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PREFACE

The Inert Electrode Program at Pacific Northwest Laboratory (PHL)(a) is
supported by the Office of Industrial Processes of the U. S. Department of
Energy and is aimed at improving the energy efficiency of Hall-Heroult cells
through the development of inert anodes. The inert anodes currently under
study are composed of a cermet material of the general composition NiO-
N1F9204-Cu. The program has three primary objectives: (a) to evaluate the
anode material in a scaled-up, pilot cell facility, (b} to investigate the
mechanisms of the electrochemical reactions at the anode surface, and (c) to
develop sensors for monitoring anode and/or electrolyte conditions. This
report covers the results of a portion of the studies on anode reaction
mechanisms.

{a) PNL is operated for the U.S. Department of Energy by Battelle Memorial
Institute under Contract DE-AC06-76RLO 1830.






SUMMARY

The electrochemical impedances of cermet inert anodes in alumina-
saturated molten cryolite as a function of frequency, current density, and
time indicated that a significant component of the impedance is due to the gas
bubbles produced at the anode during electrolysis. The data also showed a
connection between surface structure and impedance that appears to be related
to the effects of surface structure on bubbie flow. Given the results of this
work, it is doubtful that a resistive film contributes significantly te the
electrochemical impedances on inert anodes. Properties previously assigned to
such a film are more likely due to the bubbles and those factors that affect
the properties and dynamics of the bubbles at the anode surface.
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1.0 INTRODUCTION

Experimental studies conducted at the Pacific Northwest Laboratory (PNL)
in FY 1987, FY 1988 and early FY 1989 indicated that the cermet inert anodes
evaluated by PNL exhibited a characteristic impedance during the electroiytic
production of aluminum in bench-scale Hall-Heroult cells. This impedance was
found to have the following characteristics (Strachan et al. 1988):

« It was Targely resistive in nature.

o It varieg as a function of current density, giving a minimum at about
0.5 A/cm®.

» It appeared to depend on alumina concentration in the electrolyte. In
general, the impedance seemed to increase with increasing alumina
concentration.

e It exhibited a time dependence. Different anodes gave different
impedances at different times after polarization.

» At high current densities (>1 A/cmz), discontinucus changes in the
impedance occurred, causing "spikes" in the current or voltage data.
Based on these characteristics, PNL originally proposed that a resistive

film formed on inert anodes during electrolysis. It was argued that the
formation of this film was necessary to protect the inert anode from corrosion
reactions that would otherwise occur in the molten electrolyte. It was also
proposed that an anodic current density of 0.5 A/cm2 formed a film with
optimum passivating-like characteristics. At lower current densities, the
film was proposed to be incompletely formed, resuiting in corrosion of the
cermet’s metallic phase. At higher current densities, it was proposed that
the film would become too thick and its resistance would become too high to
sustain the current density. Consequently, the film would rupture, resuiting
in sudden and severe corrosion at the electrode’s metal phase. The rupturing
events in the film were indicated by sudden drops in impedance and appeared as
"spikes" in the voltage data for a cell under galvanostatic (constant current)
control.

PNL also proposed that the guality of the film depended on the alumina
concentration in the electrolyte. Higher alumina concentrations seemed to
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favor a more resistive, presumably thicker, film. Consequentiy, film rup-
turing behavior was considered to be more likely at high alumina concentra-
tions (close to saturation) when current densities were above 0.5 A/cmz.
Problems with reproducibility of the experimental results were encountered,
however, when attempts were made to relate anode impedance explicitly to
alumina concentration. It was then concluded that the film impedance was

dynamic, changing with time and with small fluctuations in cell conditions.

Attempts to identify the composition of the film in FY 1988 were largely
unsuccessful. Post-mortem X-ray diffraction of frozen electroiyte near the
surface region showed the presence of alumina, but it was uncertain whether
the alumina was part of a film or simply precipitate that formed on the anode
during cool-down.

During FY 1989 and FY 1990, experiments were performed to identify the
properties and composition of the film using a variety of techniques. The
milestone report titled "Characterization of the Reaction Layer or Film on PNL
Inert Anodes: Progress Report for April-December 1989" (Windisch and Stice
1990a) discussed the results of electrochemical impedance and potential-step
studies. These results suggested that morphological characteristics of the
cermet anode, specifically roughness and surface porosity, play an important
role in reactions at the surface and in determining electrode impedance.

These conclusions were supported by the results of microscopic and composi-
tional analysis of the reaction zone reported in the follow-up milestone
document titled "Final Report on the Characterization of the Film on Inert
Anodes" (Windisch and Stice 1990b). This work indicated that an alumina film
does not form to protect the cermet inert anode from dissolution. Rather,
significant morphological and compositional changes occurred at or near the
anode surface during polarization. These changes and the chemical changes
that caused them involve the cermet material itself and appear to be responsi-
ble for some of the properties previously assigned to an alumina film.

Since the electrochemical impedance measured on the cermet inert anodes
was originally attributed by PNL to the alumina film (Strachan et al. 1988},
another explanation for the source of the impedance was required. The
objective of the current work was to obtain more electrochemical impedance
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data under a variety of conditions and on different anodes to see if any
relationships could be developed among experimental parameters that might
clarify the source of the anode impedance. The resuits of these tests, when
compared with studies reported in the literature {Tobias 1959; Dewing and van
der Kouwe 1975; Zuca et al. 1980) and taken together with the recent work at
PNL (Windisch and Stice 1990a,b), strongly suggest that the oxygen gas bubbles
produced during electrolysis provide an important contribution to the electro-
chemical impedance at the anode. The impedance was also found to depend
strongly on anode surface structure and on cell geometry. However, these
latter two effects are not completely independent of the bubble phenomena.(a)
Consequently, it was difficult to separate out their contribution in these
studies.

A number of different types of anodes were examined to study the effects
of surface structure on electrochemical impedance. Cermet inert anodes
freshly fabricated using procedures reported earlier (Strachan et al. 1988)
were the focus of the work. These inert anodes were considered representative
of the type currently being deployed in larger cells (Strachan et al. 1990)
and were compared with the behavior of the other electrodes. Precorroded
cermet inert anodes that had a rough and highly porous surface layer were
tested to determine if a highly porous surface structure influenced the
impedance in any way. Platinum anodes with four different configurations were
tested for comparison with the cermet anodes. Different configurations were
employed to address problems associated with changes in cell constant with
anode size. Also, comparing effects on horizontal and flat orientations
helped determine the source of the anode impedance. “Platinum brush” anodes
were fabricated and studied to simulate inert anodes with controlied and
constant porosity. Similar brush electrodes have been used to determine the
effect of surface structure on electrochemical impedance in other systems (de
Levie 1964). The relationship between the behavior of planar platinum and

{a) For example, a rough surface will have more hindered bubble flow than a
smooth surface. While the roughness itself may contribute to the impedance
(perhaps as an area correction), its effect is difficult to distinguish
from that of the change in gas flow dynamics that accompanies roughening.
This topic is discussed further in Section 4.3.
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platinum brush anodes was compared with that between fresh cermet and
precorroded cermet anodes to help interpret the role of anode surface
structure.
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also inconclusive. The values for the overvoltages on platinum differ
significantly from those reported by Thonstad {1968) and, taken together with
the observed differences in the IRe versus 1 curves for the platinum and
cermet anodes {Figure 4.1), seem to indicate a dependence on cell geometry,
anode shape and, possibly, anode surface structure (e.g., roughness}. This
would not be surprising since the magnitude of the "bubble effect" would also
be expected to vary with these parameters. Studies on carbon anodes have
shown similar effects (Dewing and van der Kouwe 1975). Given the need to keep
power losses as low as possible in large-scale aluminum reduction cells,
particularly in the case of inert anodes where the thermodynamic decomposition
potential is high (relative to carbon anodes), further work would seem
warranted to sort out the roles of these important variables on overvoltage.

4.3. EFFECT OF ANODE SURFACE STRUCTURE

The effects of surface structure are demonstrated in Figure 3.10 and
3.11. As shown in Figure 3.10, the impedances measured at current densities
within the "linear region" are significantly higher for the precorroded cermet
anode than for the fresh cermet anode. For example, at 1.0 A/cm2 the
impedance is about 50% larger for the precorroded cermet anode than for the
fresh cermet anode. The slope of the curve also appears larger for the pre-
corroded anode but whether this difference is significant or not is unclear
from these data. Comparing the data for the fresh cermet anode in Figure 3.10
with the platinum button anode in Figure 3.9 shows good correlation of the
magnitudes of the impedance measurements within this current density range but
a slight difference in slope.

The larger impedances for the precorroded anode are consistent with
results from other work at PNL (Windisch and Stice 1990b). From these earlier
data it was concliuded that the rougher, more porous surface structure of
corroded anodes helped raise the impedance by somehow reducing the amount of
active surface area, In light of the bubble effect proposed in Sections 4.1
and 4.2, the role of roughness is better explained. A rougher surface area
would retard the bubble fiow and retain a higher volume of gas at the
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electrode surface. (The effect would be expected to be worse in the case of a
horizontal electrode.) The Targer gas volume would impart a higher solution
resistance and, consequently, a larger Z’ at high frequencies.

Despite these arguments, there is a possibility that the higher
impedance for the precorroded anode was due to differences in the chemical
composition of the surface region. The precorroded anode has a surface region
depleted in copper metal and is possibly more resistive. As a way to address
the possibility that a resistive reaction Tayer may have contributed to the
impedance, platinum anodes with different configurations were tested.
Figure 3.11 shows how the planar platinum anode compared with the platinum
brush anode. As shown in Figure 3.11, the impedances were higher for the
platinum brush anode than for the planar platinum anode. Since the platinum
brush anode differed from the planar platinum anode because it had spaces
(between bristles) that were intended to simulate pores, it is reasonable that
these simulated pores contributed to the higher impedance.

Exactly how the pores gave rise to a higher impedance is uncertain, but
gas bubbles may have been trapped in the spaces and this somehow retarded the
flow of the gas across the anode surface. A reduction in the surface area
alone (i.e. excluding pores) could not compietely explain the differences in
impedance since they were greater than 100% at some current densities. In
comparison, the "nonpore" surface area for the brush electrode was only 20%
less than that of the planar electrode as indicated in the Table 2.1 footnote.
It is also significant that the impedances were greater for the brush anode
than for the planar anode, which indicates that the pores themseives did not
contribute additional surface area for electrolysis. Consequently, signifi-
cant amounts of oxygen gas appear not to be generated in pores. Rather, the
pores may act as traps for bubbles. The results suggest that the trapped gas
not only removes active surface area from the process but impedes the reac-
tions directly, perhaps by changing the dynamics of bubble flow at the
electrode surface. Further work is clearly required to sort out the effects
of a rough or porous surface on bubble dynamics.
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The variation of the impedances with time shown in Figure 3.12 for the
fresh and precorroded cermet anodes and for the platinum rod anode also
suggests that the factors contributing to the impedance are mostly unchanging
for the fresh cermet anode and quite dynamic in the case of the precorroded
anode. The behavior of the fresh cermet anode is 1ike platinum, relatively
stable with time, suggesting the surface structure of the anode does not
significantly change during polarization over the course of 6 h. The increas-
ing impedance of the precorroded anode, however, indicates that a cermet
anode, once corroded, may worsen in performance. The effect may be due to an
accelerated change in surface structure for the precorroded anode or to a very
gradual saturation of the highly porous electrode surface by gas bubbles or
electroiyte.

In summary, the impedance data suggest that the surface structure of the
anode, i.e., roughness and/or surface porosity, plays an important role in
determining the impedance during gas generation. The gas bubbles produced
during electrolysis cause an increase in impedance as a function of current
density, while the surface structure of the anode appears to influence the
magnitude of this effect.
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5.0 CONCLUSTONS

The electrochemical impedances of cermet inert anodes in alumina-
saturated molten cryolite as a function of frequency, current density, and
time indicated that a significant component of the impedance is due to the gas
bubbles produced at the anode during electrolysis. Electrochemical impedance
spectra exhibited a Toop with a characteristic frequency of 1 Hz that was
assigned to bubble relaxation. This assignment taken together with the
variation of the electrolyte impedance with current density was very strong
evidence that bubbles, and not a resistive film, were a primary source of the
impedance under dc polarization conditions. Properties previous assigned to
such a film are more likely due to the bubbles and those factors that affect
the properties and dynamics of the bubbles at the anode surface. Varying the
anode surface structure, i.e. porosity and orientation, was observed to
influence the impedance and this was related to the effects of changing
surface structure on bubbie flow.
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