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I INTMODIT I ION

Mosl <»f I hr nirrml im(lrrsl;uMling of I hr no-houmlary proposfil l»v Marl Ir ;»nd Hawking 

for I hr r|Haiilinn slalr of I hr lUiivrrsr [I 3] has l>rrn ohlainrcl from applying I his proposal 

in spal iallv liomo^rnrous rosinologiral modrls. I his proposal drfinrs I hr wavr fnnrl ion 

vl///// In I hr I jn lidran palh inlrgral

llll V'ij ) - j C O

whrrr / is (hr Mnrli<lran arlion of (hr gravilalional firld I hr inlrgral is formally

lakrn lo rxlrtid ovrr Knc lidran mrlrirs on romparl fonr-manihdds wilh a boundary, such 

(hat I hr indnrrd mrlrir on I hr boundary is givrn b> I hr ihrrr-mrtrir appraring as (hr 

argumrnl of I hr wavr funclion. I hr inrlusion of mallrr firhls is s!raighlforward. In spa 

lially homogrnroiis modrls whose dynamus admits a Hamiltonian formulation, the wavr 

function reduces to a function of finitely many parameters characterising the homogc 

neons three metrics, and the path integral (l.l) reduces to a path integral in a constrained 

quantum mechanical system. I'urlhrrmore, as the Hamiltonian dynamics of these models 

retains the essentials of the Hamiltonian dynamics of the full theory, one can analyse the 

interpretation of the wavr function in these models b\ methods which may be extendible 

also to I hr full I hrory.

I hr most notorious problem in defining Ihr HartIr Hawking integral (I. I), both in the 

general formalism and in spatially homogeneous models, is that the I'/tididean binslein ac­

tion on real positi\r definite metrics is not bounded from below. If one slays within pure 

l.inslein gravity, the remedy usuallv suggested is that some of the degrees of freedom in 

the metric should be integrated over a complex contour. One such suggestion is the con 

formal rotation prescription of (iibbous, Hawking and I’erry 11], which has been shown lo 

lead into sensible integrals in Ihr linearised theory on a flat background [5J, in a pertur­

bation expansion on an asvmplol ically flat background [fij, and also in some cosmological 

models [7). Another suggestion is the contour prescription of Mazur and Mot tola for the 

linearised theory on more general backgrounds jH|. lor integrals with the liar! le Hawking
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boundary conditions, however, the status of these contour prescriptions is less clear. It 

has been suggested that a way towards a proper definition of (l.l) would be to look at 

general contours in the space of complex met rics, possibly using steepest descent contours 

as a guideline [9,10]. Examples in simple models [II] indicate that different contours can 

in general give drastically different wave functions, and specification of the contour must 

therefore be regarded as an essentia I part of the definition of the integral.

The contour of integration remains an issue even when one only wishes to approximate 

(l.l) by the semiclassical contributions coming from the saddle point configurations. These 

saddle [mint configurations are four-metrics solving the Ihididean f'instein equations and 

satisfying the boundary data of the integral, l or given boundary data there may be many 

solutions, and choosing the contour of integration translates into choosing which of the 

saddle points actually contribute lo the integral. Note that although the boundary data 

enforces the induced metric on the boundary to be positive definite, the saddle point 

solutions in the interior of the four-manifold can be complex valued metrics (while still 

being defined on a real manifold).

In this paper we shall investigate the Ilartle Hawking proposal in spatially homo­

geneous models where the four metric admits an isometry group with Lie algebra »/(2) 

acting transitively on the spatial Ihree-surfaces. We consider pure Kinstein gravity with 

a non negative cosmological constant A. As will be explained in the Appendix, these 

models are obtained from the general (diagonal) Bianchi type IX model by setting two of 

the three scale factors to be equal. Our purpose is to find the saddle point metrics in the 

Ilartle Hawking integral and analyse the possible semiclassical contributions to the wave 

function. If would be in principle straightforward to set up the machinery of Ref. [II] for a 

steepest descent analysis of the integration contours, but the practical calculations appear 

to become complicated. In this paper we shall just look separately at. all the different 

saddle point contributions.

The general classical solutions in our models are known in dosed form, both in their 

borentzian and Kudidean versions. They are usually referred to as Taub-NUT space for 

A — fl and as laub NUT-de Siller space for A >0 [12 I I], We can therefore find the
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purely Kurlulrmi sncMIo poiuls l»v nwitcliing llir known form of flir general real Knelidean 

solution l.o the honmiary data of the integral. It turns out that we find with this method 

also some romplex valued saddle point metrics. These complex metrics are formally ol» 

lained from the real r.uclidean solution l»y making the parameters and the Knelidean time 

coordinate* comph'X valued, hut it can he verified that they indeed represent complex met 

rics on a reed manifold and satisfy the hoimclnry data of the integral. We do not know, 

however, whether all complex-valued saddle point metrics can he found in this way.

I n pract ice, finding the act ions of t he saddle point met rics as a fund ion of the hound 

ary data reduces to solving an algebraic’ ecpiation. This ecpiatiou can in most cases not 

he solved in terms of simple expressions, hut it is possible lo analyse the behaviour of the 

classical actions by taking suitable limits in the boundary data. When A =0, we do not 

fmd any saddle point metrics whose Kuclidean action would be approximately imaginary. 

If we relate the wave funclion lo classical space times using a semiclassical interpreta­

tion [15 17), this would mean that the contributions to the wave function are not rapidly 

oscillating and do therefore not correspond to Korenl/ian universes. When A > 0, on 

the other hand, we find two saddle point metrics whose Kuclidean action is approximately 

imaginary in certain regions in the configuration space. One would therefore like to say 

(hat Ihese semiclassical coniribulions to the wave function are rapidly oscillating and corre­

spond to certain families of Lorentzinn universes. Kven in this case, however, the real part 

of the Kuclidean ac tion does not vanish exactly. Suc h a non vanishing (and non constant) 

part of the* Kuc lidean saddle point action mav raise subtle cpieslions about a semiclassical 

interpretation of the wave funclion.

The cases A — (I and A > 0 will be analysed respectively in Sec tions 2 and 3. The 

results are summarised and disc ussed in Section I. In the Appendix we collect some ele­

mentary results on 3 and I geometries admitting a t/(2) isometry algebra acting transitively 

on the 3 surface's.

I

2. VACUUM TIIKOMY

We consider metrics which are spatially homogeneous and with symmetry group hav­

ing the Kie algebra u(2), the group generically hav ing 3 dimensional orbits, 3 spheres or 

Kens spaces. The form of the Korentzian four-metric is assumed to be

J,’ = -/VJ(//’ + nV? + d) + ^V? (2')

whrrr

rifti = A rrk (2.2)

and tTi arr left-invarianl our forms on Ihr grurrir 3 surfaers rrjrardrd as idrntifird thrrr 

spheres.

The action is the usual Kinstein action with a cosmological constant A (18):

s,. = -^ / - 2A) + ^ / (2.3)
Ifiirf. JM JnM

llrrr Kj, is Ihr rxtrinsir rurvatiirr on I hr boundary f)AC , A ils trace, and hij thr indnrrd 

mrlrir on AM. A ronvrnirnt paramrlrisalion of Ihr spatial metric is

hij = l ' rxp(2/?i)) (2,1)

whrrr 1 = n3r sralrs lihr thr volntnr of thrrr sparr. I hr malrix ftij is tracrlrss ami

diagonal with rntrirs /?n = fln = -flw/'l = ft, i.r. rxp(.l^) = a/r, and rrprrsrnts thr 

drvialion of thr Ihrrr-snrfarr from isotropy. Snlwlilnting this into thr action (2.3) wr find 

I hr following,

Sl. T:S"‘ £
/V

+ f?’ + Y (Vf - 2A) (2.5)

whrrr Ihr spatial rnrvnlnrr is

•1w = 2r-’(r-M - ir"'?)
V I ’ (2.6)



Tlic rqujtl ions of mol ion mny now l»r drrivrd from (2.5). In lliis sod ion wr slinll 

considrr Ihr purr v;u nnm rnsr, A — 0. I ho solnlions nrr, in ll»c Kn,lRr Nr. = 2/,

,/.<2 - - (•? i n_
(i* - it»i - r) 'it* + i/:A‘? 2wl - t*) , y(<* + <7)(A' + *1) (2.7)

known ns llir Innh-NI1 I solnlions [12). I hr singulnrilirs of Ihrsr spnrrs wrrr disrussrd 

in (I!)]. Wr nrrd l.o ronsidrr Ihr Murlidrnn vnnmm solutions. I hrsr Inkr thr form:

r/52 =
(i*

(/'■' 2 m I
>7)

i n
'It* + M* (I* - 2mt + I*)

(l*-I*) '
+ (l*-t*)('r* -h * (2.8)

nr prorisrlv -I lirm-s lliis mrlrir. Mrlrir (2.8) grnrrflllv lins rurvaliirr singulnrilirs nl. 

I = rf/ ns rnn l>r srrn from (hr fnrl Mint Ihr spnrr is Irfl mid right Prlrov ly|>r I) with 

Wryl Irusor

(/ + m)
(/ + ir «i/7 - (/-_,»)

(/ -1)*
(2.!))

In ordrr lo oht.nin Ihr srmi rlnssiral rontrilxil.ions to thr wnvr funrtion with llartlr- 

llnwking Imundnry romlilions wr nrrd to find vnriiiim solnlions (Imlh rral and complrx) 

on a rral rornpnrl manifold lhal matrhrs on ton givrn I hrrr grornrl ry on its only boundary 

(Ihr gromrln bring thr nrgnmrnt of thr wavr fnnrlion). lo implrmrnt this no-boundary 

proposal wr inns! rxaminr ways in wliirh mrlrir (2.8) ran rh*sr. Hy symmrtry considrra- 

lions this amonnls to disrnssions of ways in whirh Ihr rangr of I ran br limilrrl to Iravr 

a manifold wilhonl boundary. Sinrr Ihr mrlrir is non singular rxrrpl at points whrrr 

(i*-i*) - n or whrrr (/2 2m/ I /2) “ 0 wr nrrd only ronsidrr Ihrsr possiblr initial

/ valnrs for rkr / is a good roordinalr. In I his rasr Ihr analysis of Mrfs. [13,1 I] shows 

lhal ihrsr / valnrs mnsl rorrrspond lo rilhrr points (NU I s) or 2 snrfarrs (HOI/ls). Wr 

< onsirlrr Ihrsr closings in I urn. Wr will assnmr lirsl lhal wr havr I hrrr snrfarrs with 

iopology of .S'1 ami dral at Ihr rnd of ibis srrtion wilh ihr rasr o f ltrA snrfac ts nrul thr 

'iirmlisfilinns In higher l.rtis s|Mirrs /,(.», I), .1 > 2.

rt

NUT rase

l liis < nsp rnrrrs|>nnds In rinsing at / = ±/. Hrninval nf thr rurvaliirr singularity thus 

rri|uirrs that rn — ±/ and wr nhlain Ihr srlf dual laul) NM I sparr. I hr rlassiral arlion 

for thr snlulinn matrhing nn In final (n,r) values is fnnnd hy snlving fnr / and and

sulisliluling inln thr rxpressinn for thr arlion. Wr find

l(n,r) =-—( \ar - r*) (2.10)
(»

'I'hrre is a real rlassiral snlulinn malrhing nn In itnjr positive (n,r) values and thr arlion is 

real. Thus in no region of the spare of 3-gminetries wr ronsidrr is the wavr fnnrlion rapidly 

osrillating, and we rannnt interpret thr wavr fnnrlion as rnrrrsponding to l.orrnlzian 

universes.

BOLT ease (S* surfares)

Herr wr havr to ronsidrr thr rasr of rinsing at the roots of (I* - 2mt + I2) = fl 

whirh wr take to he <+ > <_ . Sinrr }/) is an angular variable (with period Is for the .V 

topology) there is thr possibility of a rnniral singularity nl onr of Ihrsr roots. Kliminalinn 

of the singularity at I* rerpiirrs m = resprrlivrly. Taking the lower sign implies that 

t_ = 1/2, t+ = 21 and yields thr mrlrir

'I** [f- ^(<-20 'll* + \l* (( ~ 7)(< ~ 2/)
(I* - I7)

<7.1 + (I7 ~ f,)(<7? + <7l) (2.11)

This mrlrir is positive definite for L > I > —I. indefinite for 2/ > / > j and negative 

definite otherwise. I'or mrlrirs ending at f = 21 we first ronsidrr thr rangr I > 21. This 

is the (negative definite) laub 1101,1' mrlrir disrovered by Page (20). Pirst wr note that 

the ratio
r’ _ \l*(l - j)(l -21)
„2 - (/2 _ (2)7 = /(M) (2.12)

lakes a range of values lhal. is independent of I in the range / > 2/ and is bounded above 

by some \nlur fr — /(!(,', I) where 25 3. I hus for (r/o), less than this rriliral value wr
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find !\\n KiiciKlrmi M()M solnlions mnlrliing on lo llir r<'<|nirr<l ^romrlry hnl for 

grrnlrr I linn lliis valnr wr find no rr;d ROM solnlions. lor ihrsr \alnrs wr liavr lo rrsorl. 

lo ronsi<lrring rornplrx mrlrirs drfinrd on rral manifolds, linl lirsl wr dral willi llir rasr 

(r/nY < fr

l.ol 2 < fi < {* < fj l>r Ihr iini<)iir surh Snliilions to Ihr r(|imlinn:

m.o = -7n*

I lirn wr find Ilia! wr liavr I wo rlassiral solutions willi nr! ions

■2na7 If;1 - ^f? + 5 
C ' (f,3-l)’

(2. l.l)

(2.11)

Wr rannol find a rlosrd rxprrssion for all , howrvrr for b < ' wr find thr two actions

= -—(o'- - + "?r( '-)) (2.ir»)
(t H o'

h(r,<l) = f 2r7 + «7f;('-)) (2.115)

Aslmlh /| and l-j arr rral in I his par! of suprrsparr, wr rannol inlrrprrl I hr srmiclassical 

wavr funrlions as corresponding lo l,orrnl?ian nnivrrsrs. I or f > fr "c rannol. fincl any 

rral Rurlidean solnlions wilh a ROM dosing Ilia! malrh onlo Ihr prrsrrihrd honndary 

and ol)ry Ihr llnrllr Hawking rondilion. I hus wr rrsorl lo considering complex metrics, 

lliis is Ihr smallest complrx vrrlor sparr ronlaining thr cone of Kuclidean metrics on 

a givrn four manifold ami srrms Ihr doses! lo wlial one dors in analytic continuation 

I hrory. I>ul whrrr in lhal case one needs lo hr careful in specifying Ihr branch taken in Ihr 

analylir coniinualion. Ounplrx me!rics on real manifolds arr bizarre ohjrrls; Ihr geodesic 

rcpialion has generally no solnlions (even locally). In addition Ihr relation between an 

analytic continual ion of Ihr palh inlrgral and gauge fixing nerds lo br carefully addressed. 

Wr have assumed lhal such issues arr not relevant for compul ing I hr possible semiclassical 

nl ribulions lo Ihr wave funclion.

8

Now dearly complrx mrlrirs on a real manifold solving thr vacuum field equations 

may l>(- <>l>lainr<l by prrfnrminR llir transformalion I —• l(r) whrrr I(t) is a complrx 

fiiiirtiiin of r. Wr will assuror in what follows lhal rrlrvanl solutions for Ihr ‘HOLT rasr’ 

arr oblainrrl from Ihr laub BOLT mrlrir inrrrly by iirrhirmiug surh a transformation. It 

is dear that any surh Irnnsformrrl mrl rir has Ihr rlrsirnl proprrtirs of non-singularity amt 

rrgular dosing. Howrvrr il is not drar lhal all surh complex solutions arr oblainrrl in this 

way.

Lor all valnrs of Jy wr ran fiml two rral solutions to equation (2.13), f.i,f< obeying 

1 >{.,>_ | > These final values rannol br joined in the real f line to f =

2,1 hr HOLT, without passing through a curvature singularily at f = I , or more crucially 

undergoing a change of signature. However there is a contour in thr complex f = l/l plane 

whirh yields a complrx mrlrir when that contour is givrn a real paramrlrisalion. Thus wr 

obtain complex solutions with Ihr actions givrn by equation (2.13). Wrrnn again rvalualr 

these contributions for large ami small values of (c/n)7 Lor ^ < I wr obtain:

M'", a) ~ + T + ",f,(
(j o u

whilst for % >>

Itl\(r,n) = - —(nr - .r>r7 + » ff(-)' )
(» Cl

/,(c,u) = ^(2c7-3cu -t r70( )7)

/|('\ n) = —(2c7 t 3ru + r70( )7)
f. c

(2.17)

(2.18)

(2. m) 

(2.20)

Allhough Ihrsr srmi classical coniribulions havr been calculated from complrx metrics, 

because thr final values of / and f arr real Ihr actions are rral lo all orders. I his is unlike 

thr case of the contributions from the other hvo roots of (2.I3) for > I which give

f, 7(c,u) = -^(2r7 T 3\/2.>r. + c7f;(")7) (2.2I)
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I lirsr yield eimiplex soliilinns, whieli nre mil Imwever nf (he l.nreidzinn WKM Ivjie in llic 

region of (e, n) spare uliere (hey nre valid. We llms see lhal. if *4 is nnirh less Ihnn or 

greater than I, we do nol have a wave fnnrlion lhal corresponds In l.orenl/ian universes. 

Allhongh we do nol have a good npproxiinal.ion to exp(~/|) and exp( —/j) outside these 

Iwo limiting regions, il appears unlikely that these romponents would heroine rapidly 

oscillating anywhere in Ihr configuration space. However, even leaving open what happens 

outside (he above Iwo limits, these limits allow ns lo conclude lhal Ihr wave function 

rannol correspond to l.orenlrian universes that reach a singularity. To see this, suppose 

lhal in some region one of these wave function components takes the Lorrnlzinn WKM 

form

* a/l(o,r)r‘*<’,'r> (2.22)

where the exponential varies rapidly relative lo .1. Then this component corresponds 

to the one parameter family of space-times for which .S’ is taken as Hamilton's principal 

fnnrlion. Al (he singularily of every borentzian solution the ratio £ tends lo zero, and at 

I his limit we have shown lhal I he wave function is not of the form (2.22). Thus the wave 

function does nol correspond lo borentzian universes reaching a singularity.

nOI-T case (bens Spare surfares)

l or completeness we now give the case of a ‘HObl ' closing where the surfaces of 

homogeneity have Ihe topology of /f/*'1 or more generally Ihe bens spaces /,(.», I), s > 2. 

lor Ihe case of HI'' Ihe relevant Kuclidean solution is Ihe Kgnrhi Hanson metric (I l,2l|

(/.«’ - (I ;r) l'/,7 + T(| k7 + + "I) (2 2:i)

wliirli li;»s ;i ROIT nl I — w.

I nr r < n wrrnn mnlrli «»n In n ronl snlulinn willi nclmn,

(2.21)

III

There is also a romplex solution with the same action which in Ihe form (2.23) has a holt 

at I — ±»m. It is easy lo show Hint for r > n we can match a romplex metric closing at 

a holt which is obtained by selling I. = <1 + r(m - n) where in' = (Ifin'HI - Js) m is 

complex and r is a variable running between 0 and I I he form of the action is the same 

as (2.21) and does not correspond lo borentzian universes.

I he higher bens spares /,(*, I) are defined by regarding the 3 sphere as a subset of 

6” defined by |/f||3 + |/2|J = I. Then Ihe Z. action (Z,,Z}) -* exp( ^(/fi, Z2) has 

no fixed points and we rnn thus form the quotient manifold //(*, I). Since this action is 

isometric for f/(2) invariant metrics thr quotient spare will have a well defined metric. The 

classical solutions are then given by (2.8) with m = (I + *[')! ^or * > 2. fl- f** shown 

that for any (c, n) values, we have three complex geometries and one real geometry with 

a BOb'b closing. They all have real action and llms Ihe wave function is nol borentzian. 

It is interesting to note that the real rlassiral solution cannot be extendeil arbitrarily far 

into the future beyond Ihe final surface without encountering a singularity.

3. COSMObOCICAb THKOHY

In this section we let Ihe cosmological constant have a positive value. This consid­

erably complicates the classical solutions anil a complete treatment is not possible. The 

borentzian solutions are

,,.,2 = .y ii’ijTj-jrfZ + C7 ♦'’)("? + "2J) (3 i)

where

A = A(/’-2/V-~) (3.2)

The Kuclidean solutions, which are generally known (at least by the authors) ns the Taub- 

NUT lie Sitter family nre:

,/.,J
(<’-n

A
«/r + Ir A

(I’-f) 

11
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V\ hrrr

^ - I'1 - ‘2ml + l? - A(/' + 2l',l'> -) (:>i)

I his spare is Irfl ami hrIi! IVIrov l.vpr I) (as is rviilrnl front Ihr w(2) svinmrlry arl.iiiR 

on it (litnrnsional orltils) willi W’rvl Irusor

1 tJlZ i-— ■ - 1 -
(3.5)

I lie l.orcMil/inn solulimi (.'M) willi l7 = 3A/l nnd w — 0 is <lr Siller spare. Similarly, Ihe 

I'urlwlenn solulinti (3.5) wilh /7 = 3A/I and w = 0 is Ihe Knrli<lenn version of de Siller 

space, or Ihe round melric on .S’1 .

The closings in Ihe Murlidenn solulion are again of NU T and HOLT type, BOLT 

Being possible for all spatial topologies bill NUT only for .S'1. We shall now consider these 

closings in I urn.

NUT case

We consider lirsl the case of .S1 spatial topology with a NUT type closing. Without 

loss of generality we lake the NU T to be at I — —/, then (3.5) tells us that to avoid a 

curvature singularily we must sel w — —/(I — ^A/?). This space is thus half conformally 

Hal and has been discussed by (Iibbous and Pope [13] and by Pedersen [22]. In general 

we will si ill eucounler conical singularities al the zeros of A. However I hese are relevant 

only for certain real solutions and we can find cowplrr solutions ending at —l which avoid 

I hese conical singularities, lor Ihe NUT closing A simplifies lo give:

A - (H-O’O -A(/ + 0(.V-0) (5.5)

il rnn lir shown Ihnl innlriijtiR Ihe' solulion lo Ihr sprrifiril hoiimlnrv vnlnrs of a nn<) r 

miners lo solving n single nlgrhrnir rqnnlinn rnhir iti I7. IWiforl nnnlrly, Ihr rorflirirnls 

.it this rqiinlion drprml on (n.r) in n roinplirnlrd wny nnd Ihr rxnrl stditlion is not

12

prnrticftl. Also, deriving lliis ripmlion rr.piirrs Inking s<pmrrs of rrrtnin expressions, and 

wilhonl nn rxpliril solution il is not rosy lo see whether lliis might produce roots which 

do nol correspond to nrtnnl saddle points. We Iherefore resort to two limits nl which we 

rnn find the asymptotic forms of two solnlions. These limits nre those of Inrge volume I 

nnd smnll anisotropy /?, where T nnd /9 nre defined Ihrongh (2.1).

I'or fixed /? nnd Inrge l' we mny ohlnin Ihe action of one complex solution matching 

onto the boundary three geometry as an asymptotic series in l\ 'I he parameters 

result ing in Ihe desired metrics can he shown to have the following asymptotic expansions:

</.n„ = ir^(e'»-^-^A-,r-Uo(r-S)) (3.7)

/:= ^A-i(e-w + ?A-M-?(e-s',-c-M(’)

+ ,-^A-$r-'(r-!,',-c-'r>'’)H

When substituted into Ihe action we obtain

f. v I
- 3A-|(r-r,', - '-r-'™) 4 ()('

I his expansion is valid for C > ,\ exp(- \2(l). A second complex solution is obtained 

by Inking the complex conjugnle in (3.7) (3.!)).

I he dominant /?-dependence of (3 !l) is in Ihe second term. We remark that this is 

exactly the same dependence ns Ihnl appearing in Ihe spalinl curvature in the minisnper- 

space nction for metrics of our form, see e<|. (2.(5). (A similar result may hold even for 

the genernl llianclii IX model.) I his is a necessary consequence of the particular expo­

nents of T occurring in (3.!)). Because (3.!)) is not exactly imaginary, il is difficult lo be 

clear about the predictions for l.orentzian space-limes. The expansion in volume yields a

(3-8)
-(>(»■-*))

I'-*))
(39)
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Ilmiiilloii .lnrol>i funHion wliirh implies Ihnl llir ‘Lorenl/inn' solutions nre given l»v the 

fnmilv (*M) 'vith

I A/2
m = ±«7(l-—) (3.10)

Knowing Ihnl Ihe Lorenl/inn nction .S’/, satisfies the llamillou-.Incohi e(|iintion, I his result 

should not come as a surprise. The continuation from Ihe Lorentzinn Tauh-NUT line 

element (•LI) to Ihe Kuclidean (3.3) requires in addition to the usual t —♦ it also that 

we lel id -* i fit. So Ihe solutions to tlie Hamilton Jacohi etpiation derived from the 

Kurlidean nction musl necessarily correspond to imaginary values of the Lorentzian m. 

The particular form (3.10) for w comes from Ihe constraint that was imposed to eliminate 

the curvature singularity al. the NUT of Ihe Kuclidean solution. T here are regions where 

this complex metric is approximately real (and Lorentzinn), hut it is not clear what in a 

silnation like this should he understood as the predictions of the wave function. We shall 

return lo this question in Section I.

I he other limil we consider is I hat of fixed \ ami small absolute value of /?. Here 

we nre essentially considering slightly distorted I hree spheres as the final surface. To find 

solutions, we make Ihe assumption that the anisotropy is small not only on the final surface 

hut everywhere in the four geometries. We can thus first solve the equations with ft set 

stridly equal to zero (see for example Hef. [2]), and I hen to solve the equations for ft by 

treating it as a perturbation on the isotropic background. Let r2 = ^Al ^. When r2 is 

less Ihan I . we find

4 1 +0 ~ >■’)' + r2r’(.1:MI t-O^'1)) (3.11)

The upper and lower signs correspond to four geometries which are close to respectively 

Ihe smaller and larger parts of Ihe round four sphere bounded by a round three sphere (2). 

l or r2 greater than I we obtain

4 - T'V l)f 7 l2r’(3±,V-Olr'/^ + Of/e)) (3.12)

I I

l lir region <<( pnrninrlrr spnrr in whirh (3.11) nml (3.12) remain valid corresponds lo 

|/?| < . The two expansions (3.9) nnd (3.12) agree in the limit of large volume C, and 

we find that also (3.12) leads to the relation (3.1(1) For Ihe parameters of the ‘l.orentzian’ 

solutions. This indirates that Ihe actions obtained by Ihe two different expansions come 

from the same pair of saddle points.

We remark that our expressions (3.1 I) nnd (3.12) dilfer from those obtained by Ams- 

lerdamski (23] for the general Hianchi type IX model at the limit of small anisotropy. The 

reason is that the anisotropy equation of motion derived nnd used in Hef. (23) contains an 

incorrect numerical factor in ds zeroth derivative term.

The HOLT case

We now turn to the BOI.T type closing wilh Ihe spatial topology .S'3, At/’3 and the 

higher l.ens spaces. It is very difficult to ileal willi this case in detail, but a qualitative 

treatment at large volume is possible. A BOI.T closing occurs where we close the manifold 

at a zero of A not equal to ±t. Thus the orbits of the isometry group go from being 

bens spaces /,(», I), a > I (0 < V’ < ). lo being two spheres. To obtain a compart 

manifold which is also complete would fix both m anil / and lend to the I’age solution

(21] ( w — (I). However, for our rase of seeking solutions (possibly romplex) inducing given 

three geometries, we need merely eliminale the possible conical singularity at one zero of 

A, I. ,say. The rondilion is then:

(/.’-/*) = ±2u/A'(/.) (3.13)

The consistency of these rnudilious lends to a (multi valued) relation rn = /(/) whirh is 

straightforward, but tedious, lo find. The crucial points for the large volume expansion 

however nre that Ihe same expansions of f/inaf,/ as in (3.7), (3.8) are obtained and that 

given I his, the term in rn does nol contribute to the first two terms in the action (3.9). I he 

argument is as follows. One may work wilh dimensionless quantities r/in,i =
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ft — ( ^/',) 1 . Tlic»n on (liinriisi(»Mnl grounds thr rondilion for llir rrmovnl of ronirnl 

singulurilirs Inkrs ihr form

in = try(j(vr) (3.11)

Hy examining r<|iml ion (3.13) nnd I he rondil ion A(/*) — I) one ronrlmles I hnl //(o) =0(1) 

for n — 0(1) nnd ft smnll. I'or rv Inrge we find Ihnl // = 0(rYn), hut I his is nol. n 

ronsislrnl rondilion for malrhing on lo large 1 al fixed /?. Thus we may exclude l.his 

laller possihilily. I he w lerm con!rihution did nol appear in (3.9) nnd thus it still does 

not for Ihe hOl.T rase, whatever Ihe detailed form of //(o). rhus we ran deduce that we 

have (he same large volume form. A direct corollary is I hen Ihnt for the Lens space case 

we have:

/ - -/(r,/?) +0(1)
11

where /(!’,/?) is Ihe expression appearing in (3.9).

(3.ir,)

I. DISCUSSION

In lliis |>.i|>rr wr linvo invpstignt.rd llir (|iiniiliini rosiniilogy of spntinlly liomogrnrous 

rosmologiml moilrls willi i/(2)-illvnrinnl spnlinl liypcrsnrfarrs. Thr mrlrir flnsnl.7 in Llirsr 

modrls is givrn In llir dingonnl Hinnrlii lypr IX mrlrir willi two of llir srnlr factors 

srl lo lir ripinl, and llir possildr spnlinl topologirs arr .S'1, /O’1 or liiglirr l.rns spnrrs 

/,(.»,!) willi .« > '2. I hr solnlions lo llir Whrrlrr DrW’ilI ripialion wrrr rliosrn by thr 

llnrllr Haw king no boiindnry prrsrripl ion. Wr found I hr snildlr points of I hr path inlrgral 

whirh formnlly drlinrs Ihr no bomidnry wnvr fnnrlion, nnd wr nnalysrd srparatrly llir 

srmirlnssirnl ronlribnlions arising from thrsr snddlr points. Whirh of Ihr srmirlassirnl 

romponrnls nrlnally arr prrsrnl in Ihr wnvr fnnrlion would drprml on how Ihr inlrgral is 

drliiird, in particular how Ihr Ihr rnnlonr of intrgrnlion is rliosrn. This question was Irfl 

subject to futiirr work.

Ifi

Thr saddle points wrrr found by imposing conditions whirh make Ihr real line I idea 11 

solutions to the Uinslrin ripinl ions malrh with Ihr boundary romlilions of thr thr llartlr- 

llnwking inlrgral. This method clearly finds all Ihr rral Knrlidrnn saddle points. In 

most, rases wr found Ihnl Ihr malrhing conditions had complex-valued solnlions, and wr 

verified that thrsr complex-valued solutions rnn br written ns complrx valued metrics on 

a real manifold, satisfying thr Uinslrin equations nnd matching with thr boundary data 

of thr integral. Thrsr complex solutions are llms snddlr points of thr integral, and (with 

a suitable rhoirr of the contour) they ran br expected to give semiclassical contributions 

to the wavr function. Wr do not know, howrvrr, whether nil complex saddle points rnn br 

found in this manner.

In thr rasr of a vanishing cosmological constant wr found saddle points for all thr 

spatial topologirs. Some of thrsr saddle points wrrr real and some complex. However, the 

only topology for whirh there wrrr snddlr points wilh complex-valued actions was 51. In thr 

regions in thr configuration spnrr whrrr wr wrrr able to obtain approximate expressions 

for thrsr complex actions, wr found that thr corresponding semiclassical components are 

not rapidly osrillating anil therefore rannol. be interpreted in terms of borentzian spare- 

times. From this and Ihr known form of thr general horrnlziau solutions it was possible 

to conclude that the wave function rannol correspond to borentzian universes that reach 

a singularity. It appears unlikely Ihnt these romponrnls should become rapidly osrillating 

anywhere in thr remaining regions of thr ronfigurnl ion spnrr. If this is true, it would mean 

that thr no-boundary prrsrripl ion rules out all »(2)-invariant borentzian universes wilh 

purr vacuum.

In thr case of a positive cosmological conslanl wr again found saddle points for all the 

spatial topologies. Thr expressions for thr actions of Ihrsr saddle points arr more difficult 

to analyse, ami wr had lo rrsorl to expansions in Ihr volume and thr anisotropy. Thr 

situation analysed in mosl detail was lhal of .S'1 spatial topology with a NUT type Hosing 

of Ihr four-geometry, llrrr wr found a complex conjugate pair of snddlr points whose 

Uurlidrnn actions wrrr approximately imaginary in a rrrlnin region of the configuration
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s|wh-«\ I hrsr snddlr puirHs flicrrlorr gnvr risr l.o mpidl\ osrdlnling srmirlnssi< nl wnvr 

fimclion romponrnls, nml onr would rxprcl surh romponrnls !o rorrrspond l.o Lorrnl/inn 

spnrr limrs. I lirrr is n snhllrlv, howrvrr, nrising from llir fnrl Ihnl Ihr Knrlidrnn nr 

lion is only npproximnlrlv imnginnry. I hr <pinnlil.y .4:iI is, hy ronslrm lion, n solulion l.o 

Ihr horrnl/inn Hnmillon .Inrohi r<pinlion, hnl. il is now only npproximnlrlv rrnl. Whrn 

solving Ihr Hnmillon .Inrohi r<pinlions of rnolion wilh ±i I ns llnmillon’s prinripnl funr- 

lion, wr Ihrrrfoir ohlninrd n srl of grnninrly complrx vnlurd mrlrirs, givrn hy Ihr grnrrnl 

‘Lorrnl/inn1 solulion (’l.l) wilh Ihr rrlnlion

I A/7
m = ±,7(l-—) (U)

hrl.wrrn Ihr pnrnmrl.rrs w nnd l. Allhough wr ohlninrd (I I) ns nn npproximnl.r rrln­

lion from our rxpnnsions in Ihr volurnr nml nnisolropy, il is obvious from rompnring l.hr 

Lorrnl /inu nnd Knrlidrnn solid ions (3.1) nnd (3.3), nnd from I hr N U l -rrgulnril.y rondil ion 

for Ihr snddlr point solutions, Ihnl (l.l) is in fnrl rxnrl nml rould hnvc hern foreseen even 

wilhonl doing Ihr rxpnnsions. Nolr Ihnt (l.l) is ronsislrnl. with n rrnl Lorrnl/inn mrlrir 

only whrn I7 ~ 3/I A nnd w — 0, whirh gives Ihr mrlrir of dr Siller spnrr.

W'hnl one should undrrslnnd ns ihr prrdirlions from Ihrsr wnvr-fum lion romponrids 

whirh nrr rnpidl\ osrillnl ing. yrl not cpiilr of n l.orrnl/inn srmirlnssirnl form, is not rlrnr to 

us. I lo* simple model <lisrnssrfl in lliis pnprr is hnsed on n minisuprrspnrr npproximntimi 

reducing Ihr uumhrr of df’grrrs of freedom to jus! Iwo. Nnlurnlly surh n model rnnnot 

pr«A idrnn nrrurnlr drsrrip!ion of Ihr complex <pinulum plirnomrnn in IhrrnrlN universe. 

Howrvrr imuhds of I his l \pr mny help usgnin some insight ns to whnt lo rxprrl from more 

romplirnlrd models. I-url hrrmorr. in n srmi rlnssirnl rnlrulnlion surh ns thr onr presented 

here, onr hopes wilh ihr nid <*f Ihr Hnmillon .Inrohi cfpmlioiis to rrlnlr Ihr wnvr function 

|o rlnssirnl solnlions lo Kinstrin’s r<pintions. Wilh I his in mind, wr would hrrr like lo 

offer Iwo possible itilerprelnl ions of (hr results presented in this pnprr.

I hr lirsl, nml perhnps mosl s! rnighlforwnrd, poin! of view would hr lo sny Ihnt Ihr 

wnvr fnnrlion indeed corresponds lo Ihr fnmilv of genuinely complex mrlrirs (on n rrnl 

Manifold) gi\rn by I he ' l.orcnl/inn* solulion (3.2) wil h I hr rrlnlion (l.l). As I hr large srnlr
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geometry of our own universe is for nil apparent purposes described by n rrnl Lorentzinn 

mrlrir, one would therefore say that n wavr fnnrlion like lliis is inappropriate for describ 

ing our universe, except perhnps if Ihr universe wrrr rxnrl ly dr Sitter. All hough surh n 

conclusion in a single model may no! seem alarming, experience from simple solvable mod­

els [25 27] suggests that the semiclassical romponrnls of Ihr no-houndary wave function 

generically do not take a purely Lorentzian semiclassical form even when they are rapidly 

oscillating. (Some exreplions are shown in Refs. [2,21,25].) Hence, the no-boundary wave 

funrtion in ‘realistic1 models would not. he expected to take a purely Lorentzian semirlas- 

siral form. One is thus led to conclude that the no-boundary wave function is not likely 

to provide n good description of our own universe. This is perhaps slightly discouraging, 

since a priori, one would have expecled the Ilartle-Hawking prediction to result in a rrnl 

relation between m and / instead of ( LI).

I hr second point of view would he to regard n wave funclion as predicting correlations 

only insofar as those correlations concern purely Lorentzian quantities. One way of justify­

ing this idea might he to regard the Wigner function \V(p,q) as a measure of correlations 

in the phase space [17]: in certain cpinntnm mechanical examples it can he verified that the 

Wigner function of a wnvr function of thr Lorentzian semiclassical form rxp(i.S’) (with rrnl 

S) is indeed peaked around thr expected correlation />„ = <)S/(lqn , whereas the Wigner 

funclion of a wave funclion of Ihe Kuclidean semiclassical form exp(-/) (with rral /) is 

not peaked around any correlation hrlween p„ nnd qn . To apply this interpretation to our 

wave function, we observe Ihnl He(/) ran he made arbitrarily slowly varying compared 

with lm(/) by going sufficiently deep into Ihr region where Ihe expansion (3.0) is valid. 

Deep in this region, exp[- Re(/)| is therefore slowly varying compnred with not only the 

oscillating factor exp[-rlm(/)] hut also with thr pre-exponential factor. In this region one 

would thus interpret thr wave funclion ns corresponding to those Lorentzinn space-times 

which satisfy

 fl(M/))
rV

('12)

In (lie rrgiuii whrrr Hr(/) hrrimirs rimipnrnldr (.<> Itn(/), onr wniiUI ronvrrwlv inlrrprrl 

llir wnvr fiim'linn ns simply mil pmlirtiiig l.orrnl/inn s|wrrlimrs. This inlrrprrtnlion
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remains a<lmi!!c<lly vague without more conrrrlr criteria as to what can he regarded as 

“rapidly varying'* nnd “slowly varying.” Also, since lm(/) is only an approximate solution 

l.o the Lorentzian Hamilton .lacohi ecpiation, the solutions of (1.2) are only approximate 

solutions lo the Kinstein equations. Deep in I lie region where the expansion (3.?)) is 

valid, Ihe solutions of (1.2) are close to exact Lorentzian solutions, hut it is difficult to 

give a more quantitative characterisation of this closeness. It may he, however, that 

a vagueness of this kind is inevitable when an intrinsically semiclassical interpretation 

is applied in a simple model like ours. I he ambiguities may he resolved only when a 

model is sufficient ly complicated to allow a realistic descript ion of cosmological observations 

ricluding the observers themselves.

AITKNDIX

We summarise here some elementary results on 3 and I geometries admitting a ?i(2) 

isometry algebra acting on 3 surfaces. Kirst consider the case where the 3-surface has the 

topology I hen we can identify the 3 surface with the group manifold SUft) and write 

the metric on the surface in the form

rf-i’= (/l.l)

whrrr n' firr Irfl invnriiint onr forms iiiulrr Sl'('i) nml rnn hr rliosrn lo satisfy (2.2). Hy

a furl lirr rhoirr of hnsis (A. I) mny hr rlinjronnlisrd, nml Ihrrxirn grnrrnl or for i/(2) forrrs

Iwo of Ihr rigrnvnlnrs lo hr r<|iinl. Thus nny surh mrlrir mny hr hroughl lo Ihr form

il*7 = n7(<r7 + trl) + r,(rr’) (.1.2)

hr rasr whrrr Ihr Tsnrfnrr is ///'■' or n highrr l.rns s|>nrr rnn hr ohlninrd from (A.2) 

»y !.hr n(2) in \ n r in nl idrnlifirnt ions (irrsmlrd nl Ihr rnd of Srrlion 2.

Wr now discuss Ihr rrslriclrd form I hnl. l.hr solulion I gromrlrirs mnsl. hnvr. W'r havr 

rsl rirlrd our < Inss In hr folinlrrl hy 3 gromrlrirs wilh i/(2) m l ing on 3 snrfarrs. Pick onr
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of Ihrsr ns nn initial gmmrtry nml wr rnn llms |>ul it in Ihr form (A 2). Now Ihr lirhl 

rquntions imply lhal Ihr srrond fundnmrnlnl form is diagonal wilh ripial rigrnvalurs in 

Ihr .oirnr hnsis. Thus nl Irnsl lorally Ihr mrlrir Inkrs thr form (2.1) nnd hrnrr ran hr 

brought to thr form of Ihr solutions that wr usr in thr mnin Irxt.
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