

D.E/PC/91309--T1

HIGH TEMPERATURE ALKALI CORROSION OF CERAMICS
IN COAL GAS

DOE/PC/91309--T1

DE92 005265

Quarterly Progress Report #1
for the Period
September 1, 1991-November 31, 1991

Prepared by

G.R. Pickrell, T. Sun, and J.J. Brown

Center for Advanced Ceramic Materials
Virginia Polytechnic Institute
and State University
Blacksburg, VA 24061
703-231-6777

Prepared for

Department of Energy
Pittsburgh Energy Technology Center
P. O. Box 10940
Pittsburgh, Pennsylvania 15236

November 30, 1991

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

"U.S. DOE Patent Clearance is not required prior to
the publication of this document."

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

EP

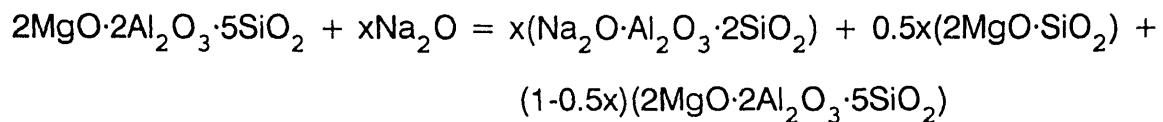
Objective/Scope

High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this program is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

Technical Progress

I. Sample Preparation and Acquisition

Powder samples used for phase equilibria studies including cordierite and aluminum titanate were prepared by sol-gel techniques. Cordierite was synthesized by mixing the appropriate amounts of aluminum tri-sec butoxide, tetraethyl orthosilicate, and magnesium nitrate in ethyl alcohol with constant stirring, followed by the addition of water. Pure cordierite phase was formed by firing the gel samples at 1350 °C for 24 h. Aluminum titanate was prepared in a similar manner using the aluminum tri-sec butoxide and titanium butoxide, following the same heat treatment.


For the corrosion kinetics studies, high density, high purity silicon carbide, silicon nitride, zirconia, cordierite, mullite, alumina and aluminum titanate were purchased from

commercial sources. Fireclay glass (76 SiO₂-16Al₂O₃-8P₂P₅ mol%) was prepared by solid state reactions of silicic acid, ammonium dihydrogen phosphate, and aluminum hydroxide at 1650°C. Homogeneity was achieved by repeated grinding and melting of the glass sample with sufficient length of heat treatment to eliminate essentially all bubbles.

II. Phase Equilibria

The soda-cordierite compatibility relations were investigated in the region from 0-15 wt% soda and from 840-1030°C. Samples were prepared by grinding and mixing appropriate amounts of sodium carbonate and cordierite in acetone with a glass mortar and pestle, drying, and packing into platinum tubes. The samples were fired at 840 and 930°C in air for 90 and 63 h, respectively. The samples fired at 1030°C were first calcined at 800°C to remove the carbon dioxide, and then sealed in platinum tubes, followed by the heat treatment at 1030°C for 62 h. X-ray diffraction was used for phase identification.

Table 1. lists the phase assemblages resulting from the soda-cordierite reactions at the temperatures and compositions investigated. The results indicate that cordierite was decomposed by soda to form nepheline and forsterite according to the reaction

where x is less than 2. Therefore, the amount of soda necessary to completely decompose cordierite is equivalent to a soda content of 17.5 wt%. X-ray diffraction

analysis show that the relative intensities of the forsterite and nepheline peaks increased with increasing alkali concentration while those of cordierite decreased. At 15 wt% soda, only traces of cordierite were detected at all temperatures, and the phase assemblage was mainly composed of nepheline and forsterite.

Table 1. Phase Analysis of Compositions Prepared in the Soda-Cordierite System

<u>Composition (wt%)</u>			
Cordierite	Soda	Temperature (°C)	Phases
95	5	840	cordierite, nepheline, forsterite (trace)
		930	cordierite, nepheline, forsterite (trace)
		1030	cordierite, nepheline, forsterite (trace)
90	10	840	cordierite, nepheline, forsterite
		930	cordierite, nepheline, forsterite
		1030	cordierite, nepheline, forsterite
85	15	840	cordierite (trace), nepheline, forsterite
		930	cordierite (trace), nepheline, forsterite
		1030	cordierite (trace), nepheline, forsterite

III. Corrosion Kinetics

The corrosion kinetics of the materials exposed to alkali vapors will be initiated upon the arrival of the purchased specimens.

Distribution List

1. Marilyn Keane
PM-01, MS 922-206
U. S. Department of Energy
Pittsburgh Energy Technology Center
P. O. Box 10940
Pittsburgh, PA 15236-0940
2. Donna J. Tamlia
Contract Administrator, MS 921-118
U. S. Department of Energy
Acquisition and Assistance Division
P. O. Box 10940
Pittsburgh, PA 15236-0940
3. Office of Technology Transfer
Attn.: Kay Downey
U. S. Department of Energy
Pittsburgh Energy Technology Center
P. O. Box 10940 (MS 58-M217)
Pittsburgh, PA 15236-0940
4. Dr. Norman Holcomb
Morgantown Energy Technology Center
P. O. Box 880
3610 Collins Ferry Road
Morgantown, WV 26505
5. Ms. Evelyn Grender
Grants Administrator
Office of Sponsored Programs
340 Burruss Hall
VPI&SU
Blacksburg, VA 24061
6. Mr. Gary Pickrell
Center for Advanced Ceramic Materials
301 Holden Hall
VPI&SU
Blacksburg, VA 24061-0256
7. Dr. Tawei Sun
Center for Advanced Ceramic Materials
301 Holden Hall
VPI&SU
Blacksburg, VA 24061-0256

END

DATE
FILMED

2/20/92

