x
and & with respect to each of the coefficients. Using (10), the error between the actual and

predicted values is:

m
e[n] = x[n] —%[n] = x[n] + Za[k]x[n——k] (20)
k=1
Therefore, the total squared error is:
§ m 2
E = Zez[n] = Z x[n] + Za[k]x[n—k] (21)
n n k=1
This error can be minimized by setting:
OF .
— = i<
Bali] 0, 1<i<m (22)

By applying (22) to (21), the following set of equations are found:

m

Za[k]Zx[n——k]x[n—i] =——Zx[n]x[n—i], 1<i<m (23)

k=1

The above relation represents a set of m equations with m unknowns and can be solved
for the coefficients, a [k] . An elegant way to solve this system is to use what is termed the

autocorrelation method, where the autocorrelation function of x [n] is defined as:



130

R[] = ) x[nlx[n+i] (28)

n

which is an even function of i, i.e. R[—i] = R[i] . Therefore, (23) can be reduced to:

m

Za[k]R[i—k] = —R[i], 1<i<m (25)
k=1

In matrix form (25) can be represented as:

R[0] R[] R[21 ..Rm-1|laruy] [r01]]
R[1] R[0] R[] ..R[m-21||a[2] R[2]

R[2] R[]  R[0] ..R[m-=31{|a[3]|=—|RI3] (26)

_R[m.—l] R[m.—2] R[m.—3] R[.O] a [.m]_ R [-m]_

=

The matrix on the left is called the autocorrelation matrix. The values for a [k] can be

found by using methods such as Gaussian elimination, matrix inversion, etc.
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FIGURE 1. Three filters designed using the Fourier based design method outlined in Section 5.2. All
three use a value of ¥ = 10. The values for the passband frequencies are varied and are
o, = 0.2n, o = 0.25=, and o, = 03x.
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FIGURE 2. Diagram of lifting scheme with ¢/ and &/ being the scaling coefficients and wavelet
coefficients respectively, just as in Chapter 2. Below the block diagram are examples of each of the
steps. The scaling coefficients of the split step are passed on to the predict step and are used to
calculate “further decorrelated” wavelet coefficients. The wavelet coefficients of the predict step
are then passed on to the update step and are used to “lift” the scaling coefficients.
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kol clpo)  dlfo]  otpil Al clp2] dlf2]

Example of Update step: (+) (¥
@3
el ... d'[0] [ 4[] el dlf2]
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FIGURE 3. Two wavelets resulting from lifting scheme using N = 2 and N = 4 respectively, in the
prediction step.

Wavelet resulting from use of Wavelet resulting from use of
N=2 in predict step N=4 in predict step

FIGURE 4. Wavelets at different scalings resulting from asymmetrical implementation of method
outlined in Section 5.4. Next to each wavelet is its Fourier spectrum. Notice how the wavelet shape
degrades somewhat with scale.
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FIGURE 5. Wavelets at different scalings resulting from symmetrical implementation of method
outlined in Section 5.4. Next to each wavelet is its Fourier spectrum. Notice how the wavelets do
not deteriorate as much as the wavelets in Figure 4 and how the spectrum is “sharper”.
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e

FIGURE 6. Plots of max|g.[n+ 1] —g, [n]J versus scale (or iteration) for asymmetric and
symmetric cases. The pl&ts indicate that the symmetric wavelets have a higher degree of regularity.
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FIGURE 7. Block diagram of seismic test application. The input, s, is the seismic signal. The filters
resulting from the design method are &, k, g, £, and the output is the S arrival locator function,
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FIGURE 8. Case 9 results. Shown below are the P arrival used in the design method, the resulting
filters, and C, resulting from using the designed filters in Part 2 of the Algorithm of Chapter 3.
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FIGURE 9. Case 17 results. Shown below are the P arrival used in the design method, the resulting
filters, and C, resulting from using the designed filters in Part 2 of the Algorithm of Chapter 3.
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FIGURE 10. Case 19 results. Shown below are the P arrival used in the design method, the resulting
filters, and C, resulting from using the designed filters in Part 2 of the Algorithm of Chapter 3.
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CHAPTER 6 General Discussion

6.1 Conclusions

In this dissertation I have studied the feature identification and compression properties
of the wavelet transform with the application signals being the seismogram and the elec-
trocardiogram. The common issues among both of these applications included how to
optimally process the information present in the wavelet scales, and how to choose the
basis function (wavelet). In Chapter 3, it was shown that by analyzing information across
scales important seismic arrivals (P and S phase) can be identified with good accuracy.
This is due to the fact that significant features in a signal show up strongly in several
wavelet scales while weaker (or random) features are present in only one or two scales. It
was also shown that wavelet choice was an important parameter in terms of S phase
arrival detection. For many of the seismic test cases using one of the wavelets from a
library of wavelets led to an accurate pick. The wavelet used was based on the amplitude

of the resulting S locator function (refer to Chapter 3). In addition it was showh that there
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was a correlation between the “best” wavelet and the P arrival shape. This makes sense as
there should be a degree of correlation (depending on the particular event) between the P
arrival shape and the S arrival shape. This idea was taken advantage of further by first
using the P arrival shape constructing pseudo-wavelets (no perfect reconstruction proper-
ties) and then in Chapter 5 by designing actual wavelets based on the P arrival shape. For
events where the S phase arrival was difficult to locate it was shown that by using this

design method an accurate S arrival pick resulted.

In Chapter 4, I presented a compression method using the wavelet transform and vector
quantization. Vector quantization was applied to the scales instead of the raw signal. As
predicted theoretically, higher scales required the use of smaller coding vectors due to the
decreased amount of correlation among the coefficients in these scales. Also it was shown
that higher order orthogonal wavelets led to the best compression results (low bit-per-
sample rate with accurate reconstruction). This is due to the fact that these wavelets pro-

vide a nonredundant representation of the signal.

I have found that the main advantage of the wavelet transform is that the wavelet
decomposition essentially breaks up a signal so that it can be viewed at different scalings.
This decomposition is controlled by the wavelet used. The effect is to provide a different
perspective and thus lead to new insights. These new insights have aided me in the devel-

opment of the methods that I have presented in this dissertation.
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6.2 Future Direction

In research it is rare for there to be complete closure. There are almost always more
questions after one phase of research than before. Some of the questions may get
answered, but many more inevitably pop up. This has definitely been the case for this the-
sis research. There are several directions in which future work can proceed. Some of these
directions involve the refinement of the methods presented here (some of which have
already been mentioned in the chapters). Though the test data set of Chapter 3 was suffi-
cient (it took many months to put together the data set that was used), more representative
quantitative results could be obtained if a larger set of events were available. In addition,
the polarization based methods used to locate the P arrival could be extended to long
period seismograms as another way to locate the S phase arrival. As for the compression
method of Chapter 4, there is room for improvement with regards to the application of
vector quantization, which include improved clustering and search routines. Many of the
other refinements center on the issue of wavelet choice which has been partly addressed in
Chapter 5 (wavelet design). For the seismic feature identification problem several ques-
tions remain regarding how to best define the P arrival shape when designing a wavelet
that is based on it. The methods of Chapter 5 can be refined by trying different predictors
(instead of linear prediction) in the predict step of the design scheme and possibly altering

the update step.

There are also new directions in which this research can proceed. These include appli-

cations of the methods in this thesis to other classes of signals such as speech signals and
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images, and to the development of other types of applications, such as noise removal (a
type of compression) and pattern recognition (feature identification). The wavelet design
methods of Chapter 5 offer a great deal of potential application to other types of signals
because of the use of linear prediction. Given that there is so much potential for future
work, I wrap up with a refrain from a poem by Robert Frost:
The woods are lovely dark and deep,
But I have promises to keep,

And miles to go before I sleep,
And miles to go before [ sleep...

1. From Stopping by Woods on a Snowy Evening
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