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SUMMARY
The following was accomplished during the reporting period:

» Use of the random pore model as a method of rationalizing the data
obtained from CO and CO, TPD spectra has been initiated.

* o-plot data obtained for Wyodak coal char samples prepared at various
degrees of bum-off, ranging from 0 - 75% burn-off, in 0.1 MPa oxygen
at 470°C, were used to compare with random pore model predictions.

» Conclusions derived from this analysis include:

- The random pore model predictions are consistent with the evolution
of sample surface area and porosity with burn-off as determined for
the Wyodak coal char samples.

- The parameters obtained from the random pore model provide a

reasonably good comparison with the o-plot data.
Plans for the next reporting period:

Plans for the next reporting period include a new series of neutron
scattering experiments performed on the IPNS SAD instrument at the Argonne
-National Laboratory. These experiments are intended to provide auxiliary
porosity data for the coal chars in the current project. These runs will focus on
contrast-matching methods (i.e., using deuterated toluene) to provide independent
data on porosity evolution and the relative importance of “blind porosity” in these
coal chars. The two types of samples will be coal chars produced from Wyodak
and Pocohontas coals obtained from the Argonne Premium Coal Sample Bank.




1.0. PROJECT BACKGROUND

1.1. - Overview.

Specific surface area, as well as its accessibility to gaseous reactants, are of
paramount importance for all heterogeneous interactions occurring at coal char
surfaces. Accessibility of this surface area is governed by the pore structure
morphology of the char; i.e., pore size distribution, tortuosity, intérsections,
shape, etc. The porosity morphology of coal chars varies over a considerable
range and is determined by a large number of factors including the nature of the
porosity of the precursor material prior to carbonization, the carbonization
process, and extent and method of any subsequent activation or gasification. A
persistent problem in this area has been the reliable, quantitative measurement
and characterization of the resultant porosity, especially the micropores. For
example, electron microscopy tends to be qualitative; small angle X-ray or small
angle neutron scattering (SAXS/SANS) can suffer from sensitivity to interpretive
models, and the inability to distinguish porosity that communicates with the
-surface from that which does not; and gas adsorption techniques also have several
well known drawbacks. The latter, however, are perhaps the most reliable in
general, but yield pore size distributions indirectly via surface area and pore
volume measurements, and can also be laborious and time-consuming. Therefore,
there is still a critical need for practical and facile techniques to characterize the

porosity of coal chars.

1.2. The Current Project.

The current project is directed at the development of a new approach to
this very old problem. During the course of recent work applying temperature
programmed desorption (TPD) to the determination of energetic distributions of
oxygen complexes on the surfaces of oxidized coal chars (Calo et al., 1989,




1991), we discovered that secondary interactions occurring within the char
. structure during TPD produce characteristic features in the resultant spectra that
appear to be quite sensitive to char porosity. The relative and absolute extents of
these secondary interactions form the basis of a potential characterization
‘technique. The use of such a method to characterize coal char porosity is
potentially attractive because the requisite spectra can be obtained in a single TPD
experiment -- a very facile experimental procedure. However, the unambiguous
and quantitative interpretation of such data in terms of parameters that can be
used to characterize coal char porosity still requires development and an
improved understanding of the controlling phenomena. These issues define the
primary focus of the current work.

The background and general approach of the secondary interaction method
for the characterization of porosity was outlined in the first quarterly technical
progress report on this grant (DE-FG22-91PC91305-1), and, therefore, it will
not be repeated here. Here we report on the progress that has been made in the
construction, development and testing of a new TPD-MS/TGA system being
developed in our laboratory for the purpose of conducting the temperature
programmed desorption experiments for obtaining the secondary interaction data.

The project plan also includes the use of other techniques to characterize
porosity in addition to the secondary interaction approach for the purposes of
comparison, quantification, and validation. It is noted that at least two other more
well established methods will be used in such a manner. Specifically, gas
adsorption techniques in our own laboratory, and small angle scattering (SAS)
(X-ray (SAXS) and neutron (SANS)). The latter will be accomplished in
conjunction with Dr. Peter J. Hall of the Depaftment of Pure and Applied

Chemistry of the University of Strathclyde, Glasgow, Scotland.




2.0. PROJECT WORK

2.1. The Random Pore Model and Its Application

2.1-1. Background

The “random pore model,” developed by Gavalas and co-workers (1980),
is based on a random capillary model in which the number of intersections,
length of pore segments, and evolution of pore volume and surface area are
exactly and consistently derived from a single probability-density function
characterizing the porous solid. Application to char gasification by oxygen (or
carbon dioxide, water, hydrogen) was performed by invoking two two key
assumptions: (1) no diffusional limitations; and (2) no dependence of the intrinsic
surface reaction rate on conversion.

In this model,'the porous structure is assumed to consist of infinitely long,
straight, cylindrical pores with radii with spanning the range R« < R < R*. The
axes of the pores are located completely randomly; that is, without any anisotropy
or spatial correlation. This leads to the fundamental relationship:

1 - €= exp(-2An R2) [1]
in accordance with the properties of the Poisson density distribution:
p@sy) = e"dN 2]

where dS; is an element of differential surface area, dN is the lines of pores
originating from an element dS; and intersecting the sphere S, p is the
probability that no lines of pores emanating from dS; intersects the sphere S, A is
the density of pore number, € is the porosity, and R is the pore radius. Eq.[1] can
be extended to the case of a continuous pore size distribution with the pore radius




varying over the interval [R%,R*], to yield the total pore volume (porosity):

er=1 -exp[-znfR'sz(R)dR}
R. [3]

For the case of porosity evolution due to reaction, let the surface reaction
rate be r(c,cg,T) in units of mass of carbon per unit area per time, where T is the
temperature, ¢ is the concentration of the reactant gas, and cg is the concentration

of active sites. If q(t) is the increase in the radius of any pore from time zero to t,

then the pore radius at time t is given by:
R(t) = Ro+q(t) [4]
Also, the radius of the char particle must decrease by the'same amount:
Rp(t) = Rpo-q(t) ' [5]

The probability density function at time t is given in terms of the original

probability density function A as:
AMR,q) = Ap(R-q) = A(Rp) [6]

and thus the total pore volume from Eq.[3] is given by:

e1(@)= 1—exp[—21cj: (Roﬂ)zlo(RO)dRo]

which may be rewritten as:




1
1D _ oxpl-2n(Boa?+2B,9)]
1 —€70 [8]

where:

Ro*
B, =j ARo)dR,
Ro+ [9]

Ro"
B, = j RoMRy)dR,
Ro+ [10]

The zeroth order moment B, is the total number of pore axes intersection per
unit surface area, while the first moment B is equal to the product of B, and the
mean pore radius.

As g increases by a length dq, the pore volume increases by deT=S(q)dq,

where S(q) is the total pore surface area. Hence

de
L = 4x[1-e7(@)1(Boq+B1)

S@@)=—
@= ”

The conversion, or burn-off, x., is defined by the amount of carbon

reacted divided by the initial amount of carbon; i.e.,

3 1-e1(q)
(4 T
xd@)=1 (1 Rpo) 1-e1g [12]

Substituting Eq.[8] into Eq.[12] yields:




3
x(@) = 1—(1-—q ) exp[-27(Boq>+2Bq)]
RpO

[13]

Under conditions of chemical reaction rate control, it can be shown that g<<Rp.
Therefore, Eq.[13] can be reduced to the following form, neglecting the small

term due to the slight change in the particle size:
x¢(t) = 1-exp[-2p(B,q%+2B1q)] [14]

When the temperature and concentration of reacting gases remain constant,

and the pore surface remains at constant reactivity, q can be expressed as:
q=vt [15]

where v is the velocity with which a pore surface element recedes owing to

reaction, and
vic,ee,T) = 1(c,cq T/t (16]

where rg is the density of the char in the portion of the volume excluding the
pores. According to the second assumption, cg, the concentration of active sites,
does not change with the progress of the reaction, the v is a constant.

Taking the derivative of Eq.[14] with respect to time to yields:

B o 4n(By B 2n(Byvt+2B
5= (Bov t+Bv)exp[-2n(Byv t™+2Bvt)]

[17]




By eliminating t between Eqn. [14] kand'[17], the relationship between reaction

rate and burn-off can be obtained as:

o e

dxc 2, B0V2 1
== 41t(l—xc)[ Bv)+ m 1“( 1—=x, )] [18]

Eqgns. [14] and [18] imply that reactivity data alone can be used to determine Bov2
and Byv. When the initial surface area is also available, then all three quantities
B, B1, and v can be determined. '

Substituting Eq.[8] into [11] yields:

S(q) = 4n(1-e1p)(Byq+B1)exp[2n(B,q2+2B1q)] [19]

Combining Eqns.[19] and [14] results in the final relationship between total pore

surface area and reaction rate; viz.,
S(q) = 4n(1-e1)(Bog+B)[1-x(1)] [20]

2.1-2. Application of the Random Pore Model to Wyodak Samples.

In this section we apply the random pore model to our char samples,
predict the pore size development and surface area change with the progress of
gasification, and compare the data obtained from o-plot method to those
determined from the random pore model.

Wyodak coal char samples were gasified in oxygen at 470°C to varying

bumn-offs over the range from 0% to 75%. The approach here is first to fit the

- experimental data of reaction rate and initial surface area for each sample (i.e.,




the surface area prior to gasification) to Eqns. [18] and [20], and to determine the

zeroth moment By, the first moment Bj, and reaction velocity, v. Using these

three parameters, the increase in pore radius due to reaction, q, as a function of

reaction time and pore surface area as a function of burn-off can then be

calculated. |
Eq.[18] can be written in the form

2

d
1 el _Agin——+A2
4n(1-x.) dt 1-X¢ [21]
where:
B.v2
Ao = OV
2n [22]
and
A;=Byv 23]
2
y= ! e x=1 n—1— ; ; ;
Plots of an(1—xg) dt | Versus T-xg should yield straight lines

of slope A, and intercept of A;2. These results for the Wyodak coal char samples

are presented in Figure 1. The values of the parameters determined from this plot
are: Ag = 0.00278 [1/hr2] , and A12=0.000364 [1/hr2] or A1=0.0191 [1/hr].
Initially, g=vt=0, and therefore Eq.[20] can be reduced to

S = 4nB{(1-ep) @ t=0 [24]

Bj can be determined from experimental initial surface area data and taking the
initial porosity of the sample, £13=0.01. Knowing B{, B,y and v can also be
calculated from Eqgns. [22] and [23]. The values of these parameters for the
Wyodak coal char samples are: B,=2.416x1010 [1/m?2], By=2.244x107 [1/m], and




v=1.417x10"11 [m/min].
The change of pore radius due to reaction for the Wyodak coal char

samples can thus be expressed as:
q=1417x10-11¢  [m] | [25]

from Eq. [15], where t is the reaction time, [min]. The pore radius change and the
burn-off as a function of reaction time for the Wyodak coal char samples are
presented in Figure 2. As can be seen, as the reaction proceeds, the mean pore
size increases linearly. If the pores of the char are initially mostly micropores, as
the reaction proceeds, the size of the pores increases gradually, becoming large
size micropores or even mesopores. This conclusion is consistent with the results
from the adsorption isotherm experiments, which show that as the burn-off
increases, the linear portions of the isotherms at high pressure become steeper,
indicating that the contribution from large size micropores and mesopores (or
even macropores) becomes increasingly greater with burn-off.

- Eq.[20] represents the relationship among pore surface area, conversion,
and reaction time. It can be used to predict the total pore surface area. Figure 3
presents the comparison of surface area from this theory to that obtained from
the a-plot method. As can be seen, the agreement is reasonably good. Therefore,
it can be concluded that our data is consistent with the random pore model in
terms of the evolution of pore size and surface area during reaction, and that the
predictions from the random pore model are in good agreement with those

obtained from the o-plot method.

Gavalas, G.R. AIChE J. 26, 577 (1980).




3.0. PLANS FOR NEXT REPORTING PERIOD

Work will continue along the two-pronged mode of attack involving
thermal desorptions of oxidized samples in the TPD-MS/TGA system, and
porosity characterization using gas adsorption techniques and small angle
scattering. Specific plans for the next reporting period include a new series of
neutron scattering experiments performed on the IPNS SAD instrument at the
Argonne National Laboratory. These experiments are intended to provide
auxiliary porosity data for the coal chars in the current project. These runs will
focus on contrast-matching methods (i.e., using deuterated toluene) to provide
independent data on porosity evolution and the relative importance of “blind
porosity” in these coal chars. The two types of samples will be coal chars
produced from Wyodak and Pocohontas coals obtained from the Argonne
Premium Coal Sample Bank. |
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Figure 1. Application of the random pore model to burn-off data for
Wyodak coal char samples gasified in oxygen at 470°C.
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Figure 2. Mean pore radius variation and burn-off as a function of
time for Wyodak char samples gasified in oxygen at 470°C.

(uu) b




400 I D B R
A
A
CRETTN -
|
£
o
.
]
g 200 - -
& |
‘a' A
02
=
S 100 -
7 A alpha-plot method
—o— random pore model
0 | '| | | | | |

0 10 20 30 40 50 60 70 80
Burn-off (%)

Figure 3, Comparison of the specific surface area from the random pore
model with those from the alpha-plot method for Wyodak char samples,




