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ACOUSTIC DAMPING FOR EXPLICIT CALCULATIONS
OF FLUID FLOW AT LOW MACH NUHMBER

by

J. D. Ramshaw, P. J. O'Rourke, and A. A. Amsden

ABSTRACT

A method 1s proposed for damping the sound waves 1n explicit
calculations of fluid flow at low Mach number, where sound waves
are usually not of Interest but may distract attention from other
flow features. The method 1is based on the introduction of an

artificial pressure q of the form q = - qopczAt(V-u - V-uo), where
g is a coefficient of order unity, p is the density, c 1is the
sound speed, At is the time step, and u, is the velocity field

-0

that would obtain at zero Mach number. When V-UO is zero, the

method becomes equivalent to the use of an artificial bulk viscos-
2
ity qqpc At. However, V-uo can be substantially different from

zero in problems with heat or mass sources (e.g., combustion), and
its inclusion is then essential to obtain the correct pressure
field. The method is well suited for use in conjunction with ex-
plicit numerical schemes that employ acoustic subcycling or arti-
ficial reduction of the sound speed for improved efficiency at low
Mach number. The beneficial effects of the method are i1illustrated

by means of calculations with an acoustic subecycling computer
program.



I. INTRODUCTION

As is well known, explicit numerical calculations of fluid flow at low Mach
anumbetr M (M << 1) tend to be inefficlent because of the wide disparity between
the convection and sound-speed stability limits, the latter of which 1is more re-
strictive than the former by roughly a factor of M. For this reason, numerical
calculations of low Mach number flow have usually been performed with implicit or
partially implicit methods such as the ICE method [!,2]. However, the ineffi-
ciency can also be alleviated within the framework of an explicit numerical
scheme. Two trecent methods for doing so are acoustic subcycling [3~5] and arti-~
ficial reduction of the sound speed [6,7].

A notable difference between such expiicit techniques and the more tradi-
tional implicit ones is that the latter usually have a much greater tendency to
damp sound waves, This tendency is primarily due to a temporal truncation error
that arises when the pressure gradient in the momentum equation is evaluated at
the advanced time level. In the absence of heat and mass sources, this trunca-
tion error has the character of an artificial bulk viscosity. In contrast to the
familiar artificial diffusivities associated with upwind differencing of convec-
tion terms, an artificial bulk viscosity is actually a desirable feature at low
Mach number because it damps sound waves. At low Mach number sound waves are
usually not of interest, but their presence in the calculation may tend to dis-
tract attention from the flow features that are of interest. This tendency is
increased in explicit calculations with the pressure gradient scaling method [7],
because this method artificially increases the amplitudes of the sound waves in
the process of artificially reducing their speeds.

A further motivation for damping sound waves at low Mach number is that the
calculated sound waves are often unphysical in any case. Artificial sound waves
with artificially large amplitudes may be generated by various types of trunca-
tion errors. Moreover, sound waves with wavelengths less than a few cell widths
are rapidly rendered unphysical by dispersion errors. These effects frequently
conspire to produce transient short-wavelength irregularities, acoustic in char-
acter but of no physical significance, in the computed velocity field.

The above considerations suggest that in explicit calculations of fluid flow
at low Mach number, it may be desirable to explicitly introduce an acoustic damp-—
ing mechanism similar in its effect to that provided by the truncation errors in
implicit schemes. Our purpose here is to propose and discuss such a mechanism,

and to present calculational results that illustrate the beneficial effects of
its use.
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II. ARTIFICIAL PRESSURE FOR ACOUSTIC DAMPING

The simplest way to implement an acoustic damping mechanism would be to in-
troduce an artificial bulk viscosity u;. This is equivalent to adding an artifi-
cial pressure _“;Y'E to the thermodynamic pressure p. The optimal value of “§
would be expected to be problem—dependent, but its order of magnitude mey be
estimated by requiring that the characteristic damping time for wavelengths of
order Ax be of order At. This requirement makes U* of order prZ/At. In an ex-
plicit calculation Ax is of order cAt, so an equivalent statement is that u; is
of order pczAt.

However, a simple bulk viscosity damping mechanism would be insufficiently
general for many purposes, because a damping of this form would tend to oppose
any nonuniform Y-E, regardless of its physical origin. Even at very low Mach
number, Y-{ can be substantially different from zero for reasons that have noth-
ing to do with sound waves. This is true, in particular, in problems with heat
or mass sources [6,8], such as combustion. Since the objective is to damp only
the sound ~aves, one should adopt a damping mechanism that tends to drive Y-g not
necessarily to zero, but racther to the value Vsu, that would obtain in the limit

~ C
of zero Mach number, This requirement is met by an artificial pressure of the

form
2
q = = qgpc At(Veu = Veuy) (1)

where g is a dimensionless coefficient of order unity. It is noteworthy that
the acoustic damping provided by the principal temporal truncation error of the
common implicit schemes is of precisely this form, including the Y'EO term (see
Appendix). In situations where Y.EO is in fact zero, Eq. (1) becomes equivalent
to the use of an artificial bulk viscosity qopczAt.

Equation (1) is the form of acoustic damping mechanism that we propose. It
is implemented simply by replacing the thermodynamic pressure p by p + q. In the
momentum equaticn, this replacement gives rise to a term —Yq which clearly pro—
duces 2 damping force with the desired tendency. Strictly speaking, q should
also be added to p in the internal energy equation to properly accournt for the
energy dissipated by the damping. However, this is not really necessary because

viscous dissipation is negligible at low Mach number [6], where the kinetic



energy of the flow is negligible compared to the internal energy. We therefore
replace p by p + q in the momentum equation only.

Use of Eq. (1) requires that Y-go be evaluated. This may be done by manipu-
lating the elliptic system of equations that results when sound waves are strict-

ly suppressed [7]. 1In this way one readily derives the relation

2 = (3P § Py 3
pc Veuy = (ae)pi + i (Bpi)e i

[a W) oW
ol

, (2)

where e is the thermal internal energy per unit mass, oy is the partial mass den-
sity of chemical species i, p is the spatial average uniform pressure level in
the system, and d and éi represent all contributions to 3e/3t and api/at, respec-—
tively, other than convection and compression effects. Thus Q contains the ef-
fects of viscous dissipation, thermal diffusion, and heat sources (e.g., chemical
heat release), but does not include the convection term —E-Ye or the pdV work
term -(EYp)Y-BO. Similarly, ﬁi contains the effects of mass diffusion, chemical
reactions, and mass sources, but does not include the convective term _E'Ypi or
the compression term —piy-go.

Owing to the definitions of § and ﬁi’ the first two terms in the right
member of Eq. (2) can be interpreted as the coantributions of all terms other than
convection and compression terms to the local value of 3p/3t. 1t is convenient
to represent this partial or incomplete value of 3p/at by (Bp/Bt)*, so that
Eq. (2) becomes simply

2 ) dp
pCY'l{O‘(p)‘gg . (3)

* 13 o
The direct evaluation of (3p/3t) from Q, Ri’
often be circumvented in computer codes based on time—splitting sclhemes. 1In such

and the state function p(pi,e) can

codes the very terms that contribute to (ap/at)* are often split off and used to

generate intermediate values of Py and e defined by



i
(4)
é = e + At 6 ,
where At is the time step and superscript n denotes the old time level. It is
then natural to approximate (Bp/at)* by
By L
L T Ty_ n
(ﬁ-) AR I.p(pi’e) p ] . (5)

This 1s the procedure now used in KIVA [5].

Since q is intrcduced into the momentum equation only, it enters into the
equation system only through its gradient Yq. The spatially uniform term —dEYdt
in Egs. (2) and (3) may therefore be omitted, as it does not contribute to Vq.
The evaluation of dEYdt is then unnecessary, although it would have been trivial
in any case.

One might be concerned that use of the artificial pressure q would overwhelm
any legitimate physical effects due to the true molecular bulk viscosity. The
main such effect, of course, is to damp sound waves, and we have no desire to re-
present this effect faithfully; we wish to exaggerate it, But the molecular bulk
viscosity will also have a tendency to oppose the expansion (or compression) re-
presented by Y'%O‘ and this is a physical effect with which we would not wish to
tamper. The use of q will not indeed alter this effect, becaus= q acts by con-
struction only on the deviation of Yng from Veu

~ 0’
case, the efrect in question is ordinarily negligible, as may be shown by a

and not on Vsu itself. 1In any

simple order-af-magnitude estimate.

The role played by the Yogo term .n ¢ is actually somewhat more subtle than
has so far been indicated, and this warrants some further discussion. The role
of this term may be clarified by considering the nature of the errors that would
result from its omission. One might at first expect the main error to be an
incorrect velocity field, since q would then tend to drive Veu to zero rather
than Y'QO' Curiously, however, no such error occurs! The ;e;son lies in the
fact that at low Mach number, the pressure gradients are effectively determined

by the velocity divergence and not vice versa [7]. Thus, in the absence of sound



waves, the velocity divergence is constrained by Eq. (3) regardless of the
presence or absence of the Y-g term in q. The pressure gradients simply adjust
themselves to whatever values are necessary for the velocity divergence of Eq.
(3) to result. The situation is analcgous to that in the pressure gradient
scaling method [7], where falsification of the Vp term in the momentum equation
merely forces a readjustment of p to preserve the same Y'E'

Thus the Y‘EO term in q is not needed to obtain the cotrvect velocity field,
but it is needed to obtain the correct pressure field in the absence of sound
waves. Once the sound waves have been essentially eliminated by the acoustic
damping, the combined pressure gradient Y(p + q) will have whatever values are
needed to make Y'E = Y‘%o' These values are the same regardless of how q is de-
fined; different definitions of q merely apportion the total gradieat differently
between Yp and Yq. The correct physical pressure gradient thr is that which
obtains in the absence of q, and it too must take on the same vaiues. Thereiore
thrue = Yp + Yq. Thus, in order for the pressure gradients calculated in the
presence of q to be correct, Yq must vanish in the absence of sound waves. This
is true by construction for the q of Eq. (1), which itself vanishes when Y-g =
Veuq. However, if the Veuy term were omitted from Eq. (1), g would become
~qqec AtY-go in the absence of sound waves, and Yp would then differ from thrue
by a tetm qOAtY(pQZY-QO). Simple estimates show that this term is comparable to
thrue at low Mach number, so it represents a substantial errvor.

Inclusion of the Y.EO term in q is therefore necessary to obtain the correct
pressure variations in the acoustically damped flow field. Of course, in many
low Mach number calculations one is not interested in the pressure variations,
and the Y'EO term could then be omitted without significant effect. However, in
calculations where pressure variations are important (such as flows driven by a
pressure drop, or problems involving pressure drag) the Veu, term in q is essen-—

tial, and we therefore recommend its inclusion as a general procedure.

III. STABILITY CONSIDERATIONS

The use of the artificial pressure q ilmposes an additional stability re-
striction on the calculation, and this restriction provides an upper bound to the
value of a5 that may be used. This stability restriction may be inferred by tak-
ing the di&ergence of the momentum equation to obtain an evolution equation for
Veu. Assuming uniform density for simplicity, one finds that the q term therein

~

involves the Laplacian of Veu with a coefficient of qoczAt. Thus the evolution
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2
equation for Veu has a diffusional character with a diffusivity of 9q° At, and
this diffusivity must satisfy the usual explicit diffusional stability limit.
For example, in a two-dimensional mesh of square cells the stability condition

2
becomes qoczAt < m“/6At, or

2

0y ®
4o AL

and if cAt/Ax ~ 1/2 this implies 9 <l Tt should be noted that At here repre-
sents an explicit time step which must satisfy the Courant stability condition
cAt/Ax < 1. TIn contrast, implicit schemes are not subject to this condition and
will ordinarily be run with a considerably larger value of At., It follows that
the acoustic damping effect inhercent in an implicit scheme (see Appendix) will
ordinarily be considerably larger than can be achieved by the use of the artifi-
cial pressure q in an explicit scheme. 1In practice, however, the degree of damp-
ing permitted in an explicit calculation appears to be quite sufficient to remove

the unwanted sound waves, as illustrated in Sec. V.

IV. ASPECT RATIO CONSIDERATIONS

In multidimensional calculations that utilize finite-difference grids with
large cell aspect ratios, use of Eq. (1) may not provide sufficient damping of
sound waves propagating in the direction of the larger spatial increments. This
difficulty may be alleviated by the use of any artificial pressure tensor Q in-
stead of the scalar q. For simplicity we restrict attention to the case of two-
dimensional Cartesian coordinates (x,y), with spatial increments of Ax and Ay

respectivery. A suitable form for Q is then

2 . s
Q = pc At(\z-g - \Z-go)(qox{{ + quJi) ) (7)

where i and j are the unlt vectors i1n the x— and y-directions respectively. The

corresponding force term in the momentum equation is

_ .9 2 . d 2
T = gt g [T (T = Trug) |+ agy ey g [ee (T - Tu] L (®)



Thus the effect of replacing q by Q is to introduce different damping coeffi-
cients 90k and qu into the x and y momentum equations.

0f course, Q is not a true tensor with a coordinate-free existence, as it
has arbitrarily been defined to be diagonal in the particular coordinate system
in use. However, this presents no problems because ( acts by construction only
on the sound waves, which are not of interest, and not on the remainder of the
solution, All that we ask of qQ is that it damp the sound waves, and if it does
so properly its tensor character is unimportant.

The stability restriction on 90x and qOy for this case is readily found to
be

(cae)’(qg, /x> + qoy/Ayz) <1/2 . 9)

Within this restriction, the relative magnitudes of 40x and qOy can now be se-
lected so that sound waves propagating in the x-direction with wavelengths of
order Ax are damped at the same rate as sound waves propagating in the y-direc-
tion with wavelengths of order Ay. The former rate is proportional to qu/sz'
while the latter is proportional to qoy/Ayz. In order for these rates to be the

2
same for arbitrary Ax and 4y, we must set q = anz and q = ady , where a is a
Y 0x Oy

constant, Substitution into Eq. (9) then gives a < (2cAt)—2. Let A = min(aAx,Ay)
be the smaller of Ax and Ay. For cAt/A ~ 1/2, the restriction on a becomes

a < 1/A2 or a = aO/Az, where 0 < oy < 1. We thereby obtain

2,2
qu OlOAx /8 ?

(10)

]

by°/ 8
with o E l, as our recommended values for the damping coefficients in the pres-

ent situation. Similar arguments may readily be given for three-dimensional

grids or cylindrical coordinates.,
Suppose for purposes of discussion that Ax << Ay, so that A = Ax. We then
2
obtain 9o = % and qOy = qO(Ay/Ax) . Thus the damping coefficient in the x-
direction is of order unity, while that in the y-direction is of the order of the

square of the aspect ratio. This larger value of qOy is just what is needed to
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damp sound waves in the y—direction at the same rate as those in the x—direc-~
tion. Use of the scalar q of Sec. II in such a situation would be tantamount to
using a much smaller qu' of order unity, which of course would be inadequate to
damp the sound waves in the y-direction. This is why the use of 2 instead of q

ic necessary in problems with large cell aspect ratios.

V. COMPUTATIONAL RESULTS

Here we present numerical results for a simple test problem, which was
solved both with and without acousiic dampiug tO suow some of tne benefits of the
method. The calculations were performed with KIVA {4,5], a compressible-flow
fluid dynamics code that uses the acoustic subcycling method for efficiency in
low Mach number problems. In the absence of acoustic damping, the acoustic
subeyeling algorithm in KIVA is neutrally stable {9]. That is, acoustic modes
of all wavelengths are undamped, although shorter wavelengths are subject to
distortion by digpersion errors,

The problem was to calculate the one-dimensional motion of a gas in a tube
driven by a piston at one end. Piston motion was started impulsively at time
t = 3.0, and a constant piston velocity UP was maintained thereafter. The Mach
number based on UP was approximately 0.0l. Witnout acoustic modes, the solution

for the gas velocity is the linear profile

~ X
XP(t)

u(x,t) = up

where x = 0 is the fixed end of the tube and x = XP(t) is th: location of the
piston. Twenty computational cells were used, and the mesh was continuously
remapped into a new mesh that had cells of uniform size Ax = XP(t)/20,

Figure ] gives computed velocity profiles from the calculation with (top)
and without (bottom) the acoustic damping method at early (left) and late (right)
times. At the early time t = 5.0 x 10_5, the pressure wave produced by piston
motion has traveled about one third the length of the tube. Dispersion errors
cause large oscillations behind the wave at t = 5.0 x 10_5 in the calculation
without acoustic damping. In the calculation with acoustic damping the oscilla-
tions are eliminated, and the wave iront is slightly broader. At the late time
t = 5.0 x 10_3, the linear velocity profile is recovered in the calculation with

acoustic damping, but without acoustic damping long-wavelength, large—amplitude

acoustic waves persist in the tube,
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acoustic damping.
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The benefits of acoustic damping in this problem are typlical, and similar
improvements have been realized in a wide variety of other calculations. It
therefore seems likely that the acoustic damping method will be of general utili-

ty in explicit calculations of fluid flow at low Mach number.
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APPENDIX

TRUNCATION ERROR DUE TO ADVANCED TIME PRESSURE GRADIENT

In partially implicit numerical schemes for low—speed fluid flow, the pres-
sure gradient in the momentum equation is typically evaluated at the advanced
time level. Here we wish to identify the primary temporal truncation error that
thereby results. For this purpose the spatial differencing is immaterial and

will therefore be suppressed. The temporal differencing to be examined, then, is

(pg)rl+1 - (og)n

At =-Ww +5 ., (al)

where n is the time level and S" represents explicit difference approximations to

the convection and viscous terms. Now to first order in At, we have

nt+l/2

) , (A2)

+ + 2
pn 1 _ pn 1/2 1 A (S

o
?Lo

and in the presence of heat (or mass) sources the pressure equation is just [6,8]

3 — 2
m (p -p) + usVp = - pe (Veu - Y"io) \ (A3)

where p is the spatially averaged uniform pressure ievel [6,7]. Equation (Al)

thus becomes

o1

(pu) - (o))"
At =-% S'+ T , (Ab)

where the temporal truncation error T is given by

1
T= g e Tl + e (Vo - Taug)] (a3)
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The convective term u+Vp is immaterial to sound wave propagation, so the accusti-
T 2
cally significant part of T is just V[(1/2)pc At(Veu - V-uo)]. This corresponds
- ~t ~ - -~ =

to an artificial pressure of - (1/2)pc At(Veu - V'EO)’ which is of exactly the

same form as Eq. (1) of the main text, with 9y = 1/2.

It should be noted that in this analysis At represents a typical time step
for the implicit scheme. This scheme 1s not subject to the Courant sound-speed
stability restriction, so this time step will ordinarily be substantially larger
than a typical explicit time step.
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