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Abstract

Development of a worldwide network to monitor seismic activity requires deployment of seismic
sensors in areas which have not been well studied or may have few available recordings.
Development and testing of detection and discrimination algorithms requires a robust
representative set of calibrated seismic events for a given region. Utilizing events with poor
signal-to-noise (SNR) can add significant numbers to usable data sets, but these events must first
be adequately filtered. Source and path effects can make this a difficult task, as filtering demands
are highly varied as a function of distance, event magnitude, bearing, depth, etc. For a given
region, conventional methods of filter selection can be quite subjective and may require intensive
analysis of many events. In addition, filter parameters are often overly generalized or contain
complicated switching. We have developed a method to provide an optimized filter for any
regional or teleseismically recorded event. Recorded seismic signals contain arrival energy which
is localized in frequency and time. Localized temporal signals whose frequency content is
different from the frequency content of the pre-arrival record are identified using rms power
measurements. The method is based on the decomposition of a time series into a set of time series
signals or scales. Each scale represents a time-frequency band with a constant Q. SNR is
calculated for a pre-event noise window and for a window estimated to contain the arrival. Scales
with high SNR are used to indicate the band pass limits for the optimized filter. The results offer a
significant improvement in SNR, particularly for low SNR events. Our method provides a
straightforward, optimized filter which can be immediately applied to unknown regions as
knowledge of the geophysical characteristics is not required. The filtered signals can be used to
map the seismic frequency response of a region and may provide improvements in travel-time
picking, bearing estimation, regional characterization, and event detection. Results are shown for
a set of low SNR events as well as 92 regional and teleseismic events in the Middle East.
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1. OBJECTIVES '

The long-term objective of Lawrence Livermore National Laboratory’s regionalization
research is to provide the U.S. National Data Center (NDC) and the CTBT International Data
Center (IDC) with the necessary calibrations and algorithms to improve detection, phase
identification, location, and discrimination in the Middle East and North Africa (Dowla, et. al,
1996). To achieve these goals, filtering will play a major role, particularly in low SNR signals.
This study uses pre and post-arrival SNR measurements to suggest a filter which will optimize
detection and identification of an arrival. This method can be used for any phase arrival, although
this study focused on the initial P arrival.

One of the principal challenges was to choose an efficient, but accurate way to decompose the
original seismic signal into sub-signals or scales, each of which would emphasize a different
frequency band for transient analysis. For this reason, we investigated the application of the
wavelet transform as well as simple banks of constant Q filters in order to learn the advantages
and drawbacks of each approach.

Our purpose was to measure the SNR with respect to the estimated P arrival in each band and
develop and algorithm to identify a subset of bands which together would indicate a filter to
produce maximum SNR. This approach has be successfully used to lift observed seismic signals
off the background noise with little distortion (Douglas, 1997).

The algorithm was tested in two ways. First, on a small set of low SNR events which were
selected by the human analyst based on their difficulty in phase picking. Second, on a set of 92
regional and teleseismic signals recorded at the station ABKT in Alibek, Turkmenistan.

2. RESEARCH ACCOMY HELD

2.1 Wavelet transforms and constant Q filter banks We considered two approaches to
achieve constant Q filtering: the wavelet transform and a constant Q logarithmic filter bank. A
discussion on the rapidly growing study of wavelet theory is beyond the scope of this work, but
interested readers should refer to a paper by Olivier Rioul (Rioul, et al. 1991) which contains a
review, tutorial, and extensive bibliography on wavelet theory. In general, however, the wavelet
transform W(a,t) of a seismogram signal, s(t) is given by:

W(a,1) = 71_;]: s(OR([(t—1)]/ a)dt 2.1.1)

where g represents the scale and 1 time in the transform domain, and k(¢) is the analysis wavelet
which is localized in both time and frequency (Veterrli, 1995).

One of the key ideas is the decomposition of the original signal into constant relative
bandwidth or constant Q frequency bands (Rioul et al., 1991). This approach offers analysis of the
data at different scales such that short windows are used at high frequencies and long windows are
used at low frequencies. Seismic arrivals often occur in only one or two of the scales.

Of course, constant Q logarithmic filter banks using conventional filters can also be used to
decompose seismic signals. Although comparable results are obtained, it is a less efficient
approach as it represents each band of a N-point signal with another N-point signal. The discrete
wavelet transform represents all scales with a single N-point set. The disadvantage of using
wavelets is determining which wavelet basis function to select, and the dyadic nature of the
wavelet algorithm, which limits the flexibility in selecting Q values for a given type of data. The
results in this report were obtained using constant Q logarithmic filter banks. Figure 2.1.1
illustrates a signal which has been decomposed into scales or filter bands by both the wavelet
transform and a 4th order Butterworth constant Q filter bank.



All data used in this study was obtained from the Incorporated Research Institutions in
Seismology Data Management Canter (IRIS DMC). Event location, magnitudes, and depths were
obtained from the United States Geological Survey Preliminary Determination of Epicenters
(USGS/PDE) catalogs. All events used are presumed earthquake signals. All events were recorded
using broadband instruments. All stations were 3 element, single site installations. Only the
vertical (z) component data was used in this study. RANI and AFIF had a sample rate of 40 Hz.
All other stations sampled data at 20 Hz.

Five regional events were chosen by a human analyst to test the algorithm based on their low
SNR and analyst difficulty in selecting a filter for picking the P arrival. These five events ranged
from 848 to 2332 km. Magnitudes ranged from 3.6 to 4.6 mb. Depths varied from 0 to 79 m. Five
different events were recorded at a separate stations as shown in figure 2.1.2. In addition, 92
events recorded at station ABKT in Alibek, Turkmenistan were obtained to examine regional filter
clustering. Distances for the ABKT events ranged from 155.2 to 4416.6 km. Magnitudes ranged
from 4.3 to 6.2 mb. Event depths varied from 9 to 273 m. A map of these events is also shown in
figure 2.1.2.

2.2 Signal and Noise Windows for P arrival Signal and noise windows were selected for
each event. The goal was to obtain a noise window which characterized pre-arrival background
noise and a signal window which included the P arrival and a small time period surrounding the P
arrival. The JASPEI91 model was used to calculate estimated P arrivals for each event. For
regional and teleseismic events (>500 km), the signal window was defined from the estimated P
arrival -10s to +30s. For local events (< 500 km) the signal window was +-30s centered on the
estimated P arrival. The noise window was defined from the 20km/s arrival time to 9/10 of the
start time of the signal window. In Figure 2.1.1, the signal and noise windows are the darkened
portions of the time series plots.
The instantaneous normalized power p(?) associated with a time-varying signal x(?) is:

p() = x (t) - (221)
The average normalized power P is then obtamed by a time average of p() over a penod T
1
= = 222
7o Ty 2(1)dt 2.2.2)

The root-mean-square (rms) value X,,,; is deﬁned as the constant value that produces the same
average power as the given time-varying signal. which leads to

: T
= JP= ,%J‘o 2(0)dt 223)

and is denoted by S, for signal rms power and N,,,,; for noise rms power. Using equation 2.2.3,
SNR for this and all other examples is:

SNR = rms 224)
Nrms
2.3 Algorithm for weighing scales or filter bands The 92 ABKT signals were bandpass

filtered six times using constant Q 4th order Butterworth filters. The start and stop bands are listed
in Figure 2.1.1. The Q used was 1.25 with the lowest bandpass centered around 0.12 to 0.28 Hz.
All bands were considered for teleseismic data, the two lowest frequency bands were ignored for
regional events, and only the three highest bands were considered for local events.

The SNR value for each band was compared to the SNR value of the original signal. All SNR




values greater than or equal to the original signal’s SNR value were classified as potentially useful
or ‘high SNR’ bands. The bands whose SNR value fell below the original signal’s SNR value
were classified as ‘low SNR’ bands. The first step was to select the highest frequency ‘high SNR’
band. If the next lower frequency adjacent band was also a ‘high SNR’ band, it was concatenated
with the previous band. This process continued until a ‘low SNR’ band was encountered. If none
of the bands were *high SNR’ bands, the dominant band was selected as the ‘suggested’ bandpass
filter with the caveat that the signal should be reviewed by a human expert for further analysis.

The result of the above process is a ‘suggested’ bandpass filter whose band limits a were
selected to improve SNR. This filter is then applied to the original signal as the optimal filter for
this event. Frequency bands which contain maximum SNR for the desired seismic phase arrival
were measured and identified using equation 2.2.4.

This algorithm can be applied using constant Q filter banks, or using the wavelet transform.
Analogous to the previous discussion, scales are classified into ‘high SNR’ and ‘low SNR’
wavelet scales. The rest of the algorithm is the same. IA conventional filter is used based on the
‘suggested’ bandlimits represented by the ‘high SNR’ scales. This is extremely useful, as it avoids
the problems associated with anticausal distortion introduced by modifying wavelet scales prior to
reconstruction or synthesis.

2.4 Results for low SNR events ’ The events at the top of figure 2.1.1 were described by
the human analyst as being difficult or impossible to pick the P arrival from the raw signal without
a great amount of uncertainty. Often, the analyst had to ‘hunt’ for a filter which would bring out
the P arrival. The analyst’s final selected filter specifications are listed in Figure 2.4.1.

These events were also processed using the algorithm described previously. The filter
suggested for optimized SNR was then applied to the original signal. The automatically selected
filter specifications are also listed in Figure 2.4.1.

Figure 2.4.1 contains three plots for each event. The top trace is the original raw waveform.
The middle trace is the result of applying the analyst selected filter. The bottom trace is the result
of applying the automatically selected filter. The vertical line labeled IP is the IASPEI91 P arrival
time. (Kennett et al., 1991) The vertical line labeled FP is the P arrival time picked by the analyst.
The analyst used the middle trace for the FP pick, although it is also superimposed on the raw and
automatic filter trace for comparison.

2.5 Results for 92 ABKT events The filtering algorithm was applied to 92 .events
recorded at station ABKT. This produced a set of ‘suggested’ filters which could be readily
clustered. Clustering revealed eight unique bandpass filters for the 92 ABKT events. A histogram,
plot, and table of filter bandwidths is shown in figure 2.5.1.

From the histogram we see that the predominant filter is the third cluster, corresponding to a
suggested frequency bandwidth of 0.55 to 1.52 Hz. This band, which was suggested in over half
the events, is interesting in two ways. If the algorithm does indeed produce optimal filtering, then
one might argue that the third cluster indicates the best general band for the region. Inspection of
the other bands, however, reveals quite a wide variance which would make this approach
impractical. Secondly, most of the events fall into the third and fifth cluster. These clusters
represent tight bands around a specific center frequency. This suggests that an approach using
fixed filter bandpass limits would do poorly in an automated system. For optimal filtering, many
events require narrow bandwidths around a specific frequency. Finally, maps with filter cluster
symbol size scaled by the reported magnitude and depth are plotted in figure 2.5.2.




2.6 Regional frequency response Figure 2.6.1 is a map of the region surrounding ABKT
with a contour map and a surface plot superimposed. The upper map shows the Pn velocity
relative to 7.9 km/s. (Hearn et al., 1994) The lower map uses the bandwidth clusters produced by
the 92 ABKT events were used to generate the topography. The contours are approximately equal
to the center frequency of the cluster bandwidths. From this result, it is clear that stations such as
ABKT show complex and highly variable P wave propagation.

CONCLUSIONS AND RECOMMENDATIONS

The extreme geophysical variability of regions in the Middle East as seen at ABKT illustrates
the need for methods which can use existing data to produce useful information about the region.
We recommend further testing of this approach at other sites in the Middle East and North Africa.
It is also recommended that this method be used as a pre-processing step to lower the variance in
detection and location algorithms. We recommend that the algorithm be applied to other seismic
phases such as surface waves. Further study is needed to determine optimal wavelet basis
functions as suggested by others (Gribb et al, 1997, Kawaldip et al. 1997, and Yomogida, 1994)
and to modify the wavelet transform itself to allow a selectable Q. A study to determine the
optimal Q for seismograms in general would also be very useful. Finally, the implication for
CTBT monitoring is that this algorithm offers a simple, effective process which can, in general,
produce filtered seismic signals with maximum SNR and bring out signals typically buried in
background noise.
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Figure 2.1.1 Decomposition of raw signal using wavelet transform (right) and constant Q logarithmic filter bank (left). In both cases,
the fourth scale contains the dominant arrival energy. The wavelet scale corresponds to a 0.55-1.1 Hz filter, while the band in the

filter bank is a 4th order Butterworth filter from 0.65-1.52 Hz.
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