
LA-10641-MS

Issued: January 1936

LA—10641-MS

DE86 007576

Acoustic Damping
for Explicit Calculations of Fluid Flow

at Low Mach Number

J. D. Ramshaw
P. J. O'Rourke
A. A. Amsden

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessmhy Mate or reflect those of the
United States Government or any agency thereof.

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

i / •". / i i ( aiSTBIBUTfflM OF THIS DOCUMENT IS UNLIMITED



CONTENTS

ABSTRACT 1

I. INTRODUCTION 2

II. ARTIFICIAL PRESSURE FOR ACOUSTIC DAMPING 3

III. STABILITY CONSIDERATIONS 6

IV. ASPECT RATIO CONSIDERATIONS 7

V. COMPUTATIONAL RESULTS 9

ACKNOWLEDGMENTS 11

APPENDIX: TRUNCATION ERROR DUE TO ADVANCED TIME PRESSURE GRADIENT 12

REFERENCES 13

IV



ACOUSTIC DAMPING FOR EXPLICIT CALCULATIONS

OF FLUID FLOW AX LOW MACH NUMBER

by

J. D. Rails haw, P. J. O'Rourke, and A- A. Ansden

ABSTRACT

A method Is proposed for damping the sound wavss In explicit
calculations of fluid flow at low Mach number, where sound waves
are usually not of interest but may distract attention from other
flow features. The method is based on the introduction of an

2
artificial pressure q of the form q = - qnpc At(V«u - V«u ), where

qQ is a coefficient of order unity, p is the density, c is the

sound speed, At is the time step, and u_ is the velocity field

that would obtain at zero Mach number. When V«u_ is zero, the

method becomes equivalent to the use of an artificial bulk viscos-
2

ity 1o p c At" However, V»uQ can be substantially different from

zero in problems with heat or mass sources (e.g., combustion), and
its inclusion is then essential to obtain the correct pressure
field. The method is well suited for use in conjunction with ex-
plicit numerical schemes that employ acoustic subcycling or arti-
ficial reduction of the sound speed for improved efficiency at low
Mach number. The beneficial effects of the method are illustrated
by means of calculations with an acoustic subcycling computer
program.



I. INTRODUCTION

As is well known, explicit numerical calculations of fluid flow at low Mach

number M (M « 1) tend to be inefficient because of the wide disparity between

the convection and sound-speed stability limits, the latter of which is more re-

strictive than the former by roughly a factor of M. For this reason, numerical

calculations of low Mach number flow have usually been performed with implicit or

partially implicit methods such as the ICE method [1,2]. However, the ineffi-

ciency can also be alleviated within the framework of an explicit numerical

scheme. Two recent methods for doing so are acoustic subcycling [3-5] and arti-

ficial reduction of the sound speed [6,7].

A notable difference between such explicit techniques and the more tradi-

tional implicit ones is that the latter usually have a much greater tendency to

damp sound waves. This tendency is primarily due to a temporal truncation error

that arises when the pressure gradient in the momentum equation is evaluated at

the advanced time level. In the absence of heat and mass sources, this trunca-

tion error has the character of an artificial bulk viscosity. In contrast to the

familiar artificial diffusivities associated with upwind differencing of convec-

tion terms, an artificial bulk viscosity is actually a desirable feature at low

Mach number because it damps sound waves. At low Mach number sound waves are

usually not of interest, but their presence in the calculation may tend to dis-

tract attention from the flow features that are of interest. This tendency is

increased in explicit calculations with the pressure gradient scaling method [7],

because this method artificially increases the amplitudes of the sound waves in

the process of artificially reducing their speeds.

A further motivation for damping sound waves at low Mach number is that the

calculated sound waves are often unphysical in any case. Artificial sound waves

with artificially large amplitudes may be generated by various types of trunca-

tion errors. Moreover, sound waves with wavelengths less than a few cell widths

are rapidly rendered unphysical by dispersion errors. These effects frequently

conspire to produce transient short-wavelength irregularities, acoustic in char-

acter but of no physical significance, in the computed velocity field.

The above considerations suggest that in explicit calculations of fluid flow

at low Mach number, it may be desirable to explicitly introduce an acoustic damp-

ing mechanism similar in its effect to that provided by the truncation errors in

implicit schemes. Our purpose here is to propose and discuss such a mechanism,

and to present calculational results that illustrate the beneficial effects of

its use.
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II. ARTIFICIAL PRESSURE FOR ACOUSTIC DAMPING

The simplest way to implement an acoustic damping mechanism would be to in-

troduce an artificial bulk viscosity p*. This is equivalent to adding an artifi-

cial pressure -u!*V»u to the the riaody namic pressure p. The optimal value of y,

would be expected to be problem-dependent, but its order of magnitude m?y be

estimated by requiring that the characteristic damping time for wavelengths of

order Ax be of order At. This requirement makes \i of order pAx /At. In an ex-

plicit calculation Ax is of order cAt, so an equivalent statement is that p, is
2

of order pc At.

However, a simple bulk viscosity damping mechanism would be insufficiently

general for many purposes, because a damping of this form would tend to oppose

any nonuniform V»u, regardless of its physical origin. Even at very low Mach

number, V«u can be substantially different from zero for reasons that have noth-

ing to do with sound waves. This is true, in particular, in problems with heat

or mass sources [6,8], such as combustion. Since the objective is to damp only

the sound ' aves, one should adopt a damping mechanism that tends to drive V«u not

necessarily to zero, but racher to the value V-uo that would obtain in the limit

of zero Mach number. This requirement is met by an artificial pressure of the

form

q = - q0pc
2At(V.u - V«uQ) , (1)

where q~ is a diraenslonless coefficient of order unity. It is noteworthy that

the acoustic damping provided by the principal temporal truncation error of the

common implicit schemes is of precisely this form, including the V«un terra (see

Appendix). In situations where V»un is in fact zero, Eq. (1) becomes equivalent
~ 2

to the use of an artificial bulk viscosity qnpc At.

Equation (1) is the form of acoustic damping mechanism that we propose. It

is implemented simply by replacing the therraodynaraic pressure p by p + q. In the

nomentum equation, this replacement gives rise to a term -Vq which clearly pro-

duces a damping force with the desired tendency. Strictly speaking, q should

also be added to p in the internal energy equation to properly account for the

energy dissipated by the damping. However, this is not really necessary because

viscous dissipation is negligible at low Mach number [6], where the kinetic



energy of the flow is negligible compared to the internal energy. We therefore

replace p by p + q in the momentum equation only.

Use of Eq. (1) requires that V»u be evaluated. This may be done by manipu-

lating the elliptic system of equations that results when sound waves are strict-

ly suppressed [7]. In this way one readily derives the relation

*1 - fC

where e is the thermal internal energy per unit mass, p is the partial mass den-

sity of chemical species i, p is the spatial average uniform pressure level in

the system, and Q and R. represent all contributions to 3e/3t and 3p./3t, respec-

tively, other than convection and compression effects. Thus Q contains the ef-

fects of viscous dissipation, thermal diffusion, and heat sources (e.g., chemical

heat release), but does not include the convection term -u«Ve or the pdV work

term -(p/p)V»u~. Similarly, R. contains the effects of mass diffusion, chemical

reactions, and mass sources, but does not include the convective term -u-Vp. or

the compression term -p V»u .
i - ~0

Owing to the definitions of Q and R , the first two terms in the right

member of Eq. (2) can be interpreted as the contributions of all terms other than

convection and compression terms to the local value of 3p/3t. It is convenient

to represent this partial or incomplete value of 3p/3t by (3p/3t) , so that

Eq. (2) becomes simply

The direct evaluation of (3p/3t) from Q, R , and the state function p(p ,e) can

often be circumvented in computer codes based on time-splitting schemes. In such

codes the very terms that contribute to (3p/3t)* are often split off and used to

generate intermediate values of p and e defined by



= p" + At

e = e11 + At Q ,

(4)

where At is the time step and superscript n denotes the old time level. It is

then natural to approximate (3p/3t) by

This is the procedure now used in KIVA [5],

Since q is introduced into the momentum equation only, it enters into the

equation system only through its gradient Vq. The spatially uniform term -dp/dt

in Eqs. (2) and (3) may therefore be omitted, as it does not contribute to Vq.

The evaluation of dp/dt is then unnecessary, although it would have been trivial

in any case.

One might be concerned that use of the artificial pressure q would overwhelm

any legitimate physical effects due to the true molecular bulk viscosity. The

main such effect, of course, is to damp sound waves, and we have no desire to re-

present this effect faithfully; we wish to exaggerate it. But the molecular bulk

viscosity will also have a tendency to oppose the expansion (or compression) re-

presented by V«u-., and this is a physical effect with which we would not wish to

tamper. The use of q will not indeed alter this effect, because q acts by con-

struction only on the deviation of V»u from V«u , and not on V»u itself. In any

case, the efrect in question is ordinarily negligible, as may be shown by a

simple order-of-magnitude estimate.

The role played by the V«u- term +n q is actually somewhat more subtle than

has so far been indicated, and thisi warrants some further discussion. The role

of this term may be clarified by considering the nature of the errors that would

result from its omission. One might at first expect the main error to be an

incorrect velocity field, since q would then tend to drive V«u to zero rather

than 7«UQ. Curiously, however, no such error occurs! The reason lies in the

fact that at low Mach number, the pressure gradients are effectively determined

by the velocity divergence and not vice versa [7], Thus, in the absence of sound



waves, the velocity divergence is constrained by Eq. (3) regardless of the

presence or absence of the V-uQ term in q. The pressure gradients simply adjust

themselves to whatever values are necessary for the velocity divergence of Eq.

(3) to result. The situation is analogous to that in the pressure gradient

scaling method [7], where falsification of the Vp term in the momentum equation

merely forces a readjustment of p to preserve the same V»u.

Thus the V«un term in q is not needed to obtain the correct velocity field,

but it is needed to obtain the correct pressure field in the absence of sound

waves. Once the sound waves have been essentially eliminated by the acoustic

damping, the combined pressure gradient V(p + q) will have whatever values are

needed to make V«u = V«u_. These values are the same regardless of how q is de-

fined; different definitions of q merely apportion the total gradient differently

between Vp and Vq. The correct physical pressure gradient Vp is that which

obtains in the absence of q, and it too must take on the same values. Therefore

Vp = Vp + Vq. Thus, in order for the pressure gradients calculated in the

presence of q to be correct, Vq must vanish in the absence of sound waves. This

is true by construction for the q of Eq. (1), which itself vanishes when V»u =

V«un. However, if the V«ua term were omitted from Eq. (1), q would become

-q«pc AtV«u« in the absence of sound waves, and Vp would then differ from Vp

by a terra qoatV(pc V«u Q). Simple estimates show that this term is comparable to

Vp at low Mach number, so it represents a substantial error.

Inclusion of the V«u,. term in q is therefore necessary to obtain the correct

pressure variations in the acoustically damped flow field. Of course, in many

low Mach number calculations one is not interested in the pressure variations,

and the V»u~ term could then be omitted without significant effect. However, in

calculations where pressure variations are important (such as flows driven by a

pressure drop, or problems involving pressure drag) the V'u^. term in q is essen-

tial, and we therefore recommend its inclusion as a general procedure.

III. STABILITY CONSIDEKATIONS

The use of the artificial pressure q imposes an additional stability re-

striction on the calculation, and this restriction provides an upper bound to the

value of q that may be used. This stability restriction may be inferred by tak-

ing the divergence of the momentum equation to obtain an evolution equation for

V«u. Assuming uniform density for simplicity, one finds that the q term therein
~ 2
involves the Laplacian of V«u with a coefficient of qnc At. Thus the evolution
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equation for V-u has a diffusional character with a diffusivity of qQc At, and

this diffusivity must satisfy the usual explicit diffusional stability limit.

For example, in a two-dimensional mesh of square cells the stability condition
2 2

becomes q~c At ^ Ax /4At, or

a < -J?— (6)
q 0 < 2 2 ' K }

Ac At

and if cAt/Ax - 1/2 this implies q_ < 1. It should be noted that At here repre-

sents an explicit time step which must satisfy the Courant stabiLity condition

cAt/Ax < 1. In contrast, implicit schemes are not subject to this condition and

will ordinarily be run with a considerably larger value of At. It follows that

the acoustic damping effect inherent in an implicit scheme (see Appendix) will

ordinarily be considerably larger than can be achieved by the use of the artifi-

cial pressure q in an explicit scheme. In practice, however, the degree of damp-

ing permitted in an explicit calculation appears to be quite sufficient to remove

the unwanted sound waves, as illustrated in Sec. V.

IV. ASPECT RATIO CONSIDERATIONS

In multidimensional calculations that utilize finite-difference grids with

large cell aspect ratios, use of Eq. (1) may not provide sufficient damping of

sound waves propagating in the direction of the larger spatial increments. This

difficulty may be alleviated by the use of any artificial pressure tensor Q in-

stead of the scalar q. For simplicity we restrict attention to the case of two-

dimensional Cartesian coordinates (x,y), with spatial increments of Ax and Ay

respectively. A suitable form for Q is then

= - pc2At(V-u - V-uo)(qOxii + qQyjj) , (7)

where i and j are the unit vectors in the x- and y-directions respectively. The

corresponding force term in the momentum equation is



Thus the effect of replacing q by g is to introduce different damping coeffi-
cients q^ and q_ into the x and y momentum equations.

Ox Oy

Of course, g is not a true tensor with a coordinate-free existence, as it

has arbitrarily been defined to be diagonal in the particular coordinate system

in use. However, this presents no problems because Q acts by construction only

on the sound waves, which are not of interest, and not on the remainder of the

solution. All that we ask of g is that it damp the sound waves, and if it does

so properly its tensor character is unimportant.

The stability restriction on q and q for this case is readily found to
be

(cAt)2(qQx/Ax
2 + qQ /Ay

2] < 1/2 . (9)

Within this restriction, the relative magnitudes of q̂ . and q« can now be se-

lected so that sound waves propagating in the x-direction with wavelengths of

order Ax are damped at the same rate as sound waves propagating in the y-direc-
2

tion with wavelengths of order Ay. The former rate is proportional to qn /Ax ,
n UX

while the latter is proportional to q_ /Ay . In order for these rates to be the

same for arbitrary Ax and Ay, we must set q» = aAx and qn = aAy , where a is a

_2
constant. Substitution into Eq. (9) then gives a < (2cAt) . Let A = rain(Ax,Ay)

be the smaller of Ax and Ay. For cAt/A ~ 1/2, the restriction on a becomes
2 2

a < 1/& o r a = CL-./A , where 0 < a~ < 1. We thereby obtain

q0x = ao**2/*2 •
(10)

2 , 2
q0y = V 7 /A '

with ctg < 1, as our recommended values for the damping coefficients in the pres-

ent situation. Similar arguments may readily be given for three-dimensional

grids or cylindrical coordinates.

Suppose for purposes of discussion that Ax << Ay, so that A = Ax. We then
2

obtain q ^ = a^ and q_ = OQ(AV/AX) . Thus the damping coefficient in the x-

direction is of order unity, while that in the y-direction is of the order of the

square of the aspect ratio. This larger value of q0 is just what is needed to



damp sound waves in the y-direction at the same rate as those in the x-direc-

tion. Use of the scalar q of Sec. II in such a situation would be tantamount to

using a much smaller q- , of order unity, which of course would be inadequate to

damp the sound waves in the y-direction. This is why the use of Q instead of q

is necessary in problems with large cell aspect ratios.

V. COMPUTATIONAL RESULTS

Here we present numerical results for a simple test problem, which was

solved both with and without acou&izic daicpi..s to buow some of che benefits of the

method. The calculations were performed with KIVA [4,5], a corapressible-flow

fluid dynamics code that uses the acoustic subcycling method for efficiency in

low Mach number problems. In the absence of acoustic damping, the acoustic

subcycling algorithm in KIVA is neutrally stable [9]. That is, acoustic modes

of all wavelengths are undamped, although shorter wavelengths are subject to

distortion by dispersion errors.

The problem was to calculate the one-dnmensional motion of a gas in a tube

driven by a piston at one end. Piston motion was started impulsively at time

t = 0.0, and a constant piston velocity UP was maintained thereafter. The Mach

number based on UP was approximately 0.01. Witnout acoustic modes, the solution

for the gas velocity is the linear profile

u(x,t) - ^

where x = 0 is the fixed end of the tube and x = XP(t) is tho location of the

piston. Twenty computational cells were used, and the mesh was continuously

remapped into a new mesh that had cells of uniform size Ax = XP(t)/20.

Figure ). gives computed velocity profiles from the calculation with (top)

and without (bottom) the acoustic damping method at early (left) and late (right)

times. At the early time t = 5.0 x 10 , the pressure wave produced by piston

motion has traveled about one third the length of the tube. Dispersion errors

cause large oscillations behind the wave at t = 5.0 x 10 in the calculation

without acoustic damping. In the calculation with acoustic damping the oscilla-

tions are eliminated, and the wave Iront is slightly broader. At the late time

t = 5.0 x 10 , the linear velocity profile is recovered in the calculation with

acoustic damping, but without acoustic damping long-wavelength, large-amplitude

acoustic waves persist in the tube.
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Fig. 1. Velocity profiles from calculations with (top) and without (bottom)
acoustic damping.
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The benefits of acoustic damping in this problem are typical, and similar

improvements have been realized in a wide variety of other calculations. It

therefore seems likely that the acoustic damping method will be of general utili-

ty in explicit calculations of fluid flow at low Mach number.
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APPENDIX

TRUNCATION ERROR DDE TO ADVANCED TIME PRESSURE GRADIENT

In partially implicit numerical schemes for low-speed fluid flow, the pres-

sure gradient in the momentum equation is typically evaluated at the advanced

time level. Here we wish to identify the primary temporal truncation error that

thereby results. For this purpose the spatial differencing is immaterial and

will therefore be suppressed. The temporal differencing to be examined, then, is

. .n+1 , ,n
(pu) - (pu) j

——AE = " !p + s~ '

where n is the time level and S represents explicit difference approximations to

the convection and viscous terms. Now to first order in At, we have

n+1 n+1/2 , 1 .. f 2 P l
n + 1 / 2 ....

p = p + y At [-ĵ-J , (A2)

and in the presence of heat (or mass) sources the pressure equation is just [6,8]

-5- (p - p) + u^Vp = - pc2(V-u - VMI_) , (A3)

where p is the spatially averaged uniform pressure level [6,7]. Equation (Al)

thus becomes

, .n+1 , .n
(pu) - (pu) ,
_ L _ _ Z- = - v P

n + 1 / 2 + Sn + T , (A4)

where the temporal truncation error T is given by

| At

12



The convective term u»Vp Is immaterial to sound wave propagation, so the accusti-

cally significant part of T is just V[(l/2)pc At(V«u - V»u )]. This corresponds

to an artificial pressure of - (l/2)pc At(V«u - V'U Q), which is of exactly the

same form as Eq. (1) of the main text, with q- = 1/2.

It should be noted that in this analysis At represents a typical time step

for the implicit scheme. This scheme is not subject to the Courant sound-speed

stability restriction, so this time step will ordinarily be substantially larger

than a typical explicit time step.
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