e O

ORNL/TM-11960

OAK RIDGE
NATIONAL
LABORATORY
Block Sparse Cholesky Algorithms
on Advanced Uniprocessor
Computers
Esmond G. Ng

Barry W. Peyton

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES

DEPARTMENT OF ENERGY e
DISTRIBUTION OF THi3 DOCUNMENT i8 UNLIMITED



This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the: Office of Scientific and Techni-
cal Information. P.O. Box 62, Oak Ridge. TN 37831; prices available from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.
NTIS price codes—Printed Copy: AG7 Microfiche AO1

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information. apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views &nd opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.




ORNL/TM--11960
DE92 004167

Engineering Physics and Mathematics Division

Mathematical Sciences Section

BLOCK SPARSE CHOLESKY ALGORITHMS ON
ADVANCED UNIPROCESSOR COMPUTERS

Esmond G. Ng
Barry W. Peyton

Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

DATE PUBLISHED - DECEMBER 1991

Research was supported by the Applied Mathematical Sci-
ences Research Program of the Office of Energy Research,
U.S. Department of Energy.

Prepar.d by the
Oak Ridge N<tional Laboratory
Oak Ridre, Tennessee 37831
managed by
Martin Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

RECQTE
BIEDY LR

S

TF- TR T U SN VU B
DlSIHiEEuhuN U Mo i eavaadi s i ANV b e



Contents

o

Introduction . . . . . . . .. L e e 1
Background material . . . . . ... . o Lo oo
2.1 Column-based Cholesky factorization methods . . . ... ... .. ... 2
2.2 Supernodes and elimination trees . . . . . ... ... L. 5
2.3 Supernode-basad Cholesky algorithms: previous work . . ... .. ... 5
2.3.1 Left-looking sup-col Cholesky factorization. . . . . .. .. ... 8
2.3.2 Mulitifrontal Cholesky factorization . . . . .. ... ... ..... 9
- Left-looking sup-sup Cholesky factorization . . . . . ... ... ... ..... 11
Implementation details and options . . . . . . .. ... ... 0 0oL 12
4.1 Reuseofdataincache ... ... .. ... ... .. .. ... ... 12
4.2 Traversing row-structuresets . . .. ... ... ... ... .. .. ... 13
4.3 Enhancements to the multifrontal method . . . . . . ... ... ... .. 14
4.4 Refinements for left-looking sup-col and sup-sup Cholesky . . . . . .. 15
Performanceresults . . . . . ... ... . o oo o e 16
51 IBM RS/6000 . . . . . ... .. . . e 19
52 DECSB000 . . . . . . . o e e e 21
5.3 Stardent P3000 (without vectorization) . ... ... ........... 22
5.4 Stardent P3000 (with vectorization) . .. ... ... ... ... ..... 22
55 Cray Y-MP . . . . .. e e 23
5.6 Work storage requirements . . . . . . . .. ... 0w e . 24
Concluding remarks . . . . . . . ... Lo o e 24
References . . . . . . . . . . . e e 26

- 1il -



BLOCK SPARSE CHOLESKY ALGORITHMS ON
ADVANCED UNIPROCESSOR COMPUTERS

Esmond G. Ng
Barry W. Peyton

Abstract

As with many other linear algebra algorithms, devising a portable implemen-
tation of sparse Cholesky factorization that performs well on the broad range of
computer architectures currently available is a formidable challenge. Even after
limiting our attention to machines with only one processor, as we have done in this
report, there are still several interesting issues to consider. For dense matrices, it
is well known that block factorization algorithms are the best means of achieving
this goal. We take this approach for sparse factorization as wel..

This paper has two primary goals. First, we examine two sparse Cholesky
factorization algorithms, the multifrontal method and a blocked left-looking sparse
Cholesky method, in a systematic and consistent fashion, both to illustrate the
strengths of the blocking techniques in general and to obtain a fair evaluation
of the two approaches. Second, we assess the impact of various implementation
techniques on time and storage efficiency, paying particularly close attention to the
work-storage requirement of the two methods and their variants.



1. Introduction

Many scientific and engineering applications require the solution of large sparse sym-
metric positive definite systems of linear equations. Direct methods use Cholesky fac-
torization followed by forward and backward triangular solutions to solve such systems.
For any n X n symmetric positive definite matrix A, its Cholesky factor L is the lower
triangular matrix with positive diagonal such that A = LLT. W' en A is sparse, it
will generally suffer some fill during the computation of L; that is, some of the zero
elements in A will become nonzero elements in L. In order to reduce time and storage
requirements, only the nonzero positions of L are stored znd operated on during sparse
Cholesky factorization. Techniques for accomplishing this task and for reducing fill
have beer studied extensively (see {12,19] for details). In this paper we restrict our at-
tention to the numerical factorization phase. We assume that the preprocessing steps,
such as reordering to reduce fill and symbolic factorization to set up the compact data
structure for L, have been performed. Details on the preprocessing can be found in
[12,19].

As with many other linear algebra algorithms, devising a portable implementation
of sparse Cholesky factorization tnat performs well on the broad range of computer
architectures currently available is a formidable challenge. Even after limiting our
attention to machines with only one processor, as we have done herein, there are still
several interesting issues to consider. In this paper we will investigate sparse Cholesky
algorithms designed to run efficiently on vector supercomputers (e.g., the Cray Y-MP)
and on powerful scientific workstations (e.g., the IBM RS/6000, the DEC 5000, and
the Stardent P3000). To achieve high performance on such machines, the algorithms
must be able to exploit vector processors and/or pipelined functional units. Moreover,
with the dramatic increases in processor speed during the past few years, rapid memory
access has become a very important factor in determining performance levels on several
of these machines. To be efficient, algorithms must reuse data in fast memory (e.g.,
cache) as much as possible. Consequently, a highly localized and regular memory-access
pattern is ideal for many of today’s fastest machines.

It is well known that block factorization algorithms are the best means of achiev-
ing this goal. Perhaps the best-known example of a software package based on this
approach is LAPACK, a software package for performing dense linear algebra compu-
tations on advanced computer architectures including shared-memory multiprocessor
systems [2]. Each block algorithm in LAPACK is built around some computationally
intensive variant of a matrix-matrix (BLAS3) or matrix-vector (BLAS2) multiplication
kernel subroutine, which can be optimized for each computing platform on which the
package is run.

The sparse block Cholesky algorithms discussed in this paper take essentially the
same approach; we do not, however, include multiprocessors nor do we tune the kernels
for efficiency on specific machines. We investigate two algorithms:

1. The multifrontal method [15,24], which is based on the right-looking formulation
of the Cholesky factorization algorithm.

2. A left-looking block algorithm that has, until recently (this report and [29]),



-2

received little attention in the literature.

Both methods will use the same kernel subroutines to do all the numerical work required
during the factorization. The differences are limited to such issues as:

¢ indirect addressing and other integer operations related to the structural aspects
of sparse factorization,

¢ the ability to reuse data in cache,
e the amount of data movement,
e the memory-access pattern, and

e the work-storage requirement.

In general, variations in the efficiency of the block algorithms and their variants are not
very large. However, our tests indicate significant differences in the amount of work
storage and expensive data movement required.

This paper has two primary goals. First, we will lock at the two block Cholesky
factorization algorithms in a systematic and consistent fashion, both to illustrate the
strengths of the blocking techniques in sparse matrix computations in general and to
obtain a fair evaluation of the two basic approaches. Second, we will assess the value of
various implementation techniques on time and storage efficiency, paying particularly
close attention to the work-storage requirement of the two methods and their variants.

Rothberg and Supta [29] have studied these algorithms independently. They con-
sider the caching issue in more detail and implement a more complicated and effective
loop-unrolling scheme than we do. However, they do not compare the work-storage
requirements of the various algorithms as we do. We have introduced enhancements to
the multifrontal algorithm that greatly reduce the amount of stack storage and data
movement overhead required by that algorithm. Also, we consider the performance of
these algorithms on a vector supercomputer and a high-performance workstation with
vector hardware.

The paper is organized as follows. Section 2 contains notation and other back-
ground material needed to present the algorithms, including a discussion of previous
work on block sparse Cholesky algorithms. Section 3 describes the left-looking block
Cholesky algorithm and some of its key features. Presented in Section 4 are imple-
mertation details and enhancements for both the left-looking block algorithm and the
multifrontal algorithm. Section 5 contains the results of our performance tests on sev-
eral of the machines mentioned earlier in this section. Finally, concluding remarks and
speculations on future work appear in Section 6.

2. Background material

2.1. Column-based Cholesky factorization methods

Cholesky factorization of a symmetric positive definite matrix A can be described as
a triple nested loop around the single statement

a;; = a;; — (a;xak;)/akk.



bordering left-looking right-looking

used for modification

1 modified

Figure 1: Three forms of Cholesky factorization.

By varying the order in which the loop indices i, j, and k are nested, we obtain three
different formulations of Cholesky factorization, each with a different memory access
pattern.

1. Bordering Cholesky: Taking 7 in the outer loop, successive rows of L are computed
one by one, with the inner loops solving a triangular system for each new row in
terms of the previously computed rows (see Figure I).

2. Left-looking Cholesky: Taking j in the ouier loop, successive columns of L are
computed one by one, with the inner loops computing a matrix-vector product
that gives the effect of previously computed columns on the column currently
being computed.

3. Right-looking Cholesky: Taking k in the outer loop, successive columns of L are
computed one by one, with the inner loops applying the current column as a
rank-1 update to the remaining partially-reduced submatrix.

The various versions of Cholesky factorization can be used to take better advantage
of particular architectural features of a given machine (cache, virtual memory, vec-
torization, etc.) [11]. For more details concerning these three versions of Cholesky
factorization, consult George and Liu [19, pp. 18-21].

The bordering method requires a row-oriented data structure for storing the nonze-
ros of L. Liu [25] has devised a compact row-oriented data structure for this purpose,
but currently the technique has not been successfully adapted to run efficiently on
modern workstations and vector supercomputers. Consequently, our report will fo-
cus on block versions of the left-looking and right-looking algorithms (also known as
column-Cholesky and submatrix-Cholesky, respectively). Both the left-looking and
right-looking algorithms naturally require a column-oriented data structure, which is
easy to construct [31]. Thus, we restrict our attention to column-oriented implementa-
tions of the left-looking and right-looking algorithms.



-4 -

We need the following definitions to write down the algorithms. Let M be an n
by n matrix and denote the j-th column of M by M, ;. The sparsity structure of
column j in the lower triangular part of M (excluding the diagonal entry) is denoted
by Struct(M, ;). That is,

Struct(M, ;) :={s>j: M, ; # 0}.

Column-oriented Cholesky factorization algorithms can be expressed in terms of the
following two subtasks:

1. cmod(j,k) : modification of column j by a multiple of column k, k < j,
2. cdiv(j) : division of column j by a scalar.

Of course, sparsity in columns j and k is explvited when A and L are sparse. Using
these basic operations, Figures 2 and 3 give high-level descriptions of the basic left-
looking and right-looking sparse Cholesky algorithms, respectively. {We will refer to
these two algorithms as left-looking and right-looking col-col.)

for j =1tondo
for k such that L;; # 0 do
cmod(j, k)
cdiv(y)

Figure 2: Left-looking sparse Cholesky factorization algorithm (left-looking col-cel).

for k=1tondo
cdiv(k)
for j such that L # 0 do
cmod(j, k)

Figure 3: Right-looking sparse Cholesky factorization algorithm (right-looking
col-col).

Left-looking sparse Cholesky is the simpler of the two algorithms to implement, and
it appears in several well known commercially available sparse matrix packages [8,16].
For implementation details, the reader shouid consult George and Liu [19]. Straight-
forward implementations of the right-looking approach are generally quite inefficient
because matching the updating column k’s sparsity pattern with that of each col-
umn j in the updated submatrix requires expensive searching through the row indices
in Struct(L.x) and Struct(L.;), j € Struct(L. k). Consequently, we will not pursue



-5-

such an implementation in this paper. However, Rothberg and Gupta [29] have recently
reported that a block version of this approach is reasonably competitive, because for
practical problems the blocking greatly reduces the amount of index matching needed.
Note also that a straightforward implementation of the right-looking approach forms
the basis for a distributed-memory parallel factorization algorithm known as the fan-out
method [6,18,33]. In this paper, we will study a left-looking block algorithm and also
the multifrontal algorithm [15,24], which can be viewed as an efficient implementation
of right-looking sparse Cholesky factorization as we shall see in Section 2.3.

2.2. Supernodes and elimination trees

Efficient implementations of both the multifrontal algorithm and left-looking block
algorithms require that columns of the Cholesky factor L sharing the same sparsity
structure be grouped together into so-called supernodes. More formally, the set of
contiguous columns! j, 7 + 1, ..., j + t constitutes a supernode if Struct(L.x) =
Struct(L.x+1)U{k+ 1} for j < k < j+1t—1. A set of supernodes for an example
matrix is showr. in Figure 4. Note that the columns of a supernode {j,j+1,...,7 +t}
have a dense diagonal block and have identical column structure below row j+t. Note
also that columns in the same supernode can be treated as a unit for both compvtation
and storage. (See, for example, [26] for further details.)

The multifrontal method makes explicit use of the elimination tree associated with
L. For each column L. ; having off-diagonal nonzero elements, we define the parent of
j to be the row index of the first off-diagonal nonzero in that colurrn. For example,
the parent of node 9 is node 19 for the matrix in Figure 4. It is easy to see that the
parents of the columns define a tree structure, which is called the elimination tree of
L. Associated with any supernode partition is a supernodal elimination tree, which is
obtained fruom the elimination tree essentially by collapsing the nodes (columns) in each
supernode into a single node (block column). This can be done because the nodes in
each supernode form a chain in the elimination tree. Figure 5 displays the elimination
tree for the matrix in Figure 4. The supernodal elimination tree for the partition in
Figure 4 is also shown in Figure 5, superimposed on the underlying elimination tree.

2.3. Supernode-based Cholesky algorithms: previous work

Figures 2 and 3 contain high-level descriptions of sparse Cholesky algorithms whose
innermost loop updates a single column j with a multiple of a single column k. The
next two subsections briefly describe two well known sparse-Cholesky algorithms that
exploit the shared sparsitv structure within supernodes to improve performance. The
first it the left-looking sup-col algorithm, whose atomic operation is updating the
target column j with every column in a supernode (a BLAS2 operation). The other is
the more widely known multifrontal method.

It is convenient to denote a column L., belonging to a supernode by its column ~dex j. It should
be clear by context when j is being used in this manner.



woOXX XX XX
X XXX
« X XXX (X0
N XX XX XX

I-X x XX

OO 0NO N TN O 0N O~ IO~ N Q =N
Pt et 7t et pd ot et et 1t OO OO O N N N VD OO0

Roheaam e P

N TUNOE~ 00
Trewwwee

4

1234567890123456789012345678901234567890123456789

Figure 4: Supernodes for 7 X 7 nine-point grid problem ordered by nested dissection.
(x and e refer to nonzeros in A and fill in L, respectively. Numbers over diagonal

entries label supernodes.)




-1

24 26

Figure 5: Elimination tree (and supernode elimination tree) for the matrix shown in
Figure 4. Ovals enclose supernodes that contain more than one node. Nodes not
enclosed by an oval are singleton supernodes. Italicized numbers label supernodes.




- 8-

2.3.1. Left-looking sup-col Cholesky factorization

The basic idea behind the left-looking sup-col Cholesky algorithm is very simple. Let
K = {p,p+1,...,p+q} be a supernode? in L and consider the computation of L, ; for
some j > p+ g. It follows from the definition of supernodes that column A. ; will be
modified by no columns of K or every column of K. Previous studies [7,26,27,28] have
demonstrated that this observation has important ramifications for the performance
of left-looking sparse Cholesky factorization. Loosely speaking, when used to update
the target column L. ;, the columns in a supernode K can now be treated as a single
unit (or block column) in the computation. Since the columns in a supernode share the
same sparsity structure below the dense diagonal block, modification of a particular
column 7 > p + q by these columns can be accumulated in a work vector using dense
vector operatioas, and then applied to the target column using a single sparse vector
operation that employs indirect addressing. Moreover, the use of loop unrolling in the
accumulation, as described in [10], reduces memory traffic.

In Figure 6, we present the ,eft-looking sup-col Cholesky factorization algorithm.

t—0
for / =1 to N do
Scatter J’s relative indices into indmap.
for j € J (in order) do
for K such that L; x # 0 do
t — cmod(j, )
Assemble t into L. ; using indmap
while simultaneously setting ¢ to zero.
cmod(j,J)
cdiv(j)

Figure 6: Left-looking sup-col Cholesky factorization algorithm .

The reader will find a more detailed implementation of the algorithm presented in [26].
In order to keep the notation simple, A is to be interpreted in one of two different senses,
depending on the context in which it appears. In one context (e.g., line 4 of Figure 6),
K is interpreted as the set of columns in the supernode, i.e., K = {p,p+1,...,p+¢}.
In the second line of the algorithm. the supernodes are treated as an ordered set of loop
indices 1, 2,..., K, ..., N, where k' < J if and only if p < p’, where p and p’ are the
first columns of K and J, respectively. This dual-purpose notation is also illustrated
in Figure 4, where the supernode labels are written over the diagonal entries, yet we
can still write 30 = {40,41, 42}, for example. We denote both the last snpernode and
the number of supernodes by N.

?Throughout the remainder of the report the numbers designating a supernode will be italicized
and the letters denoting a superrode will be capitalized.



-9.-

Suppose K = {p,p+1,...,p+ q}. Whenever j > p + q and [j 4+, # 0, the task
cmod(j, K') consists of the operations cmod(j, k), where k = p,p+1,...,p+ q. When
i € K, cmod(j, K') consists of the operations cmod(j, k), for k = p,p+1,...,7—1. We
let L; x denote the 1 by |E’| submatrix in L induced by row j and the columns in K.

The indirect addressing scheme used by the algorithm is as follows. The indices
in each list Struct(L. ;) are sorted in ascending order during the preprocessing stage
(i.e., symbolic factorization). For each row index i € Struct(L. ;), the corresponding
relative indez is the position ¢ of i relative to the bottom of the list. For example, { =0
for the last index in the list, £ = 1 for the next-to-the-last one, and so forth. For each
supernode J = {p,p+1,...,p + q}, define

Struct(L. j) = {p} U Struct(L.p).

The relative position £ of each row index i € Struct(L. ) is stored in an n-vector
indmap as follows: indmap[i] — €. First the update cmod(j, K) is accumulated in a
work vector ¢t whose length is the number of nonzero entries in the update. That is,
the update is computed and stored as a dense vector t. Then the algorithm assembles
(scatter-adds) t into facior storage, using indmap[i] to map each active row index i €
Struct(L. k) to the appropriate location in L, ; to which the corresponding component
of t is added. The notion of relative indices apparently was first proposed by Schreiber
(30].

2.3.2. Multifrontal Cholesky factorization

The multifrontal method, introduced by Duff and Reid in [15], is well documented in the
literature. With much of its work performed within dense frontal matrices, this method
has proven to be extremely effective on vector supercomputers [1,3,7,9]. Moreover,
the multifrontal method is naturally expressed and implemented as a block method,
and several of the advantages it derives from block matrix operations have already
been explored in the literature: e.g., its ability to reuse data in fast memory [1,27]
and its ability to perform well on machines with virtual memory and paging [22].
Implementation of the multifrontal method is more complicated and involves more
subtleties than does any of the left-looking Cholesky variants. For the purposes of this
report, it is adequate to restrict our presentation to an informal outline of the method.
For a detailed survey of the multifrontal method and the techniques required for an
efficient implementation, the reader should consult Liu [24]. The following paragraphs
discuss the informal statement of the algorithm, found in Figure 7.

The outer loop of the supernodal multifrontal algorithm processes the supernodes
1, 2, ..., N, where the supernodes have been renumbered by a postorder traversal of
the supernodal eliminaticn tree. After moving the required columns of A, ; into the
leading columns of J’s dense frontal matriz Fj, the algorithm pops from the update
matriz stack an update matrix U g for each child A of J in the supernodal elimination
tree, and assembles these accumulated update columns into F'j. (The postordering
enables the use of a simple and efficient stack for the update matrices.) The update
matrix Uy is a dense matrix containing all updates destined for ancestors of A" from
columns in the subtree of the supernodal elimination tree rooted at A". The assembly



- 10 -

Zero out the update matrix stack.
for J = 1 to N (in postorder) do
Move A, ; into F;.
for K € children(J) on top of the stack do
Pop Uk from stack.
While zeroing out U g, assemble U into F';.
Within F,,
compute the columns of L. j (ediv(J)),
and compute all update columns from L. ;
(i.e., cmod(k, J), where k € Struct(L. j) — J).
While zeroing out the vacated locations occupied by F;,
move the new factor columns from F; to L. j.
While zeroing out any vacated locations occupied by Fj,
move U to the top of the stack.

Figure 7: Supernodal multifrontal Cholesky factorization algorithm.

operation adds each entry of U to the corresponding entry of F';. These are sparse
operations requiring indirect indexing because an update matrix generally modifies a
proper subset of the entries in the target frontal matrix. These are the only sparse
operations required by the multifrontal method.

Now with all the necessary data accumulated in F'j, the next step in the main
loop applies dense left-looking Cholesky factcrization to the first |J| columns in F;
(which we will call a cdiv(J) operation) to compute the block column L. j, and then
accumulates in the trailing columns of F; all column updates cmod(k, j), where 7 € J
and & € Struct(L.j) — J. At this point, the leading |J| columns of Fj contain the
columns of L, j, and the other columns have accumulated every update column for
ancestors of J contributed by J and its descendants in the supernodal elimination tree.
The algorithm then moves the newly-computed columns to the appropriate location in
the data structure for L, moves the update matrix U; down onto the top of the stack,
and proceeds with the next step of the major loop.

Three issues will occupy our attention when we take up the multifrontal algorithm
again in Section 4. First, since all updates from the columns in L. ; are computed
immediately after the new factor columns are computed, the multifrontal method pro-
vides the opportunity for optimal reuse of columns loaded in cache. Second, the costs
of data movement overhead are potentially significant. We are referring here to the
movement of matrix columns between each frontal matrix and L’s data structure, and
the movement of each update matrix from the location in work storage where it was
computed to its storage-saving location at the top of the stack. This issue is of par-
ticular concern on machines with cache, where moving large amounts of data in this
manner will cause expensive cache misses not incurred by the left-looking algorithms.
Third, we will be concerned with the amount of storage required for the stack of update



211 -

matrices, an issue that has received considerable attention in past studies [3,21,24].

3. Left-looking sup-sup Cholesky factorization

The idea behind the left-looking sup-sup Cholesky factorization algorithm is sim-
ple: The emod(j, K') operation is blocked one level higher, creating a supernode-to-
supernode block-column updating operation cmod(J, K') around which the new a'go-
rithm is constructed. The cmod(J, K) operation performs cmod(j, K') for every column
j € J updated by the columns of K (a BLAS3 operation). The idea of constructing
a sparse-Cholesky algorithm around this operation is not new. Ashcraft and the sec-
ond author wrote a left-looking sup-sup sparse Cholesky factorization code, which was
mentioned in [7], but was not presented there. The indexing scheme they used, how-
ever, was unnecessarily complex. Though efficient, it had the side-effect of destroying
the row indices of the nonzeros in L so that they had to be recomputed later for use
during the triangular solution phase or any future factorizations of matrices with the
same structure. For these reasons, Ashcraft and the second author ultimately con-
cluded that their implementation was unacceptable. Ashcraft recently sketched out a
high-level version of the algorithm in a report on a different topic [4]. He has also cre-
ated a single-parameter hybrid sparse Cholesky algorithm that performs a left-looking
sup-sup factorization when the parameter takes on one extreme value, and performs
a supernodal multifrontal factorization when it takes on the opposite extreme value
[5]. The left-looking sup-sup approach was proposed again by the authors [26] as a
promising candidate for parallelization on shared-memory multiprocessors. Parts of
this work are steps toward completing the goals stated in the conclusion of that re-
port. Recently and independently, Rothberg and Gupta have examined the caching
behavior of three block Cholesky factorization algorithms, including the multifrontal
and left-looking sup-sup methods [29].

The following paragraphs discuss the left-looking sup-sup Cholesky factorization
algorithm in Figure 8 and its more basic implementation issues. One ne.s item of
notation is introduced; we let L;x denote the |J| by || submatrix in L induced by
the members of J and the members of A'.

The bulk of the work is performed within the ¢cmod(J, K') and cdiv(J) operations.
The underlying matrix-matrix multiplication subroutine that performs most of the
work in the implementation is used by the block multifrontal code as well, enabling a
fair comparison of the two approaches. As in the left-looking sup-col approach, the
update columns are accumulated in work storage. Naturally, far more work storage
is required to accumulate the cmod(J, K') updates than is required to accumulate the
cmod(j, K') updates, which consists of a single dense column no larger than the column
of L with the most nonzero entries. This storage overhead will receive further attention
in Sections 4 and 5.

Another distinction between the lefi-looking sup-col and sup-sup algorithms is
that the sup-sup algorithm must compute the number of columns of J to be updated
by the columns of A", which it does by searching for all row indices i € JNStruct(L. r)
in A”’s sorted index list.

The algorithm handles indirect addressing in much the same way that the sup-col



.12 -

T~0
for J = 1to N do
Scatter J's relative indices into indmap.
for K such that L;x # 0 do
Compute the number of columns of J to be updated by the columns of KA.
T < cmod(J, K)
Gather KR’’s indices relative to J’s structure from indmap into relind.
Using relind, assemble T into L, j,
while simultaneously restoring T to zero.

cdiv(J)

Figure 8: Left-looking sup-sup Cholesky factorization algorithm.

algorithm in Figure 6 does, with one key difference which generally improves its effi-
ciency. {See Section 2.3.1 for other details about the indexing scheme.) The sup-sup
algorithm gathers the indices of A relative to J from indmap into a temporary vector
relind: each active row index ¢ € Struct(L, x), is replaced by indmap[i] in the integer
vector relind. This single gather operation provides the indexing information for as-
sembling the entire block update into factor storage (i.e., the storage that will contain
L. ;). The sup-col algorithm essentially has to repeat this gather operation each time
it assembles a ¢mod(7, K') update (7 € J) into factor storage.

4. Implementation details and options

Section 5 reports performance statistics for implementations of the muitifrontal and the
left-looking sup-sup Cholesky factori. :tion algorithms on several powerful uniproces-
sor computing systems. Our Fortran codes have not been tuned for performance on any
specific machine except for our choice of the level of loop-unrolling. To run efficiently
on some of these machines, however, our implementations cannot afford to ignore other
architectural considerations altogether. Unless they make effective use of data (i.e.,
columns of the matrix) once they have been loaded into cache, their performance will
be severely penalized by an excessive number of cache misses. Thus our implementa-
tions must be designed with this goal in mind. Our codes require the cache size on
each machine to reuse cached data effectively (see Section 4.1). The cache size and
the level of loop-unrolling are the only machine-dependent parameters in our codes.
Other implementation options and enhancements. which are entirely independent of
the computer architecture, are also discussed in this section.

4.1. Reuse of data in cache

Consider the computation of a e¢mod(J, Ii') update during the left-looking sup-sup
Cholesky factorization. Suppose the operation updates ¢ columns of J with the columns



- 13 -

of K. The number of columns updated may be as few as 1 or as many as |J|. We can
compute cmod(J, k') as a sequence of sup-col updates cmod(j, ") for the ¢ columns
j € J. If the columns of K, which happen to be stored contiguously in main memory,
fit into cache memory, then the first emod(j, K') loads the columns of A into cache,
while the following ¢ — 1 cmod’s will have extremely fast access to this data because it
is already in cache.

Quite often, however, the columns of a supernode do not fit into the 32K or 64K
caches used on current workstations. This can dramatically increase the number of
cache misses associated with the final ¢ — 1 ¢mod’s, as the columns of A" overwrite one
another as they are repeatedly read inte cache. To avoid this problem, the algorithm
partitions large supernodes into “panels” of contiguous columns that fit into the cache,
as Rothberg and Gupta have done in their studies [27,28,29]. If k" has been partitioned
into two panels, then the cmod(J, K) update is performed by applying the cmod’s
from the first panel to the g target columns of J, then applying the cmod’s from the
second panel to the ¢ target columns of J. We use essentially the same strategy to
increase the reuse of data in cache by our multifrontal codes. This simple strategy has
proven effective for the problems, machines, and factorization methods used in our tests.
Extremely large problems, however, may require more complicated techniques that
involve both horizontal and vertical partitioning, and perhaps even sweeping changes in
the data structure used to store L. The reader should consult Rothberg and Gupta [29]
for a thorough discussion of these and many other issues associated with improving
reuse of data in cache by both the multifrontal and the left-looking sup-sup sparse
Cholesky algorithms.

4.2. Traversing row-structure sets

The left-looking col-col algorithm needs access to the row-structure sets R; = {k :
L;; # 0} (see Figure 2). These row-structure sets must be computed from or traversed
within the strictly column-oriented data structure used by the algorithm. By far the
most commonly used method is to maintain the row-structure sets as linked lists within
a single integer n-vector. Every column belongs to one and only one row-structure list
at any given time during the course of the factorization. After a column update is
completed, the column is placed in the list belonging to the next column it will modify.
Details of this approach can be found in George and Liu [19, pp. 152-155] and in Ng and
Peyton [26]. The same technique applies to the row-structure sets for the left-looking
sup-col and sup-~sup algorithms.

There is another way to determine the row-structure sets in the left-looking col-col
algorithm, which relies on the fact that each row-structure set R; is a pruned subtree
of the elimination tree [20,30]. Consequently, if the elimination tree is made available
to the factorization algorithm, each imember of R; can be visited by performing a
depth-first traversal of the appropriate pruned subtree. Implementation details can be
found in Schreiber [30]. Again, the same technique applies to the row-structure sets
for the left-looking sup-col and sup-sup algorithms. This approach is particularly
attractive in a parallel implementation of the left-looking factorization algorithms for
shared-memory multiprocessor systems since it eliminates the need for critical sections



- 14 -

when manipulating the row-structure sets. We are currently pursuing this idea.

For the sup-col algorithm, our tests indicate that the total factorization time using
the tree-traversal technique is slightly larger than that using the linked-list approach.
However, for the sup-sup algorithm, the difference in total factorization time using
the two approaches is negligible because the total time required to traverse the row-
structure sets is extremely small in this algorithm for both techniques. Because overall
factorization times differ by so little when the two approaches are compared, we have
not included timing results for the more complicated of the two (the tree-traversal
method) in Section 5. The important point to note is that either approach can be
used in the sup-sup algorithm, and moreover, we believe that the tree-walking tech-
nique may ultimately be preferable in a parallel implementation for shared-memory
multinrocessors [26].

4.3. Enhancements to the multifrontal method

The size of the stack of update matrices in the multifrontal method is a major issue
associated with this method. A large stack obviously requires greater storage; perhaps
not so obvious is that a large stack usually creates a great deal of overhead data move-
ment that can erode efficiency. We have implemented two variants of the multifrontal
algorithm. The first is a straightforward implementation of the algorithm in Figure 7.
One standard enhancement has been incorporated into our basic multifrontal code. Us-
ing a technique introduced by Liu [21], we have reordered the children of each parent
in the supernodal elimination tree to minimize the storage requirement for the stack.
This section describes the techniques incorporated into our enhanced version of the
multifrontal method.

We are aware of multifrontal implementations {32] that compute the new factor
columns L. ; in factor storage rather than in F;, and then compute only the update
matrix U within the frontal matrix F;. This simple change reduces the size of the
frontal matrix and eliminates the need to move matrix columns back and forth between
factor storage and the frontal matrix. We have implemented this technique, and also
further pursued the idea of reducing stack storage and limiting data movement by
incorporating updates into factor storage as early as possible. More specifically, we
have incorporated the foliowing two techniques into our enhanced code.

First, let P be the parent of J in the supernodal elimination tree. We say that J
is dense relative to P if

Struct(L. p) C Struct(L. ).

If J is dense relative to P, then the update cmod(P,J), which would normally fill
the leading columns of U, can be applied directly to L. p, the columns of P in
factor storage. This shrinks the size of the update matrix U, and thus reduces data
movement when U is ultimately moved to its final position at the top of the stack.
Since this condition usually holds for the root supernode and one or more of its children,
both of which usually have very large frontal matrices, this simple enhancement can
save a lot of storage.

" e second technique pushes this idea a bit further. Consider the update matrix
U, and again consider J's parent P. For the multifrontal method, the relative indices



-15-

of each child with respect to its parent have been computed in advance. The relative
indices used to assemble U into Fp can also be used to assemble the columns of
U ; destined for L. p directly into factor storage. But there is no reason to limit this
technique to the parent just because only the indices relative to P are available. If J
happens to update its grandparent supernode P’, then J’s indices relative to P’ can be
obtained by gathering the appropriate indices of P (relative to P’) into an integer work
vector relind, and then using them to assemb’= the appropriate columns of U into
factor storage (i.e., L. pr). If J happens to update its great-grandparent P”, then the
process can be repeated with the old indices in relind (relative to P') used to gather
some of the indices of P’ (relative to P") into relind, giving us the indices of J relative
to P”. The enhanced algorithm continues this process until it encounters the root of
the supernodal elimination tree or an ancestor of J that is not updated by the columns
of J. Each assembly into factor storage reduces the amount of storage required for
the reduced version of U ; and the amount of time required to move it to the top of
the stack. The only overhead computation required, the sequence of integer gather
operations, is negligible compared to the savings in data movement, and this technique
is surprisingly effective at reducing the stack storage requirement, as we shall see in
Section 5.

Lastly, one commonly used stack-reduction technique is the eztension in place of the
update matrix for the child on top of the stack into the parent’s new frontal matrix,
which is initially set to zero. Liu [21] points out that this technique is used in the
Harwell MA27 code, and Ashcraft [3] reports that overlapping the new frontal matrix
with the topmost update matrix in this fashion saves a surprising 15-27% in stack
storage for his test problems. We have incorporated it into our enhanced multifrontal
code.

4.4. Refinements for left-looking sup-col and sup-sup Cholesky

Three refinements have been incorporated into our implementations of the left-locking
sup-col and sup-sup Cholesky factorization algorithms, several of which concern the
incorporation of update columns that are dense relative to the target column directly
into factor storage. First, whenever K has only one column, the sup-col (sup-sup)
code accumulates the column modification cmod(j, i) (¢cmod(J, K')) directly into fac-
tor storage, avoiding use of the real work vector t (T') altogether. This is extremely
simple to implement, avoids some useless data movement, and is valuable for problems
with many singleton supernodes. Second, all column modifications where the source
and target columns come from the same supernode are performed as dense updates
incorporated directly into factor storage using no indirect indexing. That is, they are
performed as a dense update would be performed. Third, whenever the length of update
columns from A" matches the length of a target column(s) from J, it is also handled as
a dense update. No indirect indexing is used, and the update is accumulated directly
into factor storage.

Two minor refinements are incorporated into the left-looking sup-sup Cholesky
algorithm only. Unlike the sup-col algorithm, the block algorithm explicitly computes
and records relative indices as they are needed. By taking the difference between the



- 16 -

first and the last of these indices and checking the difference against the length of
the target, the algorithm is now capable of checking for all remaining dense updates,
thereby avoiding some data movement and indirect addressing normally associated
with these operations. Finaily, note that the size of the block of work storage T
needed by the algorithm is the size of the largest block update cmod(J, ') generated
by the algorithm that is not dense relative to its target factor columns. In practice the
children of the root supernode are usually dense relative to their parent, and moreover
the largest block update is often found among the block updates they generate for the
root. Consequently, the practice of accumulating dense block updates directly into
factor storage often reduces the amount of work storage needed for the algorithm.

5. Performance results

In this section we compare the performance of various sparse Cholesky factorization
algorithms discussed in this paper, which include

e left-looking col-col Cholesky,

o left-looking sup-col Cholesky,

o left-looking sup-sup Cholesky,

e a basic multifrontal method, and
e an enhanced multifrontal method.

All algorithms were coded in Fortran and all floating-point operations were performed in
double precision, except on the Cray Y-MP. The code for left-looking col-col Cholesky
was taken from SPARSPAK [8]. All codes were compiled with optimization turned on
and were run on a vector supercomputer and a number of high-performance scientific
workstations. It should be noted that identical code was run on each machine, except
for the level of loop-unrolling used in the block update routines.

The machines used in the experiments include

e an IBM RS/6000 model 530,

e a DEC 5000,

e a Stardent P3000, and

e one processor of a Cray Y-MP.

Each of the workstations has 64 kilobytes of cache memory. The cache on the IBM
RS/6000 is 4-way set-associative, while those on the DEC 5000 and Stardent P3000
are direct-mapped. The cache line size on the IBM RS/6000 is 128 bytes, compared to
4 bytes on the DEC 5000 and Stardent P3000. The IBM RS/6000 and DEC 5000 have
16 megabytes of main memory, while the Stardent P3000 has 32 megabytes. Since we
restricted our tests to problems that fit into the main memory, there was no paging,
and hence differences in memory size had no effect on performance. Both the DEC 5000



S17 -

and Stardent P3000 use the same central processing unit (MIPS 3000), but they have
different floating-point coprocessors. The Stardent P3000 moreover has special vector
floating-point hardware that can be enabled or disabled during code compilation. The
DEC 5000 and Stardent P3000 (with vectorization disabled) are similar in so many
. respects that we expect similar performance on these machines.

The vector supercomputer we used, the Cray Y-MP, has no memory hierarchy and
has enough main memory for the largest of our test problems. It is also worth noting
that this machine, as a rule, performs floating-point arithmetic far more efficiently
than integer arithmetic, in contrast to the workstations where integer and floating-
point performance is better balanced.

As we pointed out in previous sections, loop unrolling was employed in our imple-
mentation of the cmod(j, K') and e¢mod(J, K) block update operations. The optimal
level of loop unrolling varies from machine to machine. In our experiments, we tried
level-p loop unroiling, for p = 1, 2, 4 and 8. To limit the amount of data presented in
our tables, we report data for only the level of loop unrolling that performed best on
the specific machine under consideration. The best level was p = 4 for the DEC 5000
and Cray Y-MP, and p = 8 for the IBM RS/6000 and Stardent P3000.

Almost all the test problems were taken from the Harwell-Boeing Test Collec-
tion [13], which is widely used in testing and evaluating sparse matrix algorithms.
The problems we selected and some of their characteristics are provided in Tables 1
and 2, respectively. To ensure that no paging occurred, only the small to medium size
problems were run on the workstations. All problems were run on the Cray Y-MP.

problem brief description

BCSSTK13 | Stiffness matrix — fluid flow generalized eigenvalues

BCSSTK14 | Stiffness matrix — roof of Omini Coliseum, Atlanta

BCSSTK15 | Stiffness matrix — module of an offshore platform

BCSSTK16 | Stiffness matrix — Corp. of Engineers dam

BCSSTK17 | Stiffness matrix — elevated pressure vessel

BCSSTKI18 | Stiffness matrix — R.E.Ginna nuclear power station

BCSSTK23 | Stiffness matrix — portion of a 3D globally triangular bldg
BCSSTK24 | Stiffness matrix — winter sporte arena

BCSSTK25 | Stiffness matrix — 76 story skyscraper

BCSSTK29 | Stiffness matrix — buckling model of the 767 rear bulkhead
BCSSTK30 | Stifiness matrix — off-shore generator platform (MSC NASTRAN)
BCSSTK31 | Stiffness matrix — automobile component (MSC NASTRAN)
BCSSTK32 | Stiffness matrix — automobile chassis (MSC NASTRAN)
BCSSTK33 | Stiffness matrix — pin boss (auto steering component), solid elements
NASA1824 | Structure from NASA Langley, 1824 degrees of freedom
NASA2910 | Structure from NASA Langley, 2910 degrees of freedom
NASA4704 | Structure from NASA Langley, 4704 degrees of freedom

Tabie 1: List of test problems.




Nl

- 18 -

problem n (Al |L| u(L) N flops
BCSSTK13 | 2,003 83,883 | 271,671 | 28,621 599 58,550,598
BCSSTK14 | 1,806 63,454 112,267 | 17,508 | 503 9,793,431

BCSSTK15 | 3,948 117,816 651,222 | 61,614 | 1,295 165,035,094
BCSSTK16 | 4,884 290,378 741,178 | 50,365 691 149,100,948
BCSSTK17 | 10,974 428,650 | 1,005,859 | 94,225 | 2,595 144,269,031
BCSSTK18 | 11,948 149,090 662,725 | 116,807 | 7,438 140,907,823
BCSSTK23 | 3,134 45,178 420,311 | 49,018 | 1,522 119,155,247
BCSSTK24 | 3,562 159,910 278,922 | 22,331 414 32,429,194
BCSSTK25 | 15,439 252,241 | 1,416,568 | 205,513 | 7,288 283,732,315
BCSSTK29 | 13,992 619,488 | 1,694,796 | 174,770 | 3,231 393,045,158
BCSSTK30 | 28,924 | 2,043,492 | 3,843,435 | 229,670 | 3,689 928,323,809
BCSSTK31 | 35,588 | 1,181,416 | 5,308,247 | 330,896 | 8,304 | 2,550,954,465
BCSSTK32 | 44,609 | 2,014,701 | 5,246,353 | 374,507 | 6,927 | 1,108,686,016
BCSSTK33 | 8,738 591,904 | 2,546,802 | 124,532 | 1,201 | 1,203,491,786
NASA1824 1,824 39,208 73,699 | 12,587 527 5,160,949
NASA2910 2,910 174,296 204,403 | 25,170 599 21,068,943
NASA4704 4,704 104,756 281,472 | 35,339 | 1,245 35,003,786

Table 2: Characteristics of test problems.
Legend:
n: number of equations,
|Al: number of nonzeros in A,
|L{: number of nonzeros in L, including the diagonal,
#(L): number of row subscripts required to represent the supernodal structure of L,

N: number of fundamental supernodes in L,

flops: number of floating-point operations required to compute L.




19 -

The tables presented in the following subsections contain the times required to
run the factorization algorithms on several different machines. All execution times are
in seconds. For machines that have cache memory, the notation method(s) is used,
where method is either sup-sup or mf (multifrontal). When s = 0, supernodes are
not rubdivided into panels; when s > 0, large supernodes are subdivided into panels
that fit into the s-kilobyte cache available on that machine. For example, on all the
workstations s = 64 when the supernodes are subdivided. It is worth noting that
all the test problems have many supernodes small enough to fit into cache, and both
the multifrontal and left-looking sup-sup algorithms fully “reuse” the columns of such
supernodes once they are loaded into cache, regardless of whether or not the larger
supernodes have been subdivided to fit into cache.

5.1. IBM RS/6000

col-col || sup-col sup-sup basic mf enhanced mf
problem (0) | (64) || (0) | (64) || (0) (64)
BCSSTKI13 7.33 3.59 || 3.22 | 3.04 || 3.58 | 3.39 { 3.32 3.10
BCSSTK14 1.32 .69 .61 .61 71 .69 .65 .65
BCSSTK15 20.40 9.68 || 8.77 | 8.08 || 9.49 | 8.78 || 8.98 8.32
BCSSTKI16 18.61 8.94 || 7.93 | 7.47 || 8.59 | 8.15 || 8.01 7.52
BCSSTK18 17.86 9.30 || 8.58 | 8.07 | 9.39 | 9.08 || 8.99 8.47
BCSSTK23 14.71 7.13 || 6.57§ 6.00( 7.21 | 6.67 || 6.78 6.26
BCSSTK24 4.28 203 ((1.76 1 1.72f 1.92| 1.88 || 1.78 1.74
NASA1824 .74 41 .36 .36 .40 .40 .36 .36
NASA2910 2.81 146 ) 1.24 | 1.23 | 1.36 | 1.36 || 1.26 1.25
NASA4704 4.56 22911 2.01 ] 194} 2.17| 2.10 || 2.03 1.98

Table 3: Factorization times in seconds on IBM RS/6000.

Table 3 contains the execution times (in seconds) required by the various factorization
methods on an IBM RS/6000 model 530. We make the following observations from
these results.

First, we see that sup-col consistently reduccs factorization times by roughly a fac-
tor of 2 over col-col. Part of this large improvement is due to reductions in memory
traffic and indirect addressing, which are in turn due respectively to the loop unrolling
and the dense matrix-vector multiplication used to irplement the cmod(j, K') opera-
tion. However, the improvement of sup-col over col-col observed on this machine
is considerably larger than that observed on the other workstations, which obtain the
same reductions in memory traffic and indirect indexing. We believe that the large
cache line size (128 bytes) on the IBM RS/6000 is largely responsible for this phe-
nomenon. The memory-access pattern of the col-col algorithm is far more disordered
and contains far fewer stride one vector reads and writes than that of the sup-col
algorithm. As a result, the sup-col algorithm is far more likely to use most or all of
the floating-point numbers in a line as it is loaded into cache. Consequently, it often
uses several (up to 16 = 128/8) double precision numbers at the cost of a single cache
miss.



- 920 -

We see that sup-sup(0) usually improves performance over sup-col by 10-15%.
This improvement is partly due to further reductions in the cost of indirect indexing
and the integer overhead associated with the row-structure lists. It is likely however
that most of the improvenient is due to reuse of data in the cache when the sipernodes
are small enough.

By partitioning supernodes whose columns overflow the cache into panels of con-
tiguous columns that fit into cache and moreover organizing the matrix-matrix multi-
plication operations to operate on these panels, data in cache is reused more effectively,
and thus the amount of data moved to and from main memory is reduced. This leads to
another 6-10% improvement in factorization times for sup-sup(64) when it is used on
the medium- and large-sized problems in the test set. Smaller increases are obtained for
the small problems because most or all of their supernodes already fit into cache. This
improvement is quite modesi compared to that observed on the other workstations.
We further explore this issue in the next subsection.

As expected, subdividing supernodes into panels that fit into cache improves the
performance of both the basic and enhanced multifrontal methods in much the same
manner that it improves the performance of the sup-sup algorithm. Enhanced mf per-
forms significantly better than basic mf, probably because the former method typically
required much less data movement. Our implementation of enhanced mf is slightly
less efficient than sup-sup because the former still requires more data movement than
the latter, despite our efforts to minimize such movement. Where applicable, these
observations hold true on the other machines as well.

One of the most widely used implementations of the multifrontal method is the
MAZ27 routine in the Harwell library [14]. To verify that our implementations of this
method are adequate for fair comparisons, we have compared their performance with
that of the MA27 routine in Table 4. Since loop-unrolling and techniques for exploit-

problem MA27 || basic m£(0) || enhanced mf(64)

level=1 level=8
BCSSTK13 5.88 4.98 3.10
BCSSTK4 1.31 .90 .65
BCSSTK15 || 15.38 13.44 8.32
BCSSTK16 || 15.02 12.22 7.52
BCSSTKI18 || 14.95 12.76 8.47
BCSSTK23 || 11.17 10.15 6.26
BCSSTK24 3.74 2.65 1.74
NASA1824 0.74 .50 .36
NASA2910 2.88 1.81 1.25
NASA4704 3.83 2.96 1.96

Table 4: Comparing 3 multifrontal methods: factorization times in seconds on IBM
RS/6000 (basic mf does not use loop unrolling and enhanced mf uses level-8 loop un-
rolling).

ing cache memory have not been incorporated into MA27, the fairest comparison is
between the first two columns of the table. The second column contains the times re-



.21 -

quired by basic mf with no loop-unrolling and with no subdivision of the supernodes to
improve cache usage. While this code outperforms MA27, the comparison is not really
fair because of the additional cost of MA27's extremely flexible method for inputting
the matrix entries. In any case, it is clear that our code is quite competitive. The
last column demonstrates the value of the enhancements incorporated into our best
implementation of the multifrontal method.

5.2. DEC 5000

col-col || sup-col sup-sup basic mf ~nhanced mf
problem (0) | (64) (0) | (64) (0) | (84)
BCSSTK13 24.33 18.77 || 15.02 | 10.51 [} 17.45 | 12.92 || 15.45 | 10.90
BCSSTK14 3.50 ||. 2.53 1.84 1.84 2.40 2.40 1.96 1.97

BCSSTK15 70.84 52.60 || 44.36 | 28.49 || 48.86 | 33.06 || 45.29 | 29.31
BCSSTK16 61.10 47.13 || 36.29 | 25.90 || 40.85 | 30.41 || 36.70 | 26.27

BCSSTK18 60.38 46.47 || 39.44 | 27.30 || 46.75 | 34.38 || 41.65 | 29.29
BCSSTK23 50.86 38.80 || 34.30 | 21.53 || 38.75 | 25.86 || 35.36 | 22.49
BCSSTK24 12.41 9.18 6.39 | 5.67 745 | 6.73 6.47 | 5.75
NASA1824 1.87 1.36 1.04 | 1.04 132 1.32 1.07{ 1.07
NASA2910 7.96 6.01 4.05 | 3.89 499 | 4.84 4.16 | 3.99
NASA4704 14.01 10.60 7.69 | 6.28 8.89 | 7.47 7.82 | 6.41

Table 5: Factorization times in seconds on DEC 5000.

Table 5 contains factorization times for the various factorization methods on a DEC
5000. In contrast to the IBM RS/6000, the reduction in factorization time of sup-col
over col-col is only 30-38%. (All percentages used in comparisons are relative to the
smaller of the two times.) Due to the 4-byte cache line size on the DEC 5000, the
contrasting memory access patterns of the col-col and sup-col algorithms do not
incur, respectively, nearly as severe a penalty or nearly as great a performance boost
as those noted earlier on the IBM workstation.

However, the improvement of the sup-sup algorithm over the sup-col algorithm
is much larger on this machine. Largely due to the 4-byte cache line and the larger
penalty associated with each cache miss (2 misses per floating-point number), the
sup-sup algorithm generally obtains very large performance improvements over the
sup-col algorithm, whose capacity to reuse data in cache is quite limited for the larger
test problems. The sup-sup(0) algorithm improves performance over the sup-col
algorithm by 13-30% for the larger problems and 31-48% for the smaller problems.
The sup-sup(64) algorithm improves performance over the sup-sup(0) algorithm by
40-59% for the larger problems and 0-22% for the smaller problems. The cumulative
improvement is 70-85% for the larger probleras and 4-48% for the smaller problems. A
more detailed look at the the effect of cache size and organization on the performance of
both the sup-sup and multifrontal algorithms can be found in Rothberg and Gupta [29).




-99.

5.3. Stardent P3000 (without vectorization)

As mentioned earlier in this section, the Stardent P3000 and DEC 5000 have identical
central processing units but different floating-point coprocessors. Thus, when vector-
ization is not used on the Stardent P3000, we expect performance to be quite similar on
these two machines. The results in Tables 5 and 6 indicate that that is indeed the case,

col-col || sup-col sup-sup basic mf enhanced mf
problem (0) | (84) (0) | (64) (0) | (84)
BCSSTK13 28.75 24.80 || 19.09 | 12.62 || 20.97 | 14.43 || 19.49 | 12.96
BCSSTK14 3.82 3.17 2.15 2.15 253 | 2.54 2.28 2.29

BCSSTK15 84.70 69.33 || 56.50 | 34.20 || 60.08 | 37.64 || 57.42 | 35.00
BCSSTK16 72.25 62.84 || 45.67 | 31.09 || 49.11 | 34.45 || 46.26 | 31.33
BCSSTK18 72.00 61.75 || 50.09 | 32.83 || 55.50 | 37.96 || 52.18 | 34.58

BCSSTK23 60.66 51.08 || 44.01 | 25.85 || 47.65 | 29.34 || 45.12 | 26.81
BCSSTK24 14.11 11.84 7.71 | 6.70 8.40 | 7.39 7.74 | 6.73
NASA1824 2.03 1.69 1.21 1.21 139 | 1.39 1.23 | 1.24
NASA2910 8.94 7.64 4.82 | 4.58 544 | 5.21 4.86 | 4.64
NASA4704 16.34 13.87 545 | 7.46 || 10.25 | 8.26 9.54 | 7.55

Table 6: Factorization times in seconds on Stardent P3000 (without vectorization).

with one exception. For reasons we don’t understand, loop-unrolling is considerably
less effective on this machine than it is on the DEC 5000. With the exception of the

col-col to sup-col comparison, the various methods compare with each other very
much as they did on the DEC 5000.

5.4. Stardent P3000 (with vectorization)

col-col || sup~col sup-sup basic mf enhanced mf

problemn (0) | (64) (0) | (64) (0) | (64)
"BCSSTKI13 20.04 4.98 465 | 4.68 5.01 5.01 4.73 | 4.76
BCSSTK14 3.78 1.18 1.13 i.13 1.26 1.26 1.20 1.21
BCSSTK15 55.37 13.07 || 12.18 | 12.13 || 13.01 | 12.93 || 12.49 | 12.45

BCSSTK16 51.09 12.68 || 11.48 | 11.51 || 11.98 | 12.05 || 11.42 | 11.49
BCSSTK18 48.4€ 13.59 || 12.80 | 12.81 || 13.31 | 13.33 || 13.23 | 13.22

BCSSTK23 39.75 9.62 9.03 | 9.01 9.74 | 9.65 9.29 | 9.26
BCSSTK24 11.52 3.11 2931 2.92 3.06 | 3.07 292 293
NASA1824 2.10 74 73 73 75 75 12 71
NASA2910 7.90 2.33 220 2.21 231 | 232 220 221
NASA4704 12.76 3.58 3.36 | 3.37 349 | 3.49 3.36 | 3.37

Table 7: Factorization times in seconds on Stardent P3000 (with vectorization).

The Stardent P3000 has floating-point vector hardware, which can be enabled or dis-
abled when the code is compiled. Table 7 contains factorization times for the various
factorization methods with vectorization turned on. An important observation is that



- 93 -

subdividing the supernodes into panels that fit into the 64K cache has virtually no
effect on performance. To avoid the complication of resolving cache misses during a
vector operation, the vector hardware bypasses the cache altogether, and instead reads
data directly from main memory in a pipelined fashion. This explains why ~aneling the
supernodes is entirely ineffective in the sup-sup and the two multifron:ial algorithms.
It is worth noting, however, that reduced integer overhead and reduced indirect in-
dexing in the sup-sup and multifrontal algorithms enable them to run faster than the
sup-col algorithm. For instance, the sup-sup algorithm runs 5-10% faster than the
sup-col algorithm (excluding the two smallest problems from consideration). Evi-
dently, our implementation of the dense matrix update kernels performs well on the
Stardent P3000’s vector hardware. For example, sup-sup is about 3.8-4.5 times faster
than col-col (again, excluding the two smallest problems from consideration).

5.5. Cray Y-MP

Unlike the workstations considered in previous subsections, the Cray Y-MP has no
cache memory. Its floating-point hardware is extremely fast due to vector pipelining.
We have run the codes on a Cray Y-MP, and the results are provided in Table 8. As

problem col-col || sup-col || sup-sup || basic mf || enhanced mf
BCSSTK13 0.84 0.42 0.36 0.38 0.38
BCSSTK 14 0.22 0.15 0.11 0.12 0.12
BCSSTK15 2.22 1.02 0.90 0.96 0.95
BCSSTK16 2.18 1.02 0.89 0.92 0.89
BCSSTK17 2.46 1.29 1.07 1.11 1.09
BCSSTK18 2.05 1.23 1.14 1.15 1.22
BCSSTK23 1.56 0.75 0.67 0.72 0.72
BCSSTK24 0.62 0.32 0.26 0.27 0.26
BCSSTK25 4.20 2.42 2.13 2.13 2.20
BCSSTK29 5.45 2.79 2.38 2.47 2.48
BCSSTK30 12.73 5.52 4.96 5.12 4.99
BCSSTK31 28.96 12.16 11.48 11.58 11.43
BCSSTK32 15.98 7.38 6.47 6.63 6.49
BCSSTK33 13.68 5.61 5.29 5.47 5.30
NASA1824 0.14 0.11 0.09 0.08 0.09
NASA2910 0.43 0.27 0.21 0.21 0.21
NASA4704 0.65 0.40 0.33 0.32 0.33

Table 8: Factorization times in seconds on CRAY Y-MP.

observed in [7] and [26], sup-col generally outperforms col-col by roughly a factor
of 2. The use of loop-unrolling, dense matrix-vector multiplication kernels, and the
consequent large reductions in indirect addressing are responsible for these gains in
performance. For medium to large problems, sup-sup outperforms sup-col by 6-21%.
(The performance gains are larger for the smaller problems.) The improvement is due
to reductions in the cost of the indirect indexing and other integer processing overhead.
The differences in performance among sup-sup, basic mf, and enhanced mf are very



- 24 -

small.

5.6. Work storage requirements

The preceding subsections compare the time efficiency of the sparse Cholesky factor-
ization algorithms under study on various high-performance uniprocessor computers.
This subsection compares the storage efficiency of the various Cholesky factorization
algorithms. More specifically, we computed the amount of auxiliary floating-point stor-
age locations required by each method fo: accumulating column updates. Note that
this ignores the floating-point storage required for the nonzero entries of L, which is
the same for each method. It also ignores the amount of integer work storage required,
since it is the sum of a small number of quantities < n, where n is the order of A, and
hence does not vary much from one method to the next.

The col-col and sup-col algorithms have the lowest auxiliary work storage re-
quirement because the columns are computed one at a time. For col-col, a floating-
point work array of length n is needed to accumulate the updates. For the sup-col
algorithm. the size of the floating-point work array is the maximum, over all columns
L. ;, of the number of nonzero entries in L. ;. (Recall that an extra integer n-vector
indmap is required to implement the indirect indexing scheme.)

The sup-sup and mf algorithms require more floating-point work storage. The two
versions of the multifrontal method need auxiliary floating-point storage for stacking
the update matrices. The sup-snup algorithm needs auxiliary floating-point storage to
accumulate individual block updates cmod(J, K'). Thus, we are particularly interested
in the storage requirements for sup-sup and mf.

Table 9 repo:ts the floating-point work-storage requirements for each method, nor-
malized as a percentage of the number of nonzeros in L. As expected, the sup-col
and col-col methods do indeed require the smallest amount of floating-point work
storage. Without the enhancements to reduce the stack usage, the basic multifrontal
method requires by far the most work storage. For two problems the size of the stack
is roughly 60% of the “size” of L. The enhanced multifrontal algorithm required far
less floating-point work storage than the basic multifrontal algorithm requires, but still
considerably more than the sup-sup algorithm requires.

6. Concluding remarks

We have studied three different left-looking sparse Cholesky factorization algorithms:
the col-col, sup-col and sup-sup algorithms. The use of supernode-to-column
updates in the sup-col algorithm (instead of the column-to-column updates in the
col-col algorithm) reduces the amount of memory traffic and indirect addressing
overhead. Our tests have shown the effectiveness of this well known technique on a
wide range of high-performance uniprocessor computers. The use of supernode-to-
supernode updates in the sup-sup algorithm further reduces the amount of memory
traffic on machines with high-speed local memory, such as a cache. For our test prob-
lems, the sup-sup algorithm obtains virtually the same performance improvements via
reuse of cached data that the multifrontal method obtains. Similar test results have



- 95.

basic | enhanced
problem col-col | sup-col | sup-sup nt mf
BCSSTK1i3 .74 .14 8.63 | 58.70 15.80
BCSSTK14 1.61 .16 4.08 | 27.49 6.79
BCSSTK15 .61 .07 5.91 | 30.44 7.79
BCSSTK16 .66 .04 263 | 17.12 3.90
BCSSTK17 1.09 .03 1.90 | 12.43 2.70
BCSSTK18 1.80 .06 5.06 | 25.37 7.46
BCSSTK23 75 .12 12.18 | 60.07 17.31
BCSSTK24 1.28 .09 4.80 ] 23.45 5.46
BCSSTK25 1.09 .03 234 ] 11.81 3.27
BCSSTK29 .83 .03 3.05 | 17.01 7.16
BCSSTK30 75 .02 1.69 | 11.22 2.46
BCSSTK31 .67 .02 3.27 | 24.21 5.49
BCSSTK32 .85 .01 1.10 8.50 2.02
BCSSTK33 .34 .04 5.15 | 40.31 9.06
NASA1824 2.47 .22 4.51 { 39.66 8.59
NASA2910 1.42 .10 3.96 | 25.93 5.99
NASA4704 1.67 .10 6.81 | 29.16 8.72

Table 9: Floating-point work storage (% of |L|).

appeared in Rothberg and Gupta [29]. On machines witheut a cache, the sup-sup al-
gorithm obtains modest improvements over the sup-col algorithm by further reducing
the integer overhead and indirect indexing costs.

Although the performance of the various left-looking factorization algorithms is ma-
chine dependent, it is interesting to note that for three high-performance workstations
(the IBM RS/6000, the DEC 5000, and the Stardent P3000 without vectorization),
the sup-sup algorithm with subdivided supernodes is the most efficient algorithm, and
often runs 2.5 times faster than the col-col algorithni. On the Stardent P3000 with
vectorization, the sup~sup algorithm is roughly 4-4.5 times faster than the col-col
algorithm.

For the test problems and workstations considered in this report, the enhanced mul-
tifrontal algorithm is slightly slower than the sup-sup algorithm (by roughly 5-10%).
The results also indicate that the enhancements we have made to the multifrontal
method greatly reduce the amount of auxiliary storage required for the stack and the
amount of data movement required to stack the update matrices. The work-storage re-
quirement in sup-sup, however, remains smaller than that in the enhanced multifrontal
method.

One of the goals in this study is to identify the “best” sequential sparse Cholesky
factorization algorithm. This algorithm will be used to evaluate the performance of var-
ious parallel sparse Cholesky factorization methods. Based on our results, we conclude
that the left-looking sup-sup algorithm is the most efficient algorithm, both in terms
of its execution time and work-storage requirement. Parallel versions of left-looking
col-col and sup-col algorithms have appeared in [17] and [26], respectively. Parallel
implementation of the left-looking sup-sup algorithm is currently under investigation



- 96 -

and performance results will be reported elsewhere.

It should be noted that the basic multifrontal method has at leust two advantages
over the left-looking methods. First, the multifrontal algorithm has long been recog-
nized as the better candidate for out-of-core implementation: only the stack of update
matrices and the current frontal matrix are needed in main memory. Second, its supe-
rior data locality is of great value when solving very large problems on machines with
virtual memory and paging [23]. The impact of paging on performance is not consid-
ered in this report because our main concern is the working-storage requirement and
the use of blocking to exploit the first level in the memory hierarchy (i.e., fast memory
or cache). The paging issue, however, will be investigated elsewhere.

Acknowledgments

The authors thank the Minnesota Supercomputer Institute and Cray Research, Inc. for
providing computer support. Also, part of the work was performed while the authors
were visiting the Institute for Mathematics and its Applications at the University of
Minnesota, which is funded principally by the National Science Foundation.

7. References

[1] P.R. Amestoy and I.S. Duff. Vectorization of a muitiprocessor multifrontal code.
Internat. J. Supercomp. Appl., 3:41-59, 1989.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A portable
linear algebra library for high-performance computers. In Proceedings of Super-
computing 90, pages 1-10. IEEE Press, 1990.

[3] C.C. Ashcraft. A vector implementation of the multifrontal method for large
sparse, symmetric positive definite linear systems. Technical Report ETA-TR-51,
Engineering Technology Applications Division, Boeing Computer Services, Seattle,
Washington, 1987.

[4] C.C. Ashcraft. The domain/segment partition for the factorization of sparse sym-
metric positive matrices. Technical Report ECA-TR-148, Engineering Computing
and Analysis Division, Boeing Computer Services, Seattle, Washington, 1990.

[5] C.C. Ashcraft. Personal communication, 1991.

[6] C.C. Ashcraft, S. Eisenstat, J. Liu, and A. Sherman. A comparison of
three column-based distributed sparse factorization schemes. Techni~al Report
YALEU/DCS/RR-810, Department of Computer Science,Yale University, New
Haven, CT, 1990.

[7] C.C. Ashcraft, R.G. Grimes, J.G. Lewis, B.W. Peyton, and H.D. Simon. Progress
in sparse matrix methods for large linear systems on vector supercomputers. In-
ternat. J. Supercomp. Appl, 1:10-30, 1987.



I \N

- 927.

[8] E.C.H. Chu, A. George, J.W-H. Liu, and E.G-Y. Ng. User’s guide for SPARSPAK-
A: Waterloo sparse linear equations package. Technical Report CS-84-36, Univer-
sity of Waterloo, Waterloo, Ontario, 1984.

[9] A.K. Dave and 1.S. Duff. Sparse matrix calculations on the Cray-2. Parallel
Computing, 5:55-64, 1987.

[10] J.J. Dongarra and S.C. Eisenstat. Squeezing the most out of an algorithm in Cray
Fortran. ACM Trans. Math. Software, 10:219-230, 1984.

[11] J.J. Dongarra, F.G. Gustavson, and A. Karp. Implementing linear algebra algo-
rithms for dense matrices on a vector pipeline machine. SIAM Review, 26:91-112,
1984.

[12] LS. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Oxford, England, 1987.

[13] 1.S. Duff, R.G. Grimes, and J.G. Lewis. Spars - matrix test problems. ACM Trans.
Math. Software, 15:1-14, 1989.

[14] LS. Duff and J.K. Reid. MA27 - A set of Fortran subroutines for solving sparse
symmetric sets of linear equations. Technical Report AERE R 10533, Harwell,
1982.

[15] 1.S. Duff and J.K. Reid. The multifrontal solution of indefinite sparse symmetric
linear equations. ACM Trans. Math. Software, 9:302-325, 1983.

[16] S.C. Eisenstat. M.C. Gursky, M.H. Schultz, and A.H. Sherman. The Yale sparse
matrix package I. the symmetric codes. Internat. J. Numer. Meth. Engryg.,
18:1145-1151, 1982.

[17] A. George, M.T. Heath, J.W-H. Liu, and E.G-Y. Ng. Solution of sparse posi-
tive definite systems on a shared memory multiprocessor. Internat. J. Parallel
Programming, 15:309-325, 1986.

[18] A. George, M.T. Heath, J.W-H. Liu, and E.G-Y. Ng. Sparse Cholesky factoriza-
tion on a local-memory multiprocessor. SIAM J. Sci. Stat. Comput., 9:327-340,
1988.

[19] A. George and J.W-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

[20] J.W-H. Liu. A compact row storage scheme for Cholesky factors using elimination
trees. ACM Trans. Math. Software, 12:127-148, 1986.

[21] J.W-H. Liu. On the storage requirement in the out-of-core multifrontal method
for sparse factorization. ACM Trans. Math. Software, 12:249-264, 1986.

[22] J.W-H. Liu. The multifrontal method and paging in sparse Cholesky factorization.
ACM Trans. Math. Software, 15:310-325, 1989.



23]

[24]

[25]

26]

[27]

28]

[29]

[30]

[31]

[32]

(33]

- 98 -

J.W-H. Liu. The multifrontal method and paging in sparse Cholesky factorization.
ACM Trans. Math. Software, 15:310-325, 1989.

J.W-H. Liu. The multifrontal method for sparse matrix solution: Theory and
practice. Technical Report CS-90-04, Dept. of Computer Science, York University,
North York, Ontario, 1990.

J.W-H. Liu. A generalized envelope method for sparse factorization by rows. 4ACM
Trans. Math. Software, 17:112-129, 1991.

E.G-Y. Ng and B. Peyton. A supernodal Cholesky factorization algorithm for
shared-memory multiprocessors. Technical Report ORNL/TM-11814, Oak Ridge
National Laboratory, Oak Ridge, TN, 1991. (Submitted to SIAM J. Sci. Stat.
Comput.).

E. Rothberg and A. Gupta. Fast sparse matrix factorization on modern worksta-
tions. Technical Report STAN-CS-89-1286, Stanford University, Stanford, Cali-
fornia. 1989.

E. Rothberg and A. Gupta. A comparative evaluation of nodal and supernodal
paralle]l sparse matrix factorization: Detailed simulation results. Technical Report
STAN-CS-90-1305, Stanford University, Stanford, California, 1990.

E. Rothberg and A. Gupta. An evaluation of left-looking, right-looking, and mul-
tifrontal approaches to sparse Cholesky factorization on hierarchical-memory ma-
chines. Technical Report STAN-CS-91-1377, Stanford University, Stanford. Cali-
fornia, 1991.

R. Schreiber. A new implementation of sparse Gaussian elimination. ACM Trans.
Math. Software, 8:256-276, 1982.

A.H. Sherman. On the efficient solution of sparse systems of linear and nonlinear
equations. Technical Report 46, Dept. of Computer Science, Yale University, 1975.

C. Yang. A vector/parallel implementation of the multifrontal method for sparse
symmetric definite linear systems on the Cray Y-MP. Cray Research Inc., Mendota
Heights, MN, 1990.

E. Zmijewski. Limiting communication in parallel sparse Cholesky factorization.
Technical Report TRCS89-18, Department of Computer Science, University of
California. Santa Barbara, California, 1989.



45.

46.

47.

48.

49,

50.

51.

52.

53.

54.

56.

- 99 .

ORNL/TM-11960

INTERNAL DISTRIBUTION

B.R. Appleton 25. C.H. Romine
T.S. Darland 26. T.H. Rowan
E.F. D’Azevedo 27-31. R.F. Sincovec
J. Donato 32-36. R.C. Ward
J.J. Dongarra 37. P.H. Worley
G.A. Geist 38. Central Research Library
M.R. Leuze 39. ORNL Patent Office
. E.G. Ng 40. K-25 Appl Tech Library
C.E. Oliver 41. Y-12 Technical Library
. B.W. Peyton 42. Lab Records Dept - RC
. S.A. Raby 43-44. Laboratory Records Dept

EXTERNAL DISTRIBUTION
Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 268 Union St.,
S.E., Minneapolis, MN 55455

Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.3/. von
Neumann Drive, Beaverton, OR 97006-1999

Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Edward H. Barsis, Computer Science and Mathematics, P.O. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

Jean R. S. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, TN 37996-1301

Roger W. Brockett, Wang Professor of Electrical Engineering and Computer Sci-
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 12138

. James C. Browne, Department of Computer Science, University of Texas, Austin,

TX 78712

Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307



57.

58.

60.

61.

62.

63.

64.

66.

67.

68.

69.

70.

71.

72.

73.

75.

76.

- 30 -

Donald A. Calahan, Departinent of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48102

John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

. lan Cavers, Department of Computer Science, University of British Columbia,

Vancouver, British Columbia V6T 1W5, Canada

Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park.
NC 27709

Eleanor Chu, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-

ley, CA 94720

Andy Conn, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, Florida 32611-2024

John J. Dorning, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

lain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,

NY 14260

Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden



77.

78.

79.

80.

81.

82.

83.

84.

85.

86.
87.

88.

89.

90.

91.

92.

93.
94.

95.

96.

97.

- 31 -

Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S TL-21, Seat-
tle, WA 98124-0346

Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse Universitiy, Syracuse, NY 13244-4100

Paul O. Frederickson, NASA Ames Research Center, RIACS, M/S T045-1, Moflett
Field, CA 94035

Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94550

Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

K. Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47405

Feng Gao, Department of Computer Science, University of British Columbia, Van-
couver, British Columbia V6T 1W5, Canada

David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

C. William Gear, Computer Science Department, University of Illinois, Urbana,
IL 61801

W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8

J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3Gl

John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA
94550

John Gustafson, Ames Laboratcry, lowa State University, Ames, 1A 50011

Per Christian Hansen, UCI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, TX 77042-3020

Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL
61801-2300

Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001



98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.
109.

110.

111.

112.
113.

114.

115.

116.

117.
118.

119.

-392.-

Nicholas J. Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta T6G 2H1, Canada

Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142-1214

Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

Malvyn H. Kalos, Tornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Robert J. Kee, Applied Mathematics Division 8331, Sandia National Laboratories,
Livermore, CA 94550

Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office G-236 Germantown, Washington, DC 20585

Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston,
TX 77042-3020



120.

121.

122.

123.

124.

125.

126.

127.

128.

129.
130.

131.
132.

133.

134.

135.

136.

137.

138.

139.

140.

.33 -

Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London E1 4NS, England

Arno Liegmann, c/o ETH Rechenzentrum, Clausiusstr. 55, CH-8092 Zurich,
Switzerland

Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364

Consuelo Maulino, Universidad Central de Venezuela, Escuela de Computacion,
Facultad de Ciencias, Apartado 47002, Caracas 1041-A, Venezuela

James McGraw, Lawrence Livermore National waboratory, L-306, P.O. Box 808,
Livermore, CA 94550

Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Blvd., Pasadena, CA 91125

Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

Neville Moray, Department of Mechanical and Industrial Engineering, University
of lllinois, 1206 West Green Street, Urbana, IL 61801

Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

Chris Paige, McGill University, School of Computer Science, McConnell Engineer-
ing Building, 3480 University Street, Montreal, Quebec, Canada H3A 2A7

Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,

SC 29634-1906

Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

Robert J. Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University Winston-Salem, NC 27109

Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, TN 37996-1301

Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802




141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

.34 -

Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4040 Hafrsfjord, Norway

Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, I-00147 Roma, Italy

John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

Axel Ruhe, Dept. of Computer Science, Chalmers University of Technology, S-
41296 Goteborg, Sweden

Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

Ahmed H. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

Michael Saunders, Systems Optimization Laborator,, Operations Research De-
partment, Stanford University, Stanford, CA 94305

Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, TX 75275

Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

Anthony Skjellum, Lawrence Livermore National Laboratory, 7000 East Ave., L-
316, P.O. Box 808 Livermore, CA 94551

Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P.O.
Box 1892, Houston, TX 77251



162.

163.

164.

165.
166.

167.

168.

169.

170.

171.
172.

173.

174.

176.

177.

178.

179-188.

- 35-

G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

Philippe Toint, Dept. of Mathematics, University of Namur, FUNOP, 61 rue de
Bruxelles, B-Namur, Belgium

Bernard Tourancheau, LIP, ENS-Lyon, 69364 Lyon cedex 07, France

Hank Van der Vorst, Dept. of Techn. Mathematics and Computer Science, Delft
University of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

Jim M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1W5, Canada

Udaya B. Vemulapati, Dept. of Computer Science, University of Central Florida,
Orlando, FL 32816-0362

Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

Phuong Vu, Cray Research, Inc., 655F Lone Oak Drive, Eagan, MN 55121

Daniel D. Warner, Department of Mathematical Sciences, O-104 Martin Halil,
Clemson University, Clemson, SC 29631

Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O.
Box 1892, Houston, TX 77251

Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O.
Box 1663, MS-265, Los Alamos, NM 87545

. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ

07974

David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

Earl Zmijewski, Department of Computer Science, University of California, Santa
Barbara, CA 93106

Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN
37831-8600

Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN 37831



DATE
FILMED

0l 112 1 G
\ S Jo~§ To~







