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ABSTRACT

The uptake of Th(IW) from nitric and hydrochloric
acid solutions by chelating-ion exchange resins containing
catechol, 1,2-hydroxypyridinone (1,2-HOPO) and 3,4-
hydroxypyridinone (3,4-HOPO) functional groups, has
been investigated. These polystyrene based materials
show excellent kinetics for the uptake of Th(IV) and have
a high loading capacity. Liquid/liquid extractants have
also been synthesized by addition of lipophilic side
chains to the chelating groups (1,2-HOPO; 3,4-HOPO;
3,2-HOPO; catecholamide; terephthalamide). The initial
evaluation of the extraction properties has been carried
out.

I. INTRODUCTION

Safe disposal of radioactive waste streams arising
from nuclear power plants, military facilities, medical
research and industrial applications is required. The
actinides can be among the components of most concern
in hazardous waste streams. First, several actinide
isotopes have half-lives of many thousands -of years and
will thus be a concern far into the future. Second, these
isotopes decay predominantly by alpha emission which
constitutes a special health hazard if ingested. The
separation of the actinides is one way to facilitate their
disposal, decrease health risks and decrease the cost of
waste management. Solvent extraction and ion exchange
are the technologies which are most suitable for this
purpose.'”’

In this study the authors are trying to develop highly
selective agents to remove plutonium (IV) (and perhaps
other transuranic elements) from acidic and neutral
solutions. In nature, bacteria and other microorganisms
produce siderophores, low molecular weight multidentate
iron chelators, to scavenge ferric ion from their
environments. Iron (III) shares many chemical properties
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with many of actinide elements, especially plutonium
(IV).2 Both Fe(Ill) and Pu(IV) are “hard” Lewis acid
metal cations, carrying a large amount of charge and
having a relatively small ionic radius:

Fe(III): charge(Z)/radius(A°) = 3/0.65 = 4.6
Pu(IV): charge(Z)/radius(A®) = 4/0.96 = 4.2

They also behave similarly in water with very low
free metal ion concentrations at near neutral pH:

" Fe(OH); (5 = Fe** + 30H"; K,,=10"
Pu(OH), 5 —> Pu*" + 40H’; K,,=10"

Both Fe(IlI) and Pu(IV) are bound by basic ligands
that can provide electrical charge, such as negatively
charged oxygen donors. Because of its larger size and
charge, Pu(IV) is eight-coordinate instead of six-
coordinate, like Fe(III).

The aim is to develop chelators which are strong
Lewis bases and show selectivity for Lewis acidic metal
ions in particular Pu(IV) and Th(IV). Differences in
charge, preferred coordination number and range of pH
stability can be utilized to make the transition from
chelators that are specific for Fe(III) to those that are
specific for actinide(IV) ions. Choosing the right chelating
groups is perhaps the most important aspect of ligand
design. The correct choice will give a ligand not only
strength to bind a metal ion, but also specificity to bind
one metal ion preferentially over another.

In nature siderophores use Lewis basic chelating
groups including catechols (e.g., enterobactin) and
hydroxamic acids (e.g., desferrioxamine B). These
chelating groups are often combined in polydentate
ligands to fully bind the metal in a six coordinate
complex. Very selective sequestering agents can be



synthesized by incor})orating these chelating groups into
multidentate ligands.”" The chelating groups can also be
incorporated into molecules appropriate for use as
liquid/liquid extractants or attached onto insoluble
polymers for use as solid/liquid extractants.'®

1. EXPERIMENTAL

Catechol resin, 1,2-hydroxypyridinone (1,2-HOPO)
resin and 3,4-hydroxypyridinone (3,4-HOPO) resin were
prepared as described elsewhere.'* The amount of the
resin for each experiment was 100 mg, the volume of
aqueous phase was 53 mL, the amount of Th was 160
micro mole. The sorption of Th ions by the resins was
measured at room temperature (22+1 °C). Distribution
ratios, D, were calculated as

D=[(mg-m/W}/[m¢/V] )

where mp and mq are the amount of Th in the aqueous
phase (micro mole) before and after equilibration,
respectively, W is the weight of resin (g) and V is the
volume of the aqueous phase (mL). Th concentrations in
aqueous phase were determined by Arsenazo III Method
using PC1000 spectrometer following a reported
procedure.'s

Distribution coefficients of Fe(III) for liquid/liquid
extraction were determined by spectrophotometery.
Spectrophotometric analysis was based on extinction
coefficients of Fe(IlI) complexes with the extractants in
dodecane, kerosene, chloroform, 1-octanol and 4-methyl-
2-pentanone, which were measured independently.

III. THORIUM UPTAKE BY SULFONATED IO
EXCHANGE RESINS '

At the present time three polystyrene based chelating
ion exchange resins have been synthesized and tested to
determine the ability of these materials to remove
actinide(IV) ions from solution - Catechol Resin, 1,2-
HOPO Resin and 3,4-HOPO Resin (see Fig.1).
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Figure 1. Structure of modified polystyrene resins. .

To improve their behavior as extractants these resins
have been sulfonated to reduce their hydrophobicity. This
improves the uptake properties of the materials but the
sulfonate groups introduce some degree of non selective
binding  (ion exchange). These polystyrene based
materials show excellent kinetics for the uptake of Th(IV)
and have a high loading capacity. Loading capacities of
the resins were determined by three different procedures
(Table 1).

Table 1. Summary of estimated loading capacity of
sulfonated resins, mmol chelator/g resin.

Chelating Citrate Titration Elemental
_group Batch Analysis
1,2-HOPO 0.4 0.3 0.1
3,4-HOPO 0.4 0.4 0.5
Catechol 0.8 0.4 0.1

Thorium was chosen for initial test experiments due
its lower radiotoxicity and easier handling. It is proposed
to study plutonium uptake in future experiments when
uptake properties of the resins are better understood.

The kinetics of thorium uptake by Catechol Resin,
1,2-HOPO Resin and 3,4-HOPO Resin have been studied
using various aqueous media, in presence of univalent
(Na), bivalent (Zn), and trivalent (Fe) metal ions. The goal
of these experiments is to investigate the ability of the
resins to extract thorium selectively. For uptake from 5 M
NaNOQ; distribution ratios of Th were ~250 for the
Catechol and the 3,4-HOPO Resins, and ~70 for the 1,2-
HOPO Resin.

Uptake in the presence of 10-fold excess of Zn is
reported in Fig 2. Th distribution ratios are similar for the
1,2-HOPO and 3,4-HOPO Resins and approximately three
times greater for the Catechol Resin.
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Figure 2. Time dependency of Th uptake in presence of
10-fold excess of zinc nitrate(CZ,,(r.,oa)2= 0.03 M, pH=5.8).

Kinetic experiments of Th uptake by Catechol Resin,
1,2-HOPO Resin and 3,4-HOPO Resin from hydrochloric
acid medium had been performed. The results are reported
in Fig.3-6.
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Figure 3. Time dependency of Th uptake in presence of
0.5 M HCL
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Figure 4. Time dependency of Th uptake in the
presence of 1-fold excess of iron chloride (IIT) (CFea3=

0.003 M, pH=2.8).

D, mL/g

600

500 —

@ Catechol Resin
1,2-HOPO Resin
3,4-HOPO Resin

400 —

ke —h
—

100 — I T » I T 1

0 10 20 30 40 50 60
Time, min

Figure 5. Time dependency of Th uptake in the
presence of 10-fold excess of iron chloride (I11) (CF,C|3=

0.03 M, pH=2.3).
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Figure 6. Time dependency of Th uptake in the presence
of 100-fold excess of iron chloride (IIT) (CFeC13= 03 M,

CHCI =0.05 M)

The Catechol Resin has the highest Th uptake capacity
from acid solutions in the presence of univalent, bivalent
and trivalent ions.

IV. LIQUID/LIQUID EXTRACTANTS

Liquid/liquid extractants have been synthesized by
addition of a lipophilic side chain to chelating groups
(Fig.7).

Incorporation of these powerful chelating groups into
liquid/liquid extractant systems can produce materials
with potential practical application. The liquid/liquid
extractants employ simple bidentate chelating groups
modified with a wide variety of lipophilic side chains
designed to systematically alter their solubility properties.
Initial experiments have been performed to determine the
distribution coefficients of the extractants between
aqueous and a number of common organic phases used in
separation technology (dodecane, kerosene, chloroform,
1-octanol, 4-methyl-2-pentanone). Several materials with
low water solubility have been tested for their ability to
extract Lewis acid metals from aqueous media under
varying conditions of pH and ionic strength. Hexyl-1,2-
HOPO and octyl-1,2-HOPO sequestering agents seem
particularly promising, showing quantitative removal of
Fe(IIT) from acid solutions into organic media.
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Figure 7. Structure of liquid/liquid extractants
synthesized.
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