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i. Abstract

Recent theoretical and experimental results indicate that driving a current in
the outer radius of an RFP suppresses sawtooth activity and increases particle and
energy confinement times. One candidate for a form of steady state current drive is
the slow wave at the lower hybrid frequency. Here, the accessibility of such a wave
in an RFP plasma is investigated theoretically, with focus on the RFX machine (A =
2.0m, a=0.457m, I, < 2MA) of Padua, ltaly. To drive current, the slow wave with
frequency between 1.0 - 1.5 GHz is considered where optimal Landau damping is
desired at r/a ~ 0.7. By numerically determining the values of the wave's
perpendicular index of refraction which satisfy the hot plasma dispersion relation,
regions of propagation and evanescence can be found. The path of the wave can
then be traced over a contour map of these regions so that accessibility can be
clearly seen. The possibility of mode conversion events can be ascertained by
plotting the values of the perpendicular index of refraction for the fast and slow
wave and observing convergence points. To locate regions of maximum Landau
damping, a technique developed by Stix was adapted for use with the slow wave in
an RFP plasma. Results show that the slow wave is accessible to the target region
without mode conversion so long as the value of the parallel index of refraction is
correctly chosen at the edge of the plasma. Landau damping can also be
optimized with this method.

In an RFP, two to twenty percent of the electron population consists of fast
electrons. Because this species alters the total electron distribution function and
raises the effective temperature in the outer regions of the plasma, its presence is

expected to shift the location of ideal Landau damping. By extrapolating hot
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electron data from the Madison Symmetric Torus (MST) to RFX, the hot plasma
code was adapted to accommodate these electrons and determine their
significance. It is found that the presence of this species does not affect the
accessibility of the wave. However, the phase velocity of the wave needs to

increase by 6% to maintain optimal damping.
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l. Introduction

Reversed field pinch (RFP) plasmas are characterized by comparable
toroidal and poloidal magnetic field components (B, ~ B,) where both elements of
the field are powered by a poloidal field circuit driving a toroidal current. Poloidal
current is partly driven by the dynamo mechanism which is theorized to be caused
by the interaction of fluctuations in fluid flow velocity and magnetic field.1
Unfortunately, the effects of the dynamo extend beyond current generation to
include rhode locking, turbulence generation, and enhanced particle and energy
transport.2’3,4 Control of the dynamo, then, is critical to the improvement of an
RFP. |

Recent experiments suggest that dynamo activity can be suppressed by
externally,driving a poloidal current in the plasma. Using the three dimensional
MHD code, DEBS5, Ho simulated the addition of an applied loop voltage and
electrostatic helicity injection to an RFP plasma.6 The resulting magnetic
configuration was stable to MHD activity driven by currents. Sarff? introduced an
inductive poloidal electric field into the plasma in the Madison Symmetric Torus
(MST)8 RFP device in order to drive an auxiliary poloidal current. The driven
current was shown to flatten the current density profile, suppress sawtooth activity,
and double the energy confinement. In the search for a form of steady state current

drive, Shiina® and Ishiil0 performed theoretical investigations of current drive for

the TPE-RX project using the fast magnetosonic wave (@, < @ < @4, Where @ is

the ion cyclotron frequency and @, is the lower hybrid frequency). They favor the

fast wave over the slow wave because of its high parallel phase velocity, which is

predicted to allow the wave to reach the interior of a high beta RFP plasma. Their



calculations show that the fast wave is an efficient current driver in the high-density
regions of the plasma and a strong candidate for creating a dynamo-free RFP.

Unlike the fast wave, the slow wave possesses the advantages of a higher
frequency and a simpler antenna design. While accessibility to the core may be
limited, investigation by Uchimoto11, using the cold plasma dispersion relation and
an RFP-adapted version of the Brambilla raytracing code12 showed that the wave
can get deep enough into the plasma to reach a target region at /a = 0.7.
According to numerical simulations run with DEBS, currents added to this region
stabilize a larger portion of the plasma than if current were added at other radii.
This makes the slow wave an attractive option.

This paper attempts to address some of the gaps in investigations of lower
hybrid wave accessibility in an RFP. It is a theoretical exploration of the
accessibility of a high frequency slow wave (f= 1.0-1.5 GHz) launched into the RFX
RFP13 of Padua, ltaly. This machine is characterized by larger dimensions (R = 2.0
m, a = 0.457 m) and a larger maximum current (/ < 2 MA) than other machines. It
should be noted that RFX has not actually achieved a 2 MA current to date.
However, for the purpose of examining this subject at higher temperatures, we
shall extrapolate the present performance of MST and RFX up to this current. RFX
will run with a magnetic field strength of 8.75 kG at 2 MA, placing the lower hybrid
frequency at about 0.57 GHz. In order to avoid strong ion plasma resonances, a
frequency of 2.0 to 2.5 times the lower hybrid frequency was chosen. Hokin4, has
investigated the feasibility of using lower hybrid current drive in a 2 MA RFX in
order to maintain 10% beta. (Beta, which is a measure of plasma energy to
magnetic field energy, decreases in RFP's as //N increases according to the

empirical scaling 8 = fB,...[(//N)/2]°°.) In the course of his work, he developed

some plasma parameters using the fit for beta and the relation



3,1
T=2B%! (1)

where T is the temperature in keV: Here /is the toroidal current and N = za®(n)

where a is minor radius and (n) is the volume averaged density. These

para?neters will also be used for this work and are reproduced in Table 1.

The hot plasma dispersion relation is used in this project to investigate the
effect of high temperature on the accessibility of the slow wave. Assuming an
infinite plasma with a fixed temperature and density and a wave of fixed frequency
and parallel index of refraction, values of the perpendicular index of refraction are
determined using root solving methods. The plasma temperature and density and
wave parallel lndex of refractlon are then changed to correspond to a radial step by
the wave deeper lnto the plasma and the next root is found. In this way, effects
such as cutoff mode conversion, and optimization of Landau damping are
explored Itis also possible to use this method to observe the effects of fast
electrons, which make up 10 - 20% of the edge electron density in an RFP.15.16

The paper is organized as follows: Section Il describes the hot plasma
dispersion relation used and lists assumptions made about the electron and ion
species in RFX. In Section IlI, initial accessibility studies for an electron/ion plasma
are performed. The method used to find regions of optimal Landau damping is
covered in Section IV. The addition of a fast electron species is discussed in

Section V. Section VI presents conclusions and speculates on future work.




Il. The Hot Plasma Dispersion Relation

In order to explore the accessibility conditions of the lower hybrid wave, the
hot plasma dispersion relation developed by Swanson!7 is used. This dispersion
relation is derived assuming a drifting, anisotropic Maxwellian distribution of

particles of the form

3/2 — 2 2
fo(vuv//)=(%) = eXP{—(Via—V")——V—:} | @)

where v,,, is the longitudinal thermal velocity (v, =27, /m) and v, is the
transverse thermal velocity (v2 = 2T, /m). The parallel drift velocity of each
species is denoted by v,. The magnetic field, B, is assumed to lie along the z-axis
of the local Cartesian coordinate system which is pictured in Figure 1. The wave
numbers, k, =k, cos y, k, =k, siny, and k, are also pictured, where y is the
angle between the projection of kinto the x,y-planes and the x-axis.

The resulting wave equation is

Ko —ki-k: Kk,+kk, Kk,+kk, \(E,
K,+kk, K,-ki-ki «x,+kk, | E,|=0. (3)
Ky +K K Ky +kk, K,-ki-ki\E,

Here, x; = (w/c)’K;, where the K, are elements of the hot plasma dielectric tensor

i1

K,+K, sin® v K,-K,cosysiny K,cosy+K,siny
K=|-K,-K,cosysiny K, +Kycos®y  K,siny—-Kscosy 4)
K,cosy—Kssiny K,siny+Kgcosy K,



in which the six tensor coefficients are expressed below:
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In the above expressions, the summation over jis a summation over species, ®,

are the plasma frequencies, w, are the cyclotron frequencies, and o is the wave

frequency. The A, are Larmor radius length scales equal to (1/2)k%pf;, where p; is
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the Larmor radius of the species. /, and // are the modified Bessel function of the

nth order and its derivative, where the argument for each is A;. Z and Z’ are the

Fried-Conte dispersion function and its derivative with the argument
&y =(@+nw, —kyy,)/kv,,. The sign of the charge of each species is

represented by ¢;.
By setting y = 0 (the equivalent of performing a rotation of the coordinate

system about the z-axis), the relation can be simplified to

[y(y—Ko+nf)+K22]K3+nf[(y—K0+nf)K1—K§]+
K4(y—Ko+ni)(2nln,,+K4)—-K5[7K5+2K2(nln,,+K4)]=O (11)

where y =nj,—K,. The wave numbers have all been replaced with indices of

refraction through the relation k = nw/c. Note that if a non-drifting, isotropic

Maxwellian distribution of particles is assumed (v, - 0, T, = T,) with temperature

approaching zero, the dispersion relation resembles its cold plasma analog. The
dielectric tensor elements K, K,, and K all vanish while K|, K,, and K, take on
the values of the S, -iD, and P coefficients of the standard cold dielectric tensor
developed by Stix18,

In order to use this relation to research accessibility, it was programmed as a
FORTRAN-77 code in a UNIX background. The code uses an adapted form of
DZANLY19, an IMSL rootsolving routine which employs Miiller's method?20 to find
roots. This method follows the gradient of the function in the complex plane until

| absolute zero is reached, at which point it has found a root. Two of the subroutines
- the plasma dispersion function and modified Bessel function - are pivotal points in
the program and deserve special attention here.

The plasma dispersion function (Z function) is defined as



2(¢)=Wrew(-&)-25(8) (2)
in which S(¢) is Dawson's function:

S(C)=exp(:—§2)jdzexp(22). (13)

For the purpose of this work, it was necessary to model the dispersion function for

cases of large and small [C | In the latter case, Dawson's integral could be directly
determined without the threat of machine overflow. In the case of large ||,
however, it was necessary.to.apply the asymptotic expansion for the function which

has been defined as

Z(¢)= i\/;exp(_g2)__§-1(1+222 +4:24 + 8126 +) (14)

The routine uses the first four of the terms in the expansion. The resulting function,
ZFUNC, is plotted in Figure 2.
The modified Bessel function is of particular concern due to its asymptotic

nature. The standard numerical routine employs the recursion relation

a2~ (1) = 221,(2) (15)

whose numerical solution involves a successive normalization of each term.

Unfortunately, as |A| grows. large (which it does for ion terms), limited computer

precision forces the.normalizing factor to zero. In order to avoid this problem, the
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code determines the function value in three different regions. For small values of

|A], the IMSL routine DCBINS?21 is applied which uses the recursion relation

above. For large values of |1/, the code uses one of two asymptotic expansions22

for the modified Bessel function. For small n,

__ &l (e-D(w=-9) (p-1)(r-9)(u-25),
/"(’l)~\/27z/1{1 81  2(8A) 3(84) } (19)

is used, where i = 4n? and the series is carried out to twenty-five terms. For large

n, a slightly more complex expression is required

I,(nz)= ! ( e:)1,4{1+i£"~g-)-} (17)

N27n “ n

to which the following definitions apply:

z=1/n t =11+ 22 NI+ 22+ In——+
/ / = 1+\/1+z
uy(t)=1 (18)

t
u,m(t)—; 2(1-12)up (1) + j1 512 Ju, (t)dt
0

(o J NN

and the first four terms of this series are used. The function, BES, is shown in
Figure 3.

Several assumptions were made about the electron and ion distributions of
RFX. lons were taken to be protons. Quasineutrality was upheld by setting n, = n,,

where n; represents density. The ion and electron temperatures were set equal to

each other since these two species are assumed to be collisionally coupled in



RFX. The paraliel and perpendicular temperatures of each species were also set
equal. Lastly, it was assumed that neither species has a significant drift velocity so
that v, could be set to zero. For the majority of the investigation covered in this
paper, the prolected temperature and density of RFX at I/N 6x10™ A-m were

used as plasma parameters In the code, the density profrle is a typical RFP

density proflle n, = neo[1 (r/a)a] Although there are few direct experimental

measurements of the temperature profile of an RFP, a quartrc relationship is

generally accepted to be representative and is used here: T,=T,[1-(r/a)*].

Flgures 5 6 and 7 represent the dependence of n, on density and either
temperature magnetlc fleld or frequency, respectively. Frgure 5 plots the roots of
the dlsperSIon relatlon for increasing density and various values of constant

temperature.‘ Although the real part of n, is almost independent of temperature, the
slopeJof the imagi'na'ry part' hecomes steeper and more negative with increasing
temperature. This indicates that wave damping becomes stronger with higher
temperature. Figure 6 shows roots for different values of constant magnetic field
strength. Within a range of 7-8 kG, the dependence of n, on Bis more or less
monotonically increasing. The imaginary parts are fairly close in value, indicating
that damping should not he strongly dependent on magnetic field strength. The
dependence shown in Figure 7, on the other hand, is inverse -- n, will decrease as

wave frequency increases. Damping is fairly dependent on frequency, with a

steeper slope closer to the lower hybrid frequency.
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lll. Accessibility in an Electron-lon Plasma

When considering wave accessibility, one is really looking for points in the
plasma which are resonances or cutoffs for the wave. A resonance is a point
where the index of refraction of the wave passes through infinity. Usually, this
occurs when the wave matches frequencies or velocities with some component of
the plasma. Wave absorption or reflection can occur here. A cutoff is a point in the
plasma where the index of refraction passes through zero and the wave begins to
spatially attenuate or grow. Reflection can also 6ccur as the perpendicular index of
refraction of the wave decreases and the wave tums to follow the magnetic field. At
this point, it mode converts and it is unlikely that its enérgy will go to the electrons
as planned. For these reasons, knowing the location of resonances and cutoffs in
the plasma is critical to successful lower hybrid current drive.

Since the n,, is set at each step of the plasma, we are really looking for
places where the n, passes through infinity or zero. The former can be anticipated
by comparing the wave frequency to the plasma and cyclotron frequencies of each
species of the plasma. As it turns out, the wave should become resonant with the
ion plasma frequency at r/a = 0.65 and, depending upon the value of n,,, with the
electron parallel thermal velocity at deeper points in the plasma. The first of these
resonances is very weak and does not impede the ;travel of the wave. The second
is a region of strong Landau damping in the center of the electron velocity
distribution function. Landau damping is best described as a collisionless damping
of the wave due to a wave-particle interaction. Electrons whose longitudinal
thermal velocities maich the parallel phase velocity of the wave become trapped in

the potential wells of the wave. This trapping allows the wave and particle to
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interact and a transfer of energy occurs. Chen23 explains that, just as an ocean
wave traveling slightly faster than a surfboard gives up some of its energy to push

_the board along, radiofrequency waves moving at higher velocities than the bulk of
an electron distribution will deposit energy into jthe resonant electrons. (This is, of
course, the now-famous “surfboard analogy.”) It is also possible for a wave moving
slower than the bulk of an electro_n distribution to receive energy from the
distribution.

Cutoff can be determined by examining the cold plasma dispersion relation.

By using the determinant of the wave equation and requiring that o = 2«/6003600,- , or

two times the lower hybrid frequency of a high density plasma, an approximate

expression for the requirement on n,, may be generated:
2 2 172 i
oy 2[(1+ wZ, [0, +wpe_/coce] (19)

In general, this limits the travel of a wave with high phase velocity in certain high
density regions of the plasma. This condition.is absolutely required and
independent of temperature. It is not, however, independent of frequency. It can
be shown that, as wave frequency is increased, the cutoff will shift to regions of
lower density indicating that a high frequency wave will be evanescent in densities
accessible to a wave of lower frequency (Figure 8). The cold plasma cutoff is also

shown in this figure.
In the case of RFX, the cutoff can be seen by plotting the contours of n? =0

‘on a diagram of n, and density. Figure 9 shows that the cutoff follows that

predicted by Equation 19 fairly closely. The region of resonance between the wave

and the thermal electrons. is also indicated with a dashed line. By assuming that n,

increases as the wave steps into the plasma according to n,, = ny.,, /(1/a), the
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exact path of the wave through the plasma may be traced. Laying this trajectory
onto the map of the cutoffs, it is possible to observe the position of the wave relative
to the cutoff. -

One great concern when using the slow wave is that of mode conversion to
the fast wave. This event occurs as the wave reaches a resonant or evanescent
region in the plasma. If damping is strong, the wave is completely absorbed.
However, if damping is weak, there is a possibility of reflection and/or mode
conversion. In the latter case, the wave would transmit through or reflect off the
layer and emerge as one or more new modes. Obviously, this is extremely
undesirable when considering current drive since Landau damping would be
altered by the change in the resonance requirements of the wave. If the roots of
the dispersion relation are known, mode conversion can be studied by examining
the values of n, as density increases. Mode conversion events will appear as
turning points of the wave and mode converéion densities can be identified at
those points. Figure 10 displays .n® as a function of density for selected values of
n,. Note the extra path at the mode conversion density. As the slow wave and fast
wave meet at the cutoff, they coalesce into an evanescent mode and propagate
until completely damped.

From Figure 10, it can be concluded that mode conversion does not

represent a threat to slow wave propagation if n,,4,, > 5. By following the path of a
single n,,, one sees that the conversion density lies relatively deep in the plasma.

As the wave moves into the plasma, however, loss of forward velocity forces n,, to

increase. This jump’ to a new path moves the applicable mode conversion density
deeper into the plasma. As the parallel index of refraction increases again, the
cycle continues until it becomes apparent that the wave will never reach a required

mode conversion density. This is true, in general, so long as the parallel index of
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refraction at the edge is chosen to meet the accessibility condition presented above

(Equation 19).
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V. Landau Damping Efficiency

A second criterion in considering the feasibility of lower hybrid current drive in
an RFP is that edge conditions optimize electron Landau damping within the area of
interest in the plasma. Uchimoto's analysisi? uses the warm plasma dielectric

tensor to determine that Landau damping is optimized in those regions characterized
by v,,/Vye = 2.5 where v, is the parallel phase velocity of the wave and may be

expressed as v, =¢/n,. The assoclated figure24 is reproduced here by ploiting
Vo /Vine @S a function of temperature and n, (Figure 11). Regions of v, /v,,, <2.0
are characterized by excessive damping while regions of v,, fv,,, > 3.0 are regions
of little damping. Assuming that n, varies as described earller and that the
temperature profile is quartic, it is possible to invoke the “raytracing” technique
employed in Figure 9 to plot the path of the wave onto the plot of v, /v, contours.

By adjusting the starting value of n,, the wave can be made to propagate through

the outer region of the plasma with little damping until it reaches the region where

eurrent drive is desired.

A more quantitative method of determining the region of optimal Landau
damping can be found by adapting a technique suggested by Stix25, He determines
the damping rate, I" = P/W, where P is the power per unit volume deposited into the

plasma and W is the wave energy density. Power can be expressed as

P=- -1-'—6(9— E'-K-E +complex conjugate (20)
ﬂ _
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where Eis the complex amplitude of the wave electric field and 5 is the hot plasma

dielectric tensor. From cold plasma theory, the polarization of the slow wave is such
that |E,|>>|E,| and |E,|>> |Ey|, so that E is almost parallel to k and E, can be

effectively ignored. Then,

P2, F im(,)+21 R, 2) (K., 4 1 () @

in which the term dependent on [Ez|2 is power deposited by Landau damping, the
term dependent on |EX|2 is power deposited by transit time magnetic pumping, and

the term dependent on E E; is a cross term.

The wave energy is, from classical electromagnetic theory,

: 1 . . d '

-where B indicates the wave magnetic field and Eh is the hermitian conjugate of the

dielectric tensor. Since the slow wave is predominantly electrostatic, B = 0 and the

equation reduces to

1

W =
167

ZF= (0K;)+ 2Ro(E,E2) 2 (0K HEL o (ak3) | (23)

Using the electron elements of the dielectric tensor in the power equation, the

electron Landau damping rate is then the Landau damping term of the power
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equation divided by the total wave energy. The relative value of E, is of use here

and may be determined from the y- and z-components of the wave equation:

E,__ [K§+(K1+K0-n2)(K3—ni)] 24
E, [K2K5+(K1+K0—n2)(K4+nln,,)]'

By applying Equatibns 21, 23, and 24 to the definition of I, we get the following

expression for the Landau damping rate:

r,~20 , Im(K,) . (25)

Because we have been working in a slab geometry thus far, we cannot
maximize the Landau damping rate by taking the derivative with respect to the flux

surface area, dI',,/do. However, it is possible to use the n, determined by the

rootsolver to analytically find the region of ideal damping. At the plasma edge, the

magnetic field points mainly in the poloidal direction. Therefore, k,=n,w/c is
along the poloidal field. The perpendicular part of k is in the radial and toroidal
directions, with all of k, being in the toroidal direction when the wave is launched at
the edge. It is reasonable to assume that k, remains largely toroidal as the wave
continues into the plasma, so that the wave makes many toroidal passes per radial

step. The fractional power loss per toroidal transit is given by:

1dP 2zR 2nzR
—— =T , (26)
Pd v,

gl
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Here R is major radius and v, = dw/dk, is the group velocity of the wave in the

perpendicular direction. [If we require that the damping rate be large enough to
completely damp the wave in one hundred transits or less, Equation 26 becomes an

inequality:

2_100vgl-
Lo 27R

(@7)

Figure 12 shows the results of applying this logic to RFX for nj., =5.0 and

Nyjeee = 6.0. The region of optimal Landau damping lies at the intersection of the

curves representing each side of Equation 27. Since this area lies on either side of

r/a = 0.7 for the two cases, we assume that 1, =5.5 is optimal.

The result of all the accessibility conditions discussed in Sections lll and IV is
a range of parallel indices of refraction to be used as edge conditions for launching a
lower hybrid wave into an RFX plasma of known temperature and density. In order
to test the validity of the predictions, the data for the case of /N = 6x107"* A/m with
Nyeage = 5-5 were entered into the RFP-adapted version of the Brambilla raytracing
program.12 Results are shown in Figure 13. The ray enters the plasma at the
outboard edge and proceeds around the poloidal plane of the torus until it is
completely damped. The power deposition profile shows a sharp spike at r/a=0.7,
indicating that current was driven in the desired region (Figure 14). With the

frequency chosen at f = 2f,, to avoid ion plasma resonances, all of the wave power

was delivered to the electrons.

Additional simulations were run with different starting values for the parallel

index of refraction. Figures 15 and 16 show the results of those cases. Most
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notable are the case for ny.,, =2.6, in which the wave is a surface mode, and

Nyeage = 2-4, In Which the wave is evanescent. These effects occur because of the
proximity of the cutoff. When n,,,, =4, the wave starts out with a higher phase
velocity than if n,,., =5.5 and takes longer to match velocities with the electrons.
Therefore, it goes deeper into the plasma before damping. In the opposite sense, if
Nyegee = 8, the wave starts out slower than if n,,,, =5.5 and interacts with electrons

further from the core. Table 1 shows the optimum values of n,,,,, for a full density

scan of RFX at 2 MA.
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V. Fast Electron Effects

One special concern regarding lower hybrid current drive in an RFP
involves the larger densrty of hlgh velocrty electrons than would be seen in a
tokamak. Measurements on a variety of RFP devrces show that these fast electrons
make up . 20% of the edge electron population>: 16 In MST, Stoneking
determined that fast electrons carry nearly all the edge poloidal current, have a
parallel temperature comparable to the central electron temperature and a
perpendlcular temperature roughly equal to the edge bulk electron temperature16
Other groups have reported similar results.

RFX is expected to have fast electron energles in the keV range. 15,26
Located far cut on the hlgh velocrty tail of the electron distribution, the presence of
these electrons fundamentally alters the distribution of the total electron population,
creating a slight bump on-tarl distribution. A wave entering the edge of the plasma
sees the high temperature of the hot specres flrst and doesn’t encounter a
srgnrfrcant bulk temperature until it gets deeper into the plasma. This alters the
posrtron of the resonant reglon The goal of this section is to determrne the severity
of the effects of the fast electrons '

y

The fast electrons are relatrvely collisionless within the plasma and so may
be thought of as a separate specres from the bulk electrons Adaptlng the hot
plasma code to accommodate the fast electrons merely involves adding those
electrons to the sum over specres |n each of the K- terms of the drelectrrc tensor
(Equations 5- 10) Since the parallel temperature of the fast electrons is about
equal to the central electron temperature therr temperature remains constant

across the minor radius of the plasma. The fast electron drift velocity was




20
determined by setting J =en,v,,, where J is a model current density profile, n, is

the hot electron density, and v,, is the drift velocity of the hot electrons. For the

purpose of this paper, n,/n, =10%. The perpendicular temperature of the fast

electrons was set equal to the edge electron temperature. The resulting assumed
parallel temperature and density profiles for RFX are shown in Figure 17.

Because the position of the cutoff is, in theory, only dependent upon the
local density and magnetic field, the addition of fast electrons is not expected to
affect it. On the other hand, the position of the thermal resonance is strongly
temperature dependent and should shift further from the core as the local
temperature of the outer radii increases. The shift is not severe enough to limit
accessibility, however, as can be seen in Figure 18.

With the wave encountering a different distribution of electrons in the outer
regions of the plasma, Landau damping should be influenced. The electron
distribution is now lopsided, with more electrons in the upper tail of the function.
The number of electrons with velocities greater than the wave have increased
which should decrease the efficiency of damping in the resonant region chosen in
the previous section. The simplest analytical reasoning says that if the wave phase
velocity can be altered so that the same number of electrons in the distribution are
slower than the wave as there were in the case of the RFP without fast electrons,
the efficiency of the damping should be maximized. Figure 19 is an example of this
for RFX at r/a=0.7. In this case, the phase velocity must increase by 8% to match
efficiency.

It makes sense that the phase velocity of the wave is not expected to change
a large amount. The presence of the fast electrons in any region near the edge of
the plasma effectively increases the temperature in that region, so it is logical to

assume that the area of optimal damping will move further out to the edge. By
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using the analytical methods presented in Section IV, the exact effects of this

species can be analyzed. The intersection of the curves for I';, and 100v,, /27R

have moved to higher r/a for ny,,, = 5.0 and nj,,, =6.0, amounting to a 6%

increase in the optimum wave phase velocity at the edge of the plasma (Figure 20).
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VI. Conclusions

The accessibility of the lower hybrid wave in an reversed field pinch device
for the purpose of driving an auxiliary poloidal current has been studied using the
hot plasma dispersion relation. The slow wave was found to be accessible to
r/la=0.7 with a cutoff at low values of edge parallel indices of refraction which
meet the derived criteria (Equation 19). There is a weak ion plasma resonance at
r/a=0.65 and a strong electron thermal resonance at deeper points in the
plasma. This thermal resonance marks a region of powerful Landau damping in
the center of the electron velocity distribution. Mode conversion cén be expected in
high density regions of the plasma. However, since the value of the parallel index
of refraction increases as the wave moves deeper into the plasma, _tﬁe target

“density increases as well and it can be seen that the wave will damp out before it
reaches a mode conversion point. The addition of a 10% density of fast electrons
does not change these accessibility conditions.

By using the imaginary parts of the warm plasma dispersion trelation,
Uchimoto!? determined that a region of ideal Landau damping would be reached
when v, /v,,, =2.5. Direct determination of Landau damping rates by using a
technique developed by Stix25 confirms his calculations. By adapting the hot
plasma dispersion relation to accommodate 10% fast electrons, it was determined
that the edge parallel phase velocity of the wave should increase by 6% to
rr_iaintain optimal Landau damping.

From the above, one can see that the use of the lower hybrid wave as a
current driver in a large, hot reversed field pinch is feasible. Figures.13 and 14

show ray trajectories and power deposition profiles obtained using a RFP-adapted
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version of the Brambilla ray-tracing program?2. Estimated values of nj,, for the

full density scan of RFX are presented in Table 1.

Although the use of the hot plasma dispersion rélation is enlightening, it
certainly is not a trivial exercise in computer brografnming. At high teﬁnperatures
and densities, it is easy to exceed machine precision capabilities, either by
overflowing or underflowing. At resonances, it is impossible for the machine to
calculate the true value of the dispersion relati;)n and a great deal of interpretation
must be applied to the results. Near resonances, the rootsolver can follow a false
gradient and reach its maximum nﬁmber of itefations before a true root is found.
For these reasons, it would be convenient to create a normalized system of
variables in order to soiye for the roots of the relation.. Tﬁe development of a fully
RFP-adapted raytracer coupled with a Fokker-Planck code would also be helpful in
further exploring this topic. Evaluation of current drive efficiency, fast electron
dispersion rates, and the effects of machine geom‘etry are all important to lower
hybrid current drive but are not covered by using the dispersion relation alone. It is
likely, however, that further theoretical exploration of this subjéct‘will be pre-empted
by experimental research. There are already plans to design a series of lower
hybrid experiments for MST27 based upon Lchhimoto's predictions11. These
experiments-are expected to test the aptitude of lower hybrid current drive for the

purpose of improving confinement in an RFP.
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Table 1

IN n(x 103
2 15.6

4 7.8

6 5.2

8 3.8

10 3.1

Table 1: Temperature and densztles for RFX inacon ventlonal density scan.

Predicted n 44, are. lncluded

g e

cm'3)

Te (eV)

600
790
940
1060
1140

nIled.qe

5.7-7.0
5.0-6.2
45-5.7
44-54
42-5.2

27
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Kperp

Figure 1: Local Cartesian coordinate system used to obtain the hot plasma
dispersion relation. The magnetic field, B, is assumed to lie along the z-axis
perpendicular to the x,y-plane. The wave vector, k, is represented by components
parallel and perpendicular to the magnetic field.
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Figure 9: Contour plot of n3 =0. The path of the wave through the plasma has
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shows the region of the resonance between the wave parallel phase velocity and the
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Figure 10: Plots of values of n’ for the slow and fast wave as density increases for
selected values of n,, in RFX. The extra path at the mode conversion point is an
evanescent mode inside the cutoff.
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Ray Trajectory in the Poloidal Plane

n, =5.2x10%cm™ T, = 9406V

Moo =5.5

Figure 13: Ray trajectory in a constant toroidal angle plane for RFX where
Nyeqge = 5-5. The ray is launched at the wall and makes slightly less than two

poloidal transits before being completely absorbed by the plasma.
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Figure 14: Power deposition profile for the lower hybrid wave launched into RFX
with ny.q,, =5.5. The spike located at y = 0.7 (y is a flux surface coordinate
analogous to r/a) is indicative of a relatively large amount of power to the electrons
at this point and, therefore, of current driven in this region. Power delivered to the
ions was negligible. g




Ray Trajectory in the Poloidal Plane

a) b)

Ray is evanescent. y ]

=26
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Figure 15: Ray trajectory in a constant toroidal angle plane for RFX where ny;.y,, is
allowed to vary. a) The parallel index of refraction is below the cutoff for the edge
density of RFX and the wave is evanescent. b) The parallel index of refraction
allows the wave to enter the plasma edge, but not to propagate further. The wave is
a surface wave. ¢) The wave makes just over three poloidal transits for

Nyjeqge =4-0. d) The wave damps out within one poloidal transit for ny;eee =8.0.
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Figure 16: Power deposition profiles for the cases discussed in Figure 15. Note that
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Figure 17: a) Assumed density and b) temperature profiles for RFX with a fast
elactron species present.
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Figure 18: As in Figure 9, but for an RFX plasma with 10% hot electrons. Note that
the thermal resonance has shifted to lower n,,.
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Figure 19: Diagram of the total electron distribution function (solid) and electron
species distribution functions (dotted) where the smaller dotted curve represents the
fast electrons. The dashed vertical line represents where v, [v,,, = 2.5 (optimal
Landau damping) for the case of no hot electrons present. The second vertical line
is where the same number of electrons have parallel thermal velocities less than the
wave parallel phase velocity for the case of hot electrons present.
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Figure 20: As in Figure 4 but for an RFX plasma with 10% fast electrons. The ideal
damping points for each figure have shifted toward the edge of the plasma. To
maintain optimal damping, this corresponds to a 6% increase in the wave’s phase
velocity at the edge of the plasma.
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