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1. INTRODUCTION

Both the formation mochanism and stncture of tarnadoes are not yet well understood. The
Doppler radar is probably the best remote-sensing instrument at present for determining the
wind ficld in tornedoes. Although much has been learned about the non-supercell tormado
from relatively close range using Doppler radars at fixed sites (Brady and Szoke 1989;
Roberts and Wilson 1989; Wakimoto and Wilson 1989; Wilson and Roberts 1990), close-
rarige measurements in supercell tornadoes are relatively few (Zrnic and Doviuk 1975;
Zrnic et al. 1977; Zmic and 1stok 1980; Zmic et al. 1985).

Bluestein and Unruh (1989) have shown how a portable Doppler radar can increase
significantly the number of high-resolution, sub~cloud base measurcments of bo*a the
tornado vortex and its parent vortex in supercells, with simultaneous visual documentation.
The design details and operation of the CW/FM-CW Doppler radar (Stauch 1976)
developed at the Los Alamos National Laboratory (LANL) and used by storm-intercept
teams at the Vniv. of Oklahoma (OU) are described in Unruh et al. (1989), Bluestein and
Unruh (1989), and Bluestein and Unruh (1990). The radar trangmits 1 W at 3 cm , and
can be switched back and forth berween CW and FM-CW modes. In the FM-CW mode
the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the
corresponding maximum unambiguous range and velocity, and range resolution are § km,
+-115ms!, and 78 m respectively. The bistatc antennas, which have half-power
beamwidths of 5°, are casily poinied with the ald of a boresight. CW (ata are recorded on
stereo audio tape, while video s recorded on a boresighted VCR. FM-CW data are
recorded on the VCR, while voice documentation is recorded on the audio tape, video is
recorded on another VCR. The radar and antennas are eusily mounted on a tripod, and can
be set up by three people in a minute or two.

The purpose of this paper is to describe the signal processing technigues used to dete: mine
the Doppler spectrum in the FM-CW mode and a method of its interpretation in real rime,
and to present data gatkered in a tornadic storm in 1990,



2. FM-CW SIGNAL PROCESSING

The time series of data ave recorded in analog form on videotape, with each line
representing both one sweep of ihic VCR and one full sweep in frequency of the radar. In
real time the data are monitored on a video screen, as alternating light and dark bands. The
range of the targets is inversely proportional to the spacing betwzen the bands, and the
target speeds are proportional to the slope of the bands; the direction of motion is given by
the sign of the slope. More complex wind fields appear as cross-hatched lines. Range
folding is manifest as an abrupt change in the slope of the lines. It is important when
operating the racar to make sure that the picture on the screen is not torn up: this indicates
that the signal is overloaded and the data unusable. Too weak a signal i3 indicated by a lack
of any well-defined lines on the screen. The gain of the radar is easily set by a
poisniometer.

Bach of 128 consecutive lines from a video frame (there are 512 interlaced lines per frame,
in addition to some "bookeeping” lines) are digidzed into 128 data points. Although a
high-pass filter is applied by the radar to attenvate ground clutter (wind speeds less than 3
ms! e significuntly filtered out), the resulting tme series 0f16384 duta points is then
filtered further by computing the average time series for the series of lines, and subtracting
it from each line t» obrain a perrbation ime senes.

The parturbadon time series is range normalized, mujtiplied by a Hanning filter, and
subjected o a discrete fast Fourler transform. The spectrum of the radial-wind component
within each of 64 78-m range bins appears as a teries of 128 data points, with the first of
each, 64th, and 128th representing -115 m s°!,0 ms"!, and +115 m 37!, and so on. Data
are not available from the first 39 m and from the last 39 m.

We verified that the radar was working propecly in FM-CW made by computing the spectra
of our chuse van moving at a constant speed away from and toward the racar, and noting
the distance travelled by the van.

5. RESULTS: THE SPRARMAN, TEXAS STORM OF 31 MAY 1990

The largest of the tornadoes was in {ts mature stage when we were ceting up the radar
(Fig. 1). The entre cloud above, which extended up to the base of the storm's anvil, was
rotating cyclonically and moving toward us from west 10 east; the area 1o the right (north)
wLs reladvely translucent, like in the typical low-precipitation (LP) supercell that occurs
along the dryline (Bluestein and Woodall, 1990).
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The CW spectrum of the tomado several min after the time of Fig. 1 is shown in Fig. 2;
the spectrum is valid for an area centered on the tornado. We estimared the width of the
tornado photogrammetrically to be about 200-300 m in diameter; the radar cross section
was estimated to be slightly under S00 m. The spectrum shown is the average of 4 spectra
taken over 4 0.5 - 1 8 period. The highest wind speeds measured, which are indicated
wheze the spectrum enters the noise level, are about +/- 90 m s°!. These wind speeds are
consistent with the independent estimate of the NWS (National Weather Service) of F3
damage. Spectra of the area centered to the left and right of the tornado are shown in Figs.
3and 4. The spectra are skewed toward the approaching side to the left, and towsrd the
receding side to the right, as one would expect. The spectra shown in Figs. 3 and 4
suggest & parent vortex having wind speeds of approximately 30 - 40 m s-1 and a tomado
having wind speeds as high as 80 - 90 ms~1.

Figs. 5e and b show the FM-CW spectra for the remains of the rotating wall cloud from
which the tornado was pendant earlier at longer range. The radar was palnted upward with
an elevation angle of nearly 45°. Radar return from the wall cloud is evident from
epproximarely 2.3 km to 3 km range; thus. the width of the wall cloud was approximately

700 m. Wind speeds indicated were »'. about -35 m s*}. This is consistent with the big
blast from the southwest we felt as the ~all cloud passed over us and 6-cm hail fell on us.

The integrated FM-CW snectrum for the wall cloud described above is shown in Fig. 6. It
I8 t0 be compared with the CW spectrum shown in Fig. 7. Differences in the two may be
arcributed in part to slighdy different dmes and viewing angles, and to possible problems
with the data or dawa procesning procedure. The peaks of the two spectra differ by

approximately S m 53,
4, FUTURE WORK

In order to improve upon the effective range of the radar, the date zhould be Fourier
analyzed before they are recurded to make full use of the 70 db dynamic range of the
radar. Currently the daa are recorded with a dynamic range of 30-40 db; the collection of
FM-CW data at long distances when ground clutter {s significant is therefore seriously
limited. The solution to this problem is & "smart” pre-processor which can choose the time
interval over which the perturbation time series is coliecoed.

We plan to test out a portable CW 35 GHz radar (Pasqualucci et al. 1983; Hobbts et ol
'985) during the spring of 1991 to sec if we can improve upon sensitivity when cloud
droplets and no precipitadon-sized particles are present,
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Fig. 1: Photograph of u tornado east of Spearman, Texas at 1909 CDT, looking toward
the west from 2 mi west of Highway 70, on FM 759. (photograph by Howard B.
Bluesrein)

Fig. 2: CW spectrum of the tornado shown in Fig. 2, several min later. Ordinate (s the
relative spectral density piotted logarithmically. The noise level is indicated by a horizonial
line, the linear spectral dropoff (which is exponential with respect to a linear ordinate) is
indicared by a sioping solid line.

Fig. 3: Asin Fig. 2, but for the left side of the tornado, and fewer spectra have been
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averaged.
Fig.4: AsinFig. 3, buz for the right side of the tornado.

Fig. 5: FM-CW specira of the wall cloud associated with the storm that had
approximately10-20 min earlier produced the tornado shown in Fig. 1 plotted as a function
of range every 78 m berween (a) 1950 m and 2496 m and (b) 2574 and 3120 m. The
ordinate is relative spectral density plotied on a logarithmic scale.

Fig.6: Integrated relasive spectral density (logarithmic ordinate) as a function of Doppler
velocisy for the wall cloud discussed in Fig. 5.

Fig. 7. CW relative spectral density (logarithmic ordinate) as a function of Doppler
velocity for the wall cloud discussed in Fig. S.
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