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LECTURE NOTES ON ORDINARY DIFFERENTIAL EQUATIONS SOFTWARE 
USER'S GUIDES FOR ODE, RKF45, GEAR AND EPISODE

J. A. Wenzel and R. E. Funderlic

ABSTRACT

Four software packages for the numerical solution of 
initial value problems for systems of ordinary differential 
equations are demonstrated with sample problems and solutions. 
These packages are contained in the Core Library of Numerical 
Software of the Computer Sciences Division.

I. INTRODUCTION

A. Definition of the Problem

Ordinary differential equations are encountered whenever the rate of 

a dependent variable, call it y, with respect to an independent variable, 

say t, is a function of t and y, that is, dy/dt = f(t,y). A system of 

ordinary differential equations is a collection of differential equations 

the rate of change of each of the dependent variables y-j, y2>--'»yn d0- 

pends on one or more of the dependent variables as well as on the inde­

pendent variable:

dy-j/dt = f-j (t,y-| (t), y2(t),... ,yn(t))

dy2/dt = f^t.y^t), y2(t) 5 • • • 5

dyn/dt = fn(t,y1(t), y2(t) yn(t)) .
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If we let Y(t) be the vector (y-|(t), y2(t)>• • • ’ then the s-ystem

may be written as dY/dt = F(t,Y(t)) where F is a vector-valued function. 

When the value of Y is desired at a point t and it is known that at 

t = tg, y(tQ) = y^, then the problem is an initial value problem.

A system is called stiff if the components of the solution are 

decaying at greatly differing rates. A classic example comes from Gear's 

text [7]:

solve y^ = 998y-| + 1998y2 

y2 = 999y1 - 1999y2

subject to the initial condition

y-| (0) = 1 and y2(0) = 0 .

The solution in closed form can be found to be

y,(t) = 2e-t - e-,000t 

y2(t) = -e-t + e-,000t

and the graph is shown in Figure 1.
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Yn (t)

Fig. 1. A Stiff System

The lecture notes from which this report was taken originally con­

tained much background material and we originally planned to include 

this. Since then an excellent course on numerical methods was given by 

M. T. Heath (CSD) from a book by Forsythe, Malcolm and Moler [6].

This book is available from many sources at the Oak Ridge facilities 

and we recommend reading Chapter 6 for a clear discussion of methods 

for solving ordinary differential equations.

B. The Four Packages

There are many techniques which can be used to find a numerical 

solution of an initial value problem. Four of the most efficient and 

accurate software packages for doing this are contained in the Core 

Library of Numerical Software which is maintained by the Computing 

Applications Department of the Computer Sciences Division. Each 

package is a set of FORTRAN subroutines which employ double-precision 

floating point variables. While the packages were designed for different 

types of problems and use different techniques, all are well-documented,
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The first software package that is demonstrated is ODE, which was 

written by L. F. Shampine and M. K. Gordon at Sandia Laboratories. It 

uses a modified divided-differences version of the Adams-Bashforth- 

Moulton formulas in a predictor-corrector mode. Adjusting the order of 

the formula and the step size as it moves across the interval, it will, 

in the interest of efficiency, go beyond the terminal value for t and 

then interpolate to find the desired value for Y(t) = (y-| (t),... ,yn(t)). 

The package is thoroughly examined in [11] and additional examples may 

be found in [8], [12] and [13]. This package is a good choice when high 

accuracy is required and the system is not stiff.

If the system is not stiff, high accuracy is not essential or 

appropriate, and it is fairly inexpensive to evaluate the function, then 

the RKF45 package developed by H, A. Watts and L. F. Shampine at Sandia 

Laboratories is called for. It uses a modification by Fehlberg, [4] and 

[5], of the classical Runge-Kutta formulas. The order of the method,

4 or 5, is determined before the integration advances a step towards 

the terminal value of t. The step size is also controlled. See [6] for 

a full discussion of the program.

A. C. Hindmarsh at Lawrence Livermore Laboratory wrote the computer 

code for GEAR based on the technique developed by C. W. Gear [7] for 

solving systems which are stiff but otherwise well-behaved. It uses the 

backward differentiation formulas for the predictor and the chord method 

with the Jacobian matrix of partial derivatives to calculate the cor­

rector. See [9] for further details.

easily accessible, as well as reliable and efficient.

G. D. Byrne and A. C. Hindmarsh reworked the ideas in GEAR and
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produced EPISODE to treat stiff systems which are oscillatory or highly 

nonlinear. The algorithm is discussed in [1], the package is examined 

in [10] and some interesting comparisons between GEAR and EPISODE appear 

in [2] and [3].

A survey of several methods for solving non-stiff systems is found 

in [14]. The uses outlined above exploit the strengths of each of the 

packages although it is possible to use ODE on moderately stiff systems 

and to use GEAR on non-stiff systems. Of the four packages, ODE is the 

most versatile and perhaps the easiest to use. If you experience 

problems or have questions which aren't answered by these introductory 

guides, call a numerical consultant in the Computer Applications De­

partment. Their names are given in the HELP file CORLIB. Listings of 

the codes and card decks are available from the Computer Librarian, 

ext. 4-5317, although normally these should not be needed since both the 

codes and documentation are available on the computers.

II. ODE

A. Description of the Subroutines

This software package consists of four FORTRAN double-precision 

subroutines, ODE, DE, STEP, and INTRP, which integrate dY/dt = F(t,Y) 

from t = T to TOUT. It is possible to advance TOUT and call ODE again 

as the variables are returned with all the information necessary to 

continue the integration.

The subroutine ODE allocates storage in two auxilliary arrays,

WORK and IWORK, and calls the subroutine DE. DE controls the process

by calling STEP repeatedly until TOUT has been reached or exceeded and
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checks for conditions which would cause termination: too many function 

evaluations, possible stiffness, or demands for excessive accuracy. If 

the integration precedes beyond TOUT, DE calls INTRP to interpolate for 

Y at TOUT. The subroutine STEP advances the integration one step at a 

time using an Adams-Bashforth formula to predict and an Adams-Moulton 

formula to correct. Based on tests it adjusts the order of the method 

and the step-size to control local error by using a divided difference 

method and local interpolation. Since the code chooses the step size 

to be as large as possible while still meeting the error tolerance 

specified by the user, the integration usually advances beyond TOUT. In 

which case, INTRP is called. It uses a polynomial whose degree is based 

on the order of the method last used and interpolates to find the value 

of Y at TOUT. This package was written by L. F. Shampine and M. K. 

Gordon at the Sandia Laboratories. The computer code was obtained from 

the National Energy Software Center at Argonne National Laboratory.

B. The Calling Program

The user needs to supply a calling program using double precision 

FORTRAN that

1) supplies the initial conditions,

2) sets the values of an input variable,

3) calls ODE, and optionally

4) writes out the results

and a double-precision subroutine F(X, Y, YP) that defines the system of 

first order ordinary differential equations. The call list for ODE con­

sists of:
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F the name of the subroutine which defines the system of

differential equations. (Note: F must also be declared 

in an EXTERNAL statement).

NEQN the number of equations in the system, 1 <_ NEQN.

V the array that contains the values of Y at t = T when

you call ODE and that contains the values at t = TOUT 

upon a successful completion of ODE.

T the value of t at the beginning of the integration.

TOUT the value of t at the end of the integration. This can be

less than T but it can never equal T.

RELERR the relative and absolute local error tolerance. At each 
and

ABSERR internal step going from T to TOUT, the code tries to 

control each component of the local error so that 

[local errorJ<RELERR*|Y(L) l+ABSERR for 1<L<NEQN.

Neither value can be negative and at least one must be 

positive.

IFLAG on the first call this is normally set equal to 1. Set

IFLAG equal to -l,only if it is known that it is impossible 

to integrate beyond TOUT. On subsequent calls, IFLAG may 

be left as it was returned.

WORK two storage arrays controlled by ODE. The dimension of
and

IWORK WORK is 100 + 21*NEQN and that of IWORK is 5.
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C. System Dependent Procedures

The most efficient and convenient way to access ODE is to use the 

Core Library of Numerical Software. On the IBM 360 computers it resides 

in LOGLIB in load module form. This is automatically available to all 

FORTRAN jobs without additional JCL. The Core Library resides on the 

DEC-10 in the SYS area as a REL file library and is accessed when exe­

cuting a FORTRAN program by typing

EX MYPROG,MYSUB,SYS:C0RLIB/SEA

If you have questions or problems, please consult a numerical consultant 

listed in the HELP file for the Core Library, or in case of a related 

system problem call Programming Assistance.

D. Values Returned by ODE

The subroutine ODE will return to your calling program these values 

T the value to which T has advanced. If there was no pro­

blem, then T will equal TOUT.

Y the values of Y(l), Y(2),...,Y(NEQN) at T.

RELERR the original values unless this degree of accuracy is

and untainable on the computer with this program. In that

ABSERR case, they will be increased and IFLAG will be set to 3.

You can call ODE with these revised values and try again 

to integrate.

The value of IFLAG reports the success or failure of ODE.

Val ue Interpretation

2 a normal return. The integration reached TOUT, T has

been set to TOUT, and Y contains the solution. If you
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change TOUT, you may call ODE again and continue to 

integrate.

3 the integration did not reach TOUT because the error 

tolerances were too small for the computer being used.

T is set to the point closest to TOUT that has been 

reached and Y to the solution at that point. RELERR 

and ABSERR have been increased so that ODE may be called 

again and another attempt made to integrate to TOUT.

4 the integration did not reach TOUT because more than 

MAXNUM(= 500) steps were needed. T is set to the point 

closest to TOUT that was reached and Y to the answers at 

that point. If you want to continue, call ODE again.

5 more than MAXNUM(= 500) steps were required to reach TOUT 

and the equations appear to be stiff. T is set to the 

point closest to TOUT that was reached and Y to the an­

swers at that point. You probably should switch to 

another software package (e^., GEAR. See Chapter III.), 

but you often can get accurate results with ODE if you 

are willing to pay the costs (more function evaluations 

which mean more time).

6 the integration did not begin because at least one of 

the input parameters is not valid. See Section B above.

If IFLAG had been set equal to -1, and if the integration did not reach 

TOUT, then IFLAG will return as -3, -4, or -5.
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E. Examples

There are three examples (problem, sample program, output) in this 

section. The first solves a second order differential equation and the 

calling program is copiously commented. The second example demonstrates 

the ease with which ODE can handle a jump discontinuity in the first 

derivative. The third uses ODE to create a table although it could just 

as easily be combined with a plotting routine to create a graph.

1. ODE-1 A second order differential equation.

Solve y" + y = o

subject to y(0) = 0, y‘(0) = 1.

We transform this second order differential equation to a system 

of two first order equations by introducing the variables y-| = y and 

Y2 = y' = y-j • The equivalent problem is

Solve yj = y2

y2 = -^1 ’

subject to y^O) = 0, y2(0) = 1 .

Analytically, the solution may be found in closed form to be 

y-j(t) = sin t and y2(t) = cos t .

The double precision calling program which sets the initial con­

ditions and calls ODE is shown in Figure 2. [Note: The same problem 

appears as the example RKF45-2 in Chapter III].
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BAKE ALL NOH-IHTEGER VARIABLES DOOBLE-PRECISIOH VARIABLES 

IMPLICIT REALMS(A-H,0-2)

SET THE DIHEBSION FOR T TO BE THE ROBBER OF EQUATIONS IN THE STSTEH 
SET THE DIMENSION FOR WORK TO BE 100 ♦ 21*NEQN 
SET THE DIMENSION FOR IWORK TO BE 5

DIMENSION T(2), WORK (142), IWORK (5)

DECLARE F TO BE AN EXTERNAL SOBROOTINE

EXTERNAL F

SET NEQN AND THE INITIAL CONDITIONS

NEQN = 2 
T (1) = 0.0D0
T (2) = 1.0D0

SET THE INITIAL AND TERMINAL VALUES OF THE INDEPENDENT VARIABLE T 

T = 0.0D0
TOUT = 3.1415926535D0

SET THE ERROR BOUNDS

RELERR = 1.0D-8 
ABSERR = 1.0D-8

SET IFLAG = 1 FOR THE FIRST CALL TO ODE 

IFLAG = 1

Fig. 2. Calling Program for Example ODE-1
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ORNL-DWG 78-10768

WRITE THE VALDES OSED TO CALL ODE

WRITE (6,100) HEQN, T(1), 1(2), T, TOOT, RELERR, ABSERR, IFLAG 

CALL ODE

CALL ODE(F, NEQN, T, T, TOOT, RELERR, ABSERR, IFLAG, WORK, IWORK) 

CHECK IFLAG

IF (IFLAG .NE. 6) GO TO 10 
WRITE (6,101)
STOP

10 IF (IFLAG .EQ. 2) GO TO 20
WRITE(6,102) IFLAG, T, T(1), T (2), RELERR, ABSERR 
STOP

WRITE OOT THE RESOLTS 

20 WRITE (6,103) T, Y(1), 1(2)

FORHATS

100 FORMAT(//,5X,38HTHESE ARE THE VALDES DSED TO CALL ODE:,//,5X,
1 8HNEQN =,I6,/,5X,8HY(1) =,D20.10,/,5X,8HY(2) =,D20.10,/,5X
2 8HT =,D20.10,/,5X,8HTOOT =,D20.10,/,5X,8HRELERR =,D20.10,
3 /,5X,8HABSERR =,D20.10,/,5X,8HIFLAG =,I6,//)

101 FORMAT(5X,67HIFLAG = 6. AT LEAST ONE OF THE INPDT VALDES IS WRON 
1G. TRY AGAIN.)

102 FORMAT(5X,8HIFLAG =,I3,27H. TAKE APPROPRIATE ACTION.,//,5X,
1 SHY ( 1) =,D20.10,/,5X,8HY (2) =,D20.10,/,5X,8HRELERR D20.10,
2 /,5X,8HABSERR =,D20.10)

103 FORMAT(5X,23HTHIS IS A NORMAL RETORN,/,5X,8HT =,D20.10,/,5X,
1 8HY ( 1) =, D20. 10, /, 5X, SHY (2) =,D20.10)

STOP
END

Fig. 2. (Cent1d)
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The subroutine F(T,Y,YP) is shown in Fig. 3.
ORNL-DWG 78-10769

SOBROOTINE F(Tr T, TP)

HAKE ALL THE NON-INTEGER VARIABLES DOOBLE-PRECISION ARIABLES 

IHPLICIT REAL*8(A-H,0-Z)

SET THE DIHENSION FOR T AND TP TO BE THE NOHBER OF EQOATIONS

IN THE STSTEH
DIHENSION T (2)r TP(2)

DEFINE THE STSTEH OF EQUATIONS

TP (1) = T (2)
TP (2) = -T(1)
RETORN
END

Fig. 3. Subroutine F for Example ODE-1

The results are shown in Figure 4.

ORNL-DWG 78-10770

THESE APE THE VALUES OSED TO CALL ODE

NEQN
Y(1)
Y(2) 0.10000000000 01

0.0

2
0.0

T
TOOT
PELEPR
ABSERR
IFLAG

0.3141592654D 01 
0. 1000000000 D-07 
0. 1000000000D-07 

1

THIS IS 
T

A NORMAL RETORN
0.3141592654D 01 
0.1369487599D-07 

-0.1000000013D 01
1(1)
7(2)

rHC002I STOP 0

Fig. 4. Output from the Program for Example ODE-1
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2. ODE-2 A jump discontinuity in the first derivative:

if 0<X<1 

if 1<X<2

= 1 .

Analytically the closed form solution is:

ex if 0<X<1 

e2~x if 1<X<2 .

Solve
-y

subject to y(o)

The calling program, without comments, and the subroutine F are shown 

in Fig. 5. The results are shown in Fig. 6.

ORNL-DWG 78-10772
IHPLICIT RE>a*8 (*-H,0-Z)
DIMENSION Y (1), W0RK(121), IWORK(5)
EXTERNAL F 
NEQN = 1 
Y (1) = 1.0D0 
T = O.ODO 
TOOT = 2.000 
RELERR = O.ODO 
ABSERR = 1.0D-10 
IFLAG = 1
WRITE(6,100) NEQN, Y(1), T, TOOT, RELERR, ABSERR, IFLAG
CALL ODE (F, NEQN, Y, T, TOOT, RELERR, ABSERR, IFLAG, WORK, IWORK)
WRITE(6,101) IFLAG, T, Y(1)

100 FORMAT(//,5X,38BTHESE ARE THE VALOES OSED TO CALL 0DE:,//,5X,
1 8HNEQN =,I6,/,5X,SHY(1) =,D20.10,/,5X,8HT = ,D20.10,/,5X
2 8HTOOT =,D20.10,/,5X,8HRELERR =,D20.10,/,5X,8HABSERR =,D20.10,
3 /,5X,8HIFLAG =,I6,//)

101 FORMAT (/,5X,8HIFLAG =,16,/,5X,8HT =,D20.10,/,5X,SHY(1) =,
1 D20. 10)

STOP
END

SOBROOTINE F(T, Y, YP) 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION Y (1), YP(1)
YP (1) = Y (1)
IF (T .LE. 1.0D0) RETORN 
YP (1) = - Y (1)
FETORN
END

Fig. 5. Calling Program and Subroutine F for Example ODE-2
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ORNL-DWG 78-10773

THESE ARE THE VALUES USED TO CALL ODE:

NEQN
Y(1)
T
TOUT =
RELERR = 
ABSERR = 
IFLAG =

1
0.1000000000D 01
0.0
0.20000000 00 D 01
0.0
0. 1000000000D-09

1

IFLAG =
T =
Y(1)

2
0. 2000000000D 01
0. 1000000000D 01

IHC002I STOP 0

Fig. 6. Output from the Program for Example ODE-2

3. ODE-3 Creating a table.

Solve y' = -y

subject to y(o) = i

The closed form solution is y = e-t. This time a table will be printed 

for t = 0, 0.1, 0.2,..., 1.0. The calling program and subroutine F are

shown in Fig. 7, and the table is shown in Figure 8. [Note: The same 

problem appears as the example GEAR-3 in Chapter IV.]
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ORNL-DWG 78-10774

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION 1(1), WORK (12 1) , IWORK(S)
EXTERNAL F 
NEQN = 1 
T (1) = 1.0D0 
T = O.ODO 
TOOT = 0. IDO 
RELERR = 1.0D-10 
ABSERR = 1.0D-10 
IFLAG = 1
WRITE(6,100) T, T(1)
DO 10 I = 1, 10

CALL ODE(F,NEQN,T,T,TOOT,RELERR, ABSERR,IFLAG,WORK,I WORK)
WRITE (6,101) T, T ( 1)
TOOT = TOOT ♦ 0.IDO 

10 CONTINOE
100 FORMAT (5X,3UHA TABLE OF VALOES FOR YP=-T,Y(0)=1,//,10X,1HT,24X,

1 1HY,/,5X,D20.10,5X,D20.10)
101 FORMAT(5X,D20.10,5X,D20.10)

STOP
END

SOBROOTINE F(T, Y, YP) 
IHPLICIT REAL*8(A-H,0-Z) 
DIMENSION Y (1), YP(1)
YP (1) = -Y(1)
RETORN
END

Fig. 7. Calling Program and Subroutine F for Example ODE-3

ORNL-DWG 78-10775

A TABLE OF VALOES FOR YP=-Y,Y(0)=1

T
0. 0 0. 1000000000D 01 

0.90U83741800 00 
0.8187307531D 00 
0.7408182207D 00 
0.6703200460D 00 
0.6065306597D 00 
0.5488116361D 00 
0.4965853038D 00 
0.44932896U1D 00 
0.4065696597D 00 
0.3678794411D 00

Y

0. 1000000000D 00 
0.2000000000D 00 
0.3000000000D 00 
0.4000000000D 00 
0.5000000000D 00 
0.6000000000D 00 
0.7000000000D 00 
0.8000000000D 00 
0.9000000000D 00 
0.1000000000D 01

IHC002I STOP 0

Fig. 8 Output from the Program for Example ODE-3
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F. ODER!

A frequently encountered problem is to locate the extreme values 

for one, say the ith, of the components of a solution to the system of 

differential equations,

y-JU) = f1(t,y1(t),y2(t),...,yn(t)) 

y^(t) = f2(t,y1(t),y2(t),...,yn(t)) 

y!(t) = fi(t,y1(t),y2(t),...,yn(t))

y^(t) = fn(t,y-| (t),y2(t),... ,yn(t))

subject to the initial conditions

yja) = c1,y2(a) = c2, ..., yn(a) = cn .

This can be done by first locating where the derivative, y-, of the ith 

component, y^, vanishes and then seeing if there is a local maximum or a 

local minimum (or possibly neither) at this point. The suite of codes

ODERT/STEP, INTRP, DERT, ROOT, or ODERT for short, is a modification of 

ODE which integrates a system of first-order ordinary differential 

equations from T in the direction of TOUT until it locates the first 

root of some specified (nonlinear) equation,

G(t) = g(t,y1(t),y2(t),...,yn(t),yj(t),y^(t),...,yr;(t)) = 0 .

Upon finding a root, the code returns with all the parameters in 

the call list set for continuing the integration to the next root of S
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or to the first root of a new function G. If no roots are found, the 

integration proceeds to TOUT.

The routine ODERT is a supervisor that calls DERT, an adaptation 

of DE, which in turn calls STEP and INTRP. After each internal step, 

ODERT evaluates the function G and checks for a change in sign in the 

functional values from the previous step. If the sign has changed in 

going from B to C, then a zero is bracketed and ODERT calls ROOT 

which uses a combination of the secant method and the bisection method 

to determine the root of the desired accuracy. Two new parameters, 

REROOT and AEROOT, are added to the call list along with G. They set 

the relative and absolute error tolerances for computing the root of 

The stopping criterion is

|G(B)—G(C)| < 2*(REROOT*|B|+ AEROOT) .

Example: Solve y' - 2y/t + 5 ,

subject to y(i) = _4 s

finding all the extreme values of y over the interval from 1 to 7.

We need to supply the calling program and two subroutines, F and G, 

Here, F determines the system of equations and G sets the derivative 

equal to zero (Fig. 9).
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ORNL-DWG 78-10776

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION Y (1), YP(1), W0RK(121), IWOPK(5)

NOW WE HOST INCLODE G IN THE EXTERN^L STATEMENT

EXTERNAL Fr G 
NEQN = 1 
Y (1) = -4.0D0 
T = 1. 0D0 
TOOT = 7.0D0 
RELERR = 1.0D-10 
ABSERR = 1.0D-10 
IFLAG = 1

A PORE RELATIVE ERROR IS REASONABLE HERE

REROOT = 1.0D-10 
AEROOT = O.ODO

10 WRITE(6,101)NEQN,Y(1),T,TOOT,RELERR,ABSERR,IFLAG,REROOT,AEROOT 
CALL ODERT(F,NEQN,Y,T,TOOT,RELERR,ABSERR,IFLAG,WORK,IWORK, G,

1 REROOT,AEROOT)
CALL F (T, Y, YP)
WRITE (6,100) IFLAG, T, Y(1), YP(1)
IF (IFLAG .EQ. 7) GO TO 10

100 FORMAT (5X,7HIFLAG =,120,/,5X,7HT =,D20. 10,/,5X,7HY(1)
1 D20. 10,/,5X ,7HYP (1) =,D20.10)

101 FORMAT(5X,I10,5(/,D25.10) ,/,115,2(/,D25.10))
STOP
END

SOBROOTINE F(T, Y, YP) 
IHPLICIT REAL*8 (A-H,0-Z) 
DIMENSION Y (1) , YP(1)
YP (1) = 2.0D0*Y(1)/T ♦ 5.0D0
RETORN
END

DOOBLE PRECISION FUNCTION G(T, Y, YP) 
IHPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y (1), YP(1)
G = YP (1)
RETORN
END

Fig. 9. Calling Program and Subroutines F and G for ODERT.
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The program yields(Fig. 10).

ORNL-DWG 78-10777

1
-0.4000000000D 01 

0. 1000000000D 01 
0.7000000000D 01 
0. 1000000000D-09 
0.1000000000D-09 

1
0.1000000000D-09
0. 0

IFLAG = 7
T = 0.25000 OOOOOD 01
Y(1) = -0.625000000OD 01 
YP(1) = 0.0

1
-0.6250000000D 01 
0.2500000000D 01 
0.7000000000D 01 
0.1000000000D-09 
0. 1000 00 00 00 D-09 

7
0. 1000000000D-09
0.0

IFLAG = 2
T 0.7000000000D 01
Y ( 1) = 0.1400000GOOD 02
YP (1) = 0.9000000000D 01

IHC002I STOP 0

Fig. 10. Output from the Program for ODERT.

In addition to the standard values for IFLAG (see Section D), we

have:

Value Interpretation

7 normal return, a root satisfying the criterion has been 

found.

8 abnormal return, an odd order pole of G was found.

9 abnormal return, over 500 evaluations of G were reguired

to locate the root.
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Although ODERT is not in the Core Library it is available from the 

Computer Librarian, ext. 4-5317.

III. RKF45

A. Description of the Subroutines

This software package consists of three FORTRAN double-precision sub­

routines, RKF45, RKFS and FEHL, which integrate dY/dt = F(t,Y) from t = T 

to TOUT. The user can then assign a new value to TOUT and call RKF45 

again as on return the parameters in the call list are set for continuing 

the integration. It is also possible to use RKF45 as a one-step inte­

grator to advance the solution a single step in the direction of TOUT.

The subroutine RKF45 serves as an interface between the users' 

calling program and the subroutine RKFS. This subroutine checks the in­

put parameters for errors, determines the accuracy of the particular 

computer being used and determines if the next step can be taken. If it 

can, it sets the step size and advances the approximate solution by one 

step towards TOUT by calling FEHL where the integration actually is per­

formed. It checks the error criteria and if the step was successful, 

continues to advance towards TOUT. Since the step size is changed, it 

maybe that the step just taken advances the solution almost to TOUT and 

that another step can not be made without exceeding the computer's accu­

racy. In that case, the solution at TOUT is determined by extrapolation.

The classical fourth-order Runge-Kutta method is given by

yn+l = yn + (k0 + 2kl + 2k2 + k3)/6
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where

k0 =

k] = hf(tn + h/2,yn + kQ/2) 

k2 = hf(tn + h/2,yn + k1/2)

k3 = hf(tn + h’yn + k2) '

Fehlberq discovered a set of values for the coefficients a., 6.•, y. for^ i ij i

i-1
ki = + aihn^n + ’ 1 =

J *

n+1

which result in a fifth-order method for a predictor and a fourth-order 

method for a corrector. The difference between the predictor and the 

corrector is used to compute the local error estimate in controlling the 

step size. This package was written H. A. Watts and L. F. Shampine [6].

B. The Calling Program

The user needs to write a calling program that

1) supplies the initial conditions,

2) sets the values of the imput variables,

3) invokes RFK45, and optionally

4) writes out the results,

as well as a subroutine F(T,Y,YP) that defines the system of first order 

ordinary differential equations. The input variables for RFK45 are
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F

NEQN

Y

T

TOUT

RELERR
and

ABSERR

IFLAG

WORK
and

IWORK

the name of the subroutine which defines the system of 

differential equations. (Note: F must be declared in 

an EXTERNAL statement.)

the number of equations in the system 1<NEQN. 

the array that contains the initial values of Y(l),

Y(2), ..., Y(NEQN) at t = T when you call RKF45 and 

that contains the values of Y(1),Y(2), ..., Y(NEQN) at 

t = TOUT upon a successful completion of RFK45. 

the starting point of integration.

the output point at which the solution is desired. This 

value can be less than T.

the relative and absolute error tolerances. At each 

internal step going from T to TOUT the code requires that 

| local error | < RELERR*] Y | + ABSERR 

for each component of Y. Neither value can be negative, 

at least one must be positive, and ABSERR must be positive 

if the solution vanishes.

set this equal to 1 the first time RKF45 is called, unless 

one-step integrator control is necessary. Then use -1.

On the return from RKF45, it will have the value 2 if the 

integration was completed successfully, 

two arrays to hold information internal to RKF45 which is 

necessary for subsequent calls. The dimension of WORK 

is 3 + 6*NEQN and that of IWORK is 5.
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C. System Dependent Procedures

The most efficient and convenient way to access RKF45 is to use the 

Core Library of Numerical Software. On the IBM 360 computer it resides 

in LOGLIB in load module form. This is automatically available to all 

FORTRAN jobs without additional JCL. The Core Library resides on the 

DEC-10 in the SYS area as a REL file library and is accessed when exe­

cuting a FORTRAN program by typing

.EX MYPROG,MYSUB,SYS: CORLIB/SEA

If you have questions or problems, please consult a numerical consultant 

or Programming Assistance.

D. Values Returned by RKF45

The subroutine RKF45 will return to your calling program these 

values:

T the value to which T advanced. If there was no trouble,

then T will equal TOUT.

Y the values of Y(1) ,Y(2),..., Y(NEQN) at the current

value of T.

RELERR the same values as when the program began unless RELERR 
and

ABSERR is too small. In this case, IFLAG will equal 3 and

RELERR will be increased so that you can call RKF45 again 

and continue from the current value for T.

The value of IFLAG reports the success or failure of RKF45.

Value Interpretation

= 2 a normal return. The integration reached TOUT. The user 

may reset TOUT and call RKF45 again to continue integration, 

a single step has been successfully taken in the direction
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of TOUT. The users may reset TOUT and call RFK45 again to 

continue integration.

the integration did not reach TOUT because the relative 

error tolerance was too small. RELERR has been increased 

appropriately for continuing.

the integration was not completed because more than 3000 

derivative evaluations were needed. This is approximately 

500 steps. The user may continue to integrate from the 

current value of T by calling RKF45 again, 

the integration was not completed because the solution 

vanished which made a pure relative error test impossible. 

Make ABSERR nonzero if you wish to continue, 

the integration was not completed because the requested 

accuracy could not be achieved using the smallest allow­

able stepsize. You must increase the error tolerance 

before continued integration can be attempted and reset 

IFLAG to 2 or -2.

it is likely that RKF45 is inefficient for solving this 

problem. Too much output is restricting the natural step- 

size choice. Switch to the one-step mode or try ODE. 

at least one of the input parameters is incorrect. One 

or more of the following errors has occurred:

NEQN is less than 1.

T = TOUT and IFLAG is not equal to 1.

RELERR or ABSERR is less than 0.
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IFLAG is equal to 0, is less than -1, or is 

greater than 8.

E. Examples

1. RKF45-1 A second order differential equation.

Solve y" + y = 0

subject to y(0) = 0,y'(0) = 1

We transform this second order differential equation to a system of two 

first order equations by introducing the variables y-| = y and y2 = y' = y 

The equivalent problem is;

Solve y^ = y2

y2 = "yl

subject to y-|(0) = 0,y2(o) = 1 .

Analytically, the solution may be found in closed form to be

y-|(t) = sin t and y2(t) = cos t .

The main program which sets the initial conditions and calls RKF45 

is shown in Fig. 11 and the subroutine F(T,Y,YP) is shown in Fig. 12.
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ORNL-DWf: 78-10791

SET THE DIMENSION FOR T TO BE THE NONBER OF EQUATIONS IN THE STSTEH 
SET THE DIMENSION FOR WORK TO BE 3 ♦ 6*NEQN 
SET THE DIMENSION FOR IWORK TO BE 5

DIMENSION 1(2), WORK (15), IWORK(5)

DECLARE F TO BE AN EXTERNAL SUBROUTINE

EXTERNAL F

SET NEQN AND THE INITIAL CONDITIONS

NEQN = 2 
1(1) = 0.0 
1(2) = 1.0

SET THE INITIAL AND TERMINAL VALOES OF THE INDEPENDENT VARIABLE T 

T = 0.0
TOOT = 3.1#15926535

SET THE ERROR BOUNDS

RELERR = 1.0E-9 
ABSERR = 1.0E-9

SET IFLAG = 1 FOR THE FIRST CALL TO RKF45 

IFLAG = 1

WRITE THE VALUES OSED TO CALL RKF45

WRITE(6,100) NEQN, T(1), T(2), T, TOUT, RELERR, ABSERR, IFLAG 

CALL RKF45

CALL RKF45(F,NEQN,T,T,TOOT,RELERR,ABSERR,IFLAG,WORK,IWORK)

CHECK IFLAG

IF (IFLAG .NE. 8) GO TO 10 
WRITE(6,101)
STOP

10 IF (IFLAG .EQ. 2) GO TO 20
WRITE(6,102) IFLAG, T, T(1), T (2) , RELERR, ABSERR 
STOP

WRITE OUT THE RESULTS 

20 WRITE (6,10 3) T, Y(1), T (2)

FORMATS

100 FORMAT(//,5X,40HTHESE ARE THE VALDES OSED TO CALL RKF45:,//,5X,
1 8HNEQN =,I6,/,5X,8HT (1) =, E20. 10,/, 5X, 8HT (2) = ,E 20. 10,/,5X
2 8HT =,E20.10,/,5X,8HTOOT =,E20.10,/,5X,8HRELERR =,E20.10,
3 /,5I,SHABSERR =,E20.10,,,5X,SHIFLAG =,I6,//)

101 FORMAT(5X,67HIFLAG = 8. AT LEAST ONE OF THE INPUT VALOES IS WRON 
1G. TRT AGAIN.)

102 FORMAT (5X,8HIFLAG =,I3,27H. TAKE APPROPRIATE ACTION.,//,5X,
1 8HT ( 1) =,E20.10,/,5X,8HI(2) =,E20.10,/,5X,8HRELERR E20.10,
2 /,5X,8HABSERR =,E20.10)

103 FORMAT (5X,23HTHIS IS A NORMAL RETURN,/,5X,8HT =,E20.10,/,5X,
1 8HT (1) =.E20.10,/,5X,8HY(2) =,E20.10)

STOP
END

Fig. 11 Calling Program for Example RKF45-1
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ORNL-DWG 78-10792

SOBROOTINE F(T, Y, YP)

SET THE DIMENSION FOR Y AND YP TO BE THE NOMBER OF EQOATIONS 
IN THE SYSTEM

DIMENSION Y (2) , YP(2)

DEFINE THE SYSTEM OF EQOATIONS

YP (1) = Y (2)
YP (2) = -Y(1)
RETORN
END

Fig. 12 Subroutine F for Example RKF45-1

When your job runs, you will get the results shown in Figure 13

ORNL-DWG 78-10793

THESE APE THE VALOES OSED TO

NEQN = 2
Y(1) = 0.0
7(2) = 0. 1000000000E 01
T = 0.0
TO OT = 0.3141592026 E 01
FELEFR = 0.9999998607E-•09
ABSERR = 0. 9999998607E-■09
IFLAG = 1

THIS IS A NORMAL RETORN
T = 0.3141592026E 01
7(1) = -0. 15 18428326 E--04
7(2) = -0.9999980330E 00

CALL FKFU5:

IHC002I STOP 0

Fig. is Output from the Program for Example RKF45-1

[Note: This problem appears in Example ODE-1 in Chapter II.]
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2. RKF45-2 The motion of two bodies under mutual gravitational

attraction.

The following example comes from [6, pp. 122-133].

"Let y(t) denote the position of one body in a coordinate 
system with the origin fixed in the other body. The 
differential equations derived from Newton's laws of 
motion are

-azx(t)
x" {t) = R[t)

y
ii (t) = -a2y[t)

R(t)

where

ff(t) = Wt)2 + »(t)2]3/2

and a is a constant involving the gravitational constant, 
the masses of the two bodies, and the units of measurement. 

If the initial conditions are chosen as

x[0) = 1 — e, x'(0) = 0,

y(0) = 0, y' (o) a n + ey/2
-e)

for some parameter e with 0 £ e < 1, the solution turns out 
to be periodic with period 2n/a. The orbit is an ellipse 
with eccentricity e and with one focus at the origin.

To write this as a system of four first-order equations, 
we introduce

y i y = y, y = X , y = y •
2 3 4

X
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The equations and initial conditions then become

a

y\ = i/ 3 j Z/1 (0) = 1 - e.

2/2 - 2/4, 2/2(0) = 0,

2/3(0) = 0,

By rescaling the time variable, it is possible to elimi­
nate a, but we have not done this because we wish to illus­
trate the use of FORTRAN Common to pass parameters such as 
a from the main program to the subroutine defining the 
equations.

The parameter IFLAG is an important control variable.
It should be set to 1 for the first entry to RKF45. Ordi­
narily, RKF45 will reset it to 2, and it should be left at 
2 for subsequent entries. Values other than 2 returned by 
RKF45 signal various warning and error conditions 
described in detail in the comments. IFLAG = 4 and 
IFLAG = 7 are warnings that RKF45 must work very hard to 
obtain the requested accuracy. It is possible to continue, 
but the user may want to consider increasing the error 
tolerances or changing to a subroutine which uses a 
multistep method. IFLAG = 3 indicates that too much 
relative accuracy is being requested, and IFLAG = 5 or 
6 indicates that the error tolerances must be changed 
before continuing. IFLAG = 8 indicates that RKF45 is 
being called incorrectly. The user is strongly advised 
to include a check on IFLAG in his main program.

In this sample run, we have taken e = 0.25 and a = 
n/4 and have printed the position for 0 < t < 12 in 
steps of 0.5. The output is in Table 6.2. Notice that 
the orbit is periodic with a period of t = 8."
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Table 6.2 OUTPUT FROM SAMPLE PROGRAM, [6]

0.0 0.750000000 0.000000000
0.5 0.619769032 0.477791373
1 .0 0.294417538 0.812178519
1.5 -0.105176382 0.958038092
2.0 -0.490299793 0.939874996
2.5 -0.813942832 0.799590802
3.0 -1.054031517 0.575706078
3.5 -1 .200735042 0.300160708
4.0 -1.250000001 -0.000000001
4.5 -1.200735042 -0.300160709
5.0 -1 .054031517 -0.575706079
5.5 -0.813942932 -0.799590803
6.0 -0.490299793 -0.939874996
6.5 -0.105176383 -0.958038092
7.0 0.294417537 -0.812178518
7.5 0.619768031 -0.477791370
8.0 0.749999996 0.000000006
8.5 0.619768024 0.477791379
9.0 0.294417526 0.812178522
9.5 -0.105176395 0.958038091

10.0 -0.490299806 0.939874991
10.5 -0.813942843 0.799590794
11.0 -1 .054031524 0.575706068
11 .5 -1.200735047 0.300160697
12.0 -1 .250000002 -0.000000011



32

The main program is shown in Fig. 14.

ORNL-DWG 78-10794

EXTERNAL ORBIT
REAL T, Y(U), TOOT, RELERR, ABSERR
REAL TPINAL, TPRINT, ECC, ALFA, ALFASQ, WORK(27)
INTEGER IWORK (5), IFLAG, NEQN 
COHHON ALFASQ 
ECC = 0.25
ALFA = 3.141592653589/4.0 
ALFASQ = ALFA*ALFA 
NEQN = 4 
T = 0.0
T (1) = 1.0 - ECC 
T (2) = 0.0 
T (3) = 0.0
Y(4) = ALFA*SQRT((1.0 ♦ ECC)/(1.0 - ECC))
RELERR = 1.0E-9 
ABSERR = 0.0 
TFINAL = 12.0 
TPRINT = 0.5 
IFLAG = 1 
TOOT = T

10 CALL RKF45(ORBIT,NEQN,Y,T,TOOT,RELERR,ABSERR,IFLAG,WORK,IWORK) 
WRITE(6,11) T, Y (1), Y(2)
GO TO (80, 20, 30, 40, 50, 60, 70, 80), IFLAG 

20 TOOT = T ♦ TPRINT
IF (T .LT. TFINAL) GO TO 10 
WRITE(6,25)

25 FORMAT (///,5X,39HTHIS IS A NORMAL COMPLETION OF RKFU5 .,///) 
STOP

30 WRITE(6,31) RELERR, ABSERR 
GO TO 10

40 WRITE(6,41)
GO TO 10

50 ABSERR = 1.0D-9
WRITE (6,31) RELERR, ABSERR 
GO TO 10

60 RELERR = 10.0*RELERR
WRITE(6,31) RELERR, ABSERR 
IFLAG = 2 
GO TO 10

70 WRITE(6,71)
IFLAG = 2 
GO TO 10

80 WRITE(6,81)
STOP

C
11 FORMAT (F5.1,2F15.9)
31 FORMAT (17H TOLERANCES RESET, 2E12.3)
41 FORMAT (11H MANY STEPS)
71 FORMAT (12R HOCH OOTPOT)
81 FORMAT (14H IMPROPER CALL)

END

Fig. 14. Calling Program for Example RKF45-2
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The subroutine ORBIT is shown in Fig. 15.

SOBKOOTINE OBBIT(T, Y, YP)
PEAL T, Y (4) , YP (4) r P, ALFASQ 
COMflON ALFASQ 
P = Y (1)*Y (1) ♦ Y (2) *Y(2)
P = R* SQPT (P) /ALFASQ 
YP (1) = Y (3)
YP (2) = Y (4)
YP (3) = -Y(1)/R 
YP (4) = -Y(2)/R
PETORN 
END

Fig. 15. Subroutine ORBIT for Example RKF45-2

The results are shown in Fig. 16.

The following statement by Watts and Shampine occurs in the listing 

of RKF45:

"RKF45 is primarily designed to solve non-stiff, 
and mildly stiff differential eguations when 
derivative evaluations are inexpensive. RKF45 
should generally not be used when the user is 
demanding high accuracy."
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0.0 0.750000000 0.0
0.0 0.750000000 0.0

TOLERANCES RESET 0. 100E-08 0.1
0.5 0.619767427 0.477788806
1.0 0.294415772 0.812172532
1.5 -0.105182588 0.958026409
2.0 -0.490307987 0.939852118
2. 5 -0.813949347 0.799551964
3.0 -1.054026604 0.575650275
3.5 -1.200708389 0.300088167
4.0 -1.249939919 -0.000086818
4.5 -1.200632095 -0.300254643
5.0 -1.053875923 -0.575793087
5.5 -0.813728869 -0.799649894
6.0 -0.490025043 -0.939874530
6.5 -0.104854643 -0.957933247
7.0 0.294736445 -0.811916292
7.5 0.619973838 -0.477347434
8.0 0.749956071 0.000545219
8. 2 0.725498140 0.212828636

MANY STEPS
8.5 0.619443297 0.478255749
9.0 0.293920815 0.812429488
9.5 -0. 105715394 0.958052158

10.0 -0.490790486 0.939681590
10.5 -0.814329267 0.799231887
1 1.0 -1. 054275513 0.575223446
11.5 -1.200806618 0.299594939
1 2.0 -1.249875069 -0.000607297

THIS IS A NOHHAL COMPLETION OF RKFU5

Fig. 16. Output from the Program for Example RKF45-2
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IV. GEAR

A. Description of the Subroutines 

This software package consists of seven FORTRAN double-precision

subroutines, GEAR, INTERP, STIFF, COSET, PSET, DEL, and SOL, which 

integrate dY/dt = F(t,Y) fro™ t = T to TOUT. The user can repeatedly 

reset TOUT and integrate again or the user can specify that control 

is to be returned after one step in the direction of TOUT. While there 

are many options, the chief virtue of GEAR is that it works well in 

solving stiff systems by using the "stiffly stable" technique of Gear [7], 

a modification of the backward differentiation formulas.

ORNL-DWG 78-10778

PEDERV

DIFFUN

COSET

INTERP

STIFF

Cal 1ing 
Program

Fig. 17 Block Diagram for GEAR.
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The subroutine GEAR controls the calls to the other subroutines 

and returns the solution and messages to the main program. STIFF per­

forms a single step of the integration and tries to control the local 

error by selecting the step size and the order of the method. Since 

the last step may go beyond TOUT, INTERP computes the interpolated 

values for y-j, ..., yn at TOUT. The subroutines COSET and PSET set 

various constants and DEC and SOL are used in solving linear algebra 

problems associated with the differential equations.

B. The Calling Program

The user needs to write a calling program using double-precision 

floating-point variables and two subroutines also in double precision.

The calling program

1) supplies the initial values and sets the parameters in the 

call list,

2) calls the routine DRIVE, and optionally

3) writes out the results.

The parameters in the call list are:

DIFFUN the name of the user supplied subroutine DIFFUN(N,T,Y,DOT) 

which computes the vector function YDOT = F(T,Y).

PEDERV the name of the user supplied subroutine PEDERV(N,T,Y,PD,NO) 

which computes the N by N Jacobian matrix of partial de­

rivatives and stores it in PD as an NO by NO array. [Note: 

PD(I,J) is the partial derivative of YDOT(I) with respect 

to Y(J)]. This subroutine is called only if MITER (See 

below) is set equal to 1. In all other cases, PEDERV will
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be a dummy subroutine.

N the number of equations, 1 < N < 20.

TO the starting value for the independent variable t.

HO the initial value for the step size, h. It should start

out low, and if it is not low enough to pass the error 

test based on EPS, the program reduces h automatically.

Y0 the array that contains the values for , Y^, ... Y^ at

TOUT.

TOUT the terminal value for t. The interval of integration 

goes to TO to TOUT.

EPS the local error bound. Estimates of the single step

error 6^ in Y^ (t) divided by YMAX^., the previous maximum 

absolute value of Y^, are kept less than EPS in the 

following sense:

{[(61/YMAX1)2 + ... + (6n/YMAXn)2]/n}1/2 < EPS .

MF the method flag. You have a choice of two methods, each

with four types of iterations for the corrector formula. 

The selection is determined by the input variable MF,

MF = 10*METH + MITER , 

where METH indicates the method

1 implicit Adams methods.

2 Gear's "stiffly stable" method.

and MITER indicates the corrector iteration technique

0 functional iteration - no partial derivatives

are needed.
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1 the chord method with the Jacobian supplied by the 

user supplied subroutine PEDERV.

2 the chord method with the Jacobian calculated in­

ternally by finite differences.

3 the chord method with the Jacobian replaced by a 

diagonal approximation based on a directional

derivative.

If the problem is not stiff then you should use ODE in­

stead. If the problem is stiff, use MF = 21 or 22 for

best results.

INDEX a flag used for input and output.

Val ue Interpretation

1 this is the first call for this integration problem.

0 this is not the first call for the problem and integration

is to continue.

-1 this is not the first call for the problem and the user 

has reset at least one of N,EPS, or MF.

2 the same as 0 except that TOUT is to be attained without 

interpolation. This assumes that TOUT is greater than 

or equal to the current value of T.

3 the same as 0 except that control is returned to the cal­

ling program after one step without regard to TOUT.

The subroutine DIFFUN(N, T, Y, YDOT) defines the system of equations 

while the subroutine PEDERV(N, T, Y, PD, NO) is used if MF = 11 or 21 

and applies the Jacobian matrix (i.e., the matrix of the partial de­

rivatives) 8f./9y.. In all other cases a dummy routine
o
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SUBROUTINE PEDERV (N, T, Y, PD, NO)

RETURN

END

must be supplied. Both subroutines must be declared to be EXTERNAL.

C. System Dependent Procedures

The most efficient and convenient way to access GEAR is to use the 

Core Library of Numerical Software. On the IBM 360 computers, it re­

sides in LOGLIB in load module form. This is automatically available 

to all FORTRAN jobs without additional JCL. The Core Library resides on 

the DEC-10 in the SYS area as a REL file library and is accessed when 

executing a FORTRAN program by typing

.EX MYPROG,MYSUB,SYS:C0RLIB/SEA

If you have questions or problems, please consult a numerical consultant 

or Programming Assistance.

D. Values Returned by GEAR

The subroutine GEAR will return these values to your calling 

program:

HO the step size last used in STIFF whether it was successful

or not.

Y0 the values of y-|,...,yn at t = TOUT.

TOUT if the integration was successful and INDEX was not set 

to 3 on input, then TOUT is unchanged from its input 

value. Otherwise, TOUT is the farthest value of t for 

which integration has been completed.
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INDEX indicates the results of the last call.

0 the integration was successfully completed.

—1 the integration was stopped after failing to pass

the error test even after reducing the step size by 

a factor of 10^ from its initial value.

—2 the integration was stopped after some success 

because EPS was too small.

—3 the integration was stopped after failing to achieve 

corrector convergence even after reducing the step 

size by a factor of 10^.

-4 at least one input value was illegal, that is,

EPS < 0, N < 0, (T0-r0UT)*HO < 0, 

or index was illegal.

-5 INDEX was —1 but TOUT was not beyond the current 

value for t.

E. Examples

GEAR-1 A second-order differential equation.

Solve y" = lly' + lOy = 0

subject to y(0) = 1, y' (0) = -1

The equation may be transformed into a system of two first order 

equations by introducing the variables y-, = y and y2 = y' = y\ •
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Solve = y2

Y2 = -lly2 - 10y ,

subject to y-|(0) = 1, y2(0) = -1.

The closed form solution is y = e"^. The double precision calling 

program which sets the initial conditions and calls GEAR is shown in 

Fig. 18. All eight combinations of the two methods and the four iter­

ation techniques are used. The common block

C0MM0N/GEAR9/HUSED,NQUSED,NSTEP,NFE,NJ E 

has been accessed in the calling program so that the number of steps 

taken (NSTEP), the number of function evaluations (NFE), and the number 

of times the Jacobian was evaluated (NJE) could be printed out. [Note: 

The same equation appears in example EPISODE-1 in Chapter V.]
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Nfc KB ML NOMINTESEB VARIABLE DOUBLE PBECISZOE VABZABLES

IHFLICIT REALMS(A-HrO-Z)

DECLARE THE VARIABLES HELD IH COHHON

COMMON /GEAR9/HUSED, NQUSED, NSTEP, NFE, NJE 

SET THE DIMENSION OF TO 

DIMENSION TO(2)

DECLARE DIFFON AND PEDERV TO BE EXTERNAL SUBROUTINES

EXTERNAL DIFFON, PEDERV

TEST THE FOUR TECHNIQUES ON BOTH METHODS.

DO 10 METH = 1, 2 
DO 2 0 MITER1 = 1 , 4 

MITER = MITER1 - 1

SET N (THE NUMBER OF EQUATIONS) AND THE IHITAL CONDITIONS. 

N = 2
TO (1) = 1.0D0 
TO (2) = -1.0D0

SET THE INITIAL AND TERMINAL VALUES OF T.

TO = 0.0D0 
TOUT = 100.0D0

SET THE INITIAL STEP SIZE AND THE ERROR BOUND

HO = 1.0D-10 
EPS «= 1.0D-10

SET INDEX = 1 FOB THE FIRST CALL TO GEAR .

INDEX = 1

SELECT THE METHOD AND TECHNIQUE 

MF = 10*METH ♦ MITER 

WRITE THE VALUES USED TO CALL GEAR.

WHITE (6, 100) N, TO, HO, T 0 (1) ,T0(2) , TOUT, TERROR, MF ,INDE X 

CALL GEAR

CALL GEAR(DIFFON,PEDERV,N,TO,HO,TO,TOUT,EPS,MF, INDEX) 

CHECK INDEX

Fig. 18. Driver Program for Example GEAR-1
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c
IF (INDEX .EQ. 0) GO TO 30 

C
C KBIT I THE BESOLTS.
C

BBITE (6, 101) INDEX,HO,Y0(1)fT0(2) ,TOOT,EPS,HF 
GO TO 20

30 HHITE(6, 102) HF, TOOT, T0(1|, 10(2), NSTEB, NFE, NJE
IF(HITEB1.EQ.2.0B.HITEB1.EQ.4)WRITE(6,104)

20 CONTINOE 
10 CONTINOE 

C
C FORHATS 
C

100 FOBHVT (//,5X,39HTHESE ABE THE VALUES OSED TO CALL GEAB:,//,5X,
1 8HN », 17,/, 5X, 8HT0 =,D20.10,/,5X,8HH0 *,D20.10,/,5X,
2 8HYO{1) *,D20. 10,/5X,8HY0(2) *,D20.10,/,5X,8HTOOT =,D20.10,/,
3 5X,8HEPS *,D20.10,/,5X,8HHF =,17,/,5X,SHINDEX =,17)

101 FCBHAT (//,5X16HWARNING INDEX =,13,/,5X.8HH0 =,D20.10,/,5X,
1 8HY0 (1) s,D20. 10,/,51,SHY0(2) =,D20.10,/,5X,8HTOOT =,D20.10,
2 /,5X,8HEPS », D20. 10,/, 5X, 8HHF *=,17)

102 FOHHAT (//,5X,13HHF WAS SET TO,I3,//,5l,8HTO0T *,D20.10,/,5X,
1 8HYO(1) «,D20.10,/,5X,8HY0 (2) ■,D20. 10,/5X,28HTHE PROBLEH WAS C
2CHFLET ED IH,I5,7H STEPS.,/,5X,10HTHERB WEHE,I5,21H CALLS TO DIFFON
3 AND,/, 5X, 10HTHERE BERS,I5, 17H CALLS TO PEDERV.)

103 FORHAT (//,5X,2 9HTHIS IS A HOBHAL TEBHINATION.)
104 FORHAT (1H1)

STOP
END

Fig. 18. (Cont’d)
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Note that all four modifications of both methods will be used. The 

two subroutines are shown in Fig. 19.

SCBROUTINE DIFFUN(N, T, Y, YDOT)
C
C MAKE ALL NONINTEGER VARIABLE DOUBLE PRECISION VARIABLES 
C

IMPLICIT RIAL*8 (A-HrO-Z)
C
C DIMENSION Y AND YDOT FOR THE SYSTEM OF EQUATIONS.
C

DIMENSION Y (2) r YDOT (2)
C
C DEFINE THE SYSTEM OF EQUATIONS.
C

YDOT (1) = Y(2)
YDOT (2) = -10. 0D0*Y ( 1) - 11.0D0*Y(2)
RETURN
END

SUBROUTINE PEDERV (Nr T, Yr PD, NO)
C
C MAKE ALL NONINTEGER VARIABLE DOUBLE PRECISION VARIABLES 
C

IMPLICIT REAL*8(A-H,0-Z)
C
C SET THE DIMENSION FOR PD r THE JACOBIAN MATRIX OF PARTIAL 
C DERIVATIVES.
C

DIMENSION PD (NO, NO)
C
C DEFINE THE NO BY NO MATRIX PD .
C

PD (1 , 1) = 0.0D0 
PD (1,2) = 1.0D0 
PD (2,1) = -10.0D0 
PD (2, 2) = -11.0D0 
RETURN 
END

Fig. 19. Subroutines PEDERV and DIFFUN for Example GEAR-1

When your job is executed you will have the results displayed in

Fig. 20.
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THESE ABE THE VALUES OSED TO CALL GEAR:

N = 2
TO = 0.0
HO = C. lOCOOOCOOOD-■09
YO (1) = 0.1000000000D 01
YO (2) = -0.1000000000D 0 1
TOOT = C. lOCOCCOOOOD 03
EPS = 0.7863217309E 66
MF = 10
IN DEX = 1

MF HAS SET TC 10

TOOT = 0. 1000000000 D 03
YO (1) = 0.1165759789D-12
YO (2) = -C. 11 6575S789D-11
THE PRCEIEM WAS COMPLETED IN 1332 STEPS
THERE WERE 2213 CALLS TO DIFFON AND,
THERE WERE 0 CALLS TO PEDERV.

TH ESE ARE THE VALUES OSED TO CALL GEAR:

N = 2
TO = 0.0
HO = C. 10C0CC0000D-09
YO (1) = 0. 1000000000 D 01
YO (2) = -0. 1000000000 D 0 1
TOOT = C.lOCOCCOOOOD 03
EPS = 0. 78 63317309 E 66
MF = 11
INDEX = 1

MF WAS SET TC 11

TOOT = 0. 1000000000 D 03
YO (1) 0.3578126631D-18
YO (2) -0. 3625S7C288D-1 8
THE PRCEIEM WAS COMPLETED IN 203 STEPS
THERE WERE 277 CALLS TO DIFFON AND,
THERE WERE 25 CALLS TO PEDERV.

Fig. 20. Output for Example GEAR-1
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THIS! AP 1 THE VALUES USED TO CALL GEAR:

N - 2
TO = 0.0
HO = C. IOCOOOCOOOD-09
YO (1) = 0.1000000000D 01
YO (2) = -0.1000000000D 01
TOUT = C.IOCOOCCOOOD 03
EPS = 0.7863317309E 66
MF = 12
IN DEX = 1

MF «AS; SET TO 12

TOUT = 0. 1000000000D 0 3
YO (1) = 0.66086922040-19
YO (2) = -0.6631521927D-19
THE PRCEIEM WAS COMPLETED IN 222 STEPS
THERE WERE 375 CALLS TO DIFFUN AND,
THERE WERE 29 CALLS TO PEDERV.

THESE ARE 1THE VALUES USED TO CALL GEAR:

N — 2
TO = 0.0
HO = C.10C0CCC000D-09
YO (1) = 0.1000000000D 01
YO (2) = -0. 1000000000 D 0 1
TOUT = C.lOCOCCOOOOD 03
EPS = 0.7863317309 E 66
MF = 13
IN DEX 1

MF WAS SET TO 13

TOUT = 0. 1000000000 D 0 3
YO (1 ) = -0. 53 91672358D-10
YO (2) = C. 49 27 87223 0D-10
THE PRCEIEM WAS COMPLETED IN 297 STEPS
THERE WERE 633 CALLS TO DIFFUN AND,
THERE WERE 70 CALLS TO PEDERV.

Fig. 20. (Cont'd)
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THESE AEI THE VALDES USED TO CALL GEAR:

N = 2
TO = 0.0
HO = C. lOCCCOOOOOD-•09
YO (1) = 0. 1000000000C 0 1
YO (2) = -0.1000000000D 0 1
TOOT = C.IOCOOCCOOOD 03
EPS = 0.7863317309E 66
MF = 20
IN EEX = 1

MF HAS SET TC 20

TOUT 0. IOOOOOOOoO D 03
YO (1) = -0.759732724 2D-12
YO (2) = C.7597327242D-11
THE FRCEIEK! HAS COMELETEE IN 1313 STEPS
THERE HERE 2116 CALLS TO DIFFUN AND,
THERE HERE 0 CALLS TO PEDERV.

THESE ARE THE VALUES USED TO CALL GEAR:

N - 2
TO = 0.0
HO = C. IOCOOCOOOOD-09
YO (1) = 0. 1000000000 D 01
YO (2) = -0. 10000000 00 D 01
TOUT = C. lOCOCCOOOOD 03
EPS = 0.7863317309 E 66
MF = 21
IN EEX 1

MF HAS SET TC 21

TOUT = 0. 1000000000 D 03
YO (1) = 0. 71 1281479 5D-13
YO (2) - -C. 71 12 8 14795D-1 3
THE PRCEIEM HAS COMELETEE IN 325 STEPS
THERE HERE 362 CALLS TO DIFFUN AND,
THERE HERE 27 CALLS TO PEDERV.

Fig. 20. (Cont'd)
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THESE API THE VALDES OSED TO CALL GEAR: 

N = 2
TO = 0.0
HO = 0.lOCOOOCOOOD-■09
VO (1) = 0.1000000000D 0 1
VO (2) = -0. 1000000000 E 0 1
TOOT = C.IOCOOCCOOOD 03
EPS 0.7863317309 E 66
MF = 22
IN EEX = 1

MF HAS SET TC 22

TOOT = 0. 1000000000D 03
YO (1 ) = 0.71 12814797D-13
YO (2) -C.71 12614797D-13
THE PRCEIEM WAS COMELETEE IN 325 STEPS
THERE WERE 416 CALLS TO DIFFON AND,
THERE HERE 27 CALLS TO PEDERV.

THESE ARE THE VAIOES OSED TO CALL GEAR:

N = 2
TO = 0.0
HO = C.lOCOCOOOOOD-■09
VO (1) = 0.1000000000E 0 1
VO <2) = -0. 1000000000D 0 1
TOOT = C.IOCOOCCOOOD 03
EPS = 0.7863317309E 66
MF = 23
IN EEX = 1

MF WAS SET TC 23

TOOT 0. 1000000000 D 03
YO (1) -0.217616 86 99D-10
YO (2) 0.1990345713D-10
THE PRCEIEM HAS COMELETEE IN 364 STEPS
THERE HERE 588 CALLS TO DIFFON AND,
THERE HERE 53 CALLS TO PEDERV.

IHCO02 I STOP 0

Fig. 20. (Cont'd)
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2. GEAR-2 A pair of stiff equations

Solve = 998y1 + 1998y2

y2 = -999y1 - 1999y2

subject to y-,(0) = l,y2(0) = 1.

Analytically, the closed form solution is:

y](t) = 4e-t - 3e"1000t

y2(t) = -2e-t + 3e“1000t

The calling program and the two subroutines are shown in Fig. 21 and the 

printout for this program is shown in Fig. 22.
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IBFLICIT R1M,*8(»-Hr0-Z)
COHHOH /QEAH9/HD31D, HQOSID, ISTIP« IM. MJB
DIHEHSION 10(2)
EXTERNAL DIFFON, PEDERV 
N = 2
TO (1) = 1 .ODO 
TO (2) = 1.0D0 
TO = O.ODO 
TOOT = 1. ODO 
HO = 1.CD-10 
EPS = 1.0D-10 
HF = 21 
INDEX = 1
WRITE(6,100) N,T0,HO,TO (1),T0 (2),TOOT,EPS,HF,INDEX 
CALL GEAR (DIFFON,PEDERV,N,TO,HO,TO,TOOT,EPS,HF,INDEX)
WRITE (6,10 1) HF, INDEX, TOOT, TO ( 1) , 10(2), NSTEP, NFE, NJE 
WRITE (6,102)

100 FORHAT(//,5X,39HTHESE ARE THE VALOES OSED TO CALL GEAR:,//,5X,
1 8 HN =,17,/,5X,8HT0 =,D20.10,/,51,8HH0 = ,D20.10,/,5X,
2 8HTO(1) =,D20.10,/5X,8HT0(2) =,D20.10,/,5X,8HTOOT =,D20.10,/,
3 5X,8HEPS =,D20.10 ,/,5X,8HHF =,17,/,5X,8HINDEX =,17)

101 FORHAT (//,5X,13HHF WAS SET TO,13,//,5X,8HTOOT =,D20.10,/,5X,
1 8 HT 0 (1) =, D20. 10,/, 5X, 8HT0(2) =,D 2 0. 10,/5X ,2 8H THE PROBLEH WAS C 
20HPLETED IN,I5,7H STEPS.,/,5X,1OHTHERE WERE,I5,21H CALLS TO DIFFON 
3 AND,/,5X,10HTHERE SERE,I5,17H CA7.LS TO PEDERV.)

102 FORHAT (//,5X,29HTHIS IS A NORHAL TEBHINATION.)
STOP
END

SOBROOTXNB PEDERV (N, 
IMPLICIT REAL*8(A-B.
DIHENSION 
PO (1,1) «» 
PD(1,2) * 
PD (2, 1) - 
PD (2,2) - 
RETORN 
END

PD (NO, NO) 
998.ODO 

1998.ODO 
-999.ODO 

-1999.ODO

?» ?Pr

SOEBOOTINE DIFFON (N, T, I, TDOT) 
IHPLICIT BEAL*8(A-H,O-Z)
DIHENSION T(2) , TDOT(2)
TDOT (1) ■ 998.OD0*T (1) ♦ 1998.0*1 (2) 
TDOT (2) - -999.0D0*T(1) -1 999 .0D0*T (2) 
EETORN 
END

Fig. 21. Calling Program and Subroutines PEDERV and DIFFUN for

Example GEAR-2
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THESE ARI THE VALUES USED TO CALL GEAB:

N = 2
TO = 0.0
HO - C. 10C0CCC000D-09
10 (1) - 0. 1000000000 E 01
VO (2) = 0. 1000000000 E 01
TOUT = C. 1CC0CCC000D 01
EPS = 0. 1000000000 E-09
MF = 21
IN EEX - 1

MF WAS SET TC 21

TOUT = 0.0
YO (1) = 0. 1000000000D 0 1
YO (2) = C. 1411 517766D 01
THE PRCEIEM WAS COMELETEE IN***** ST
THERE WERE 389 CALLS TO DIFFUN AND,
THERE WERE 427 CALLS TO PEDERV.

MF *AS SET TC 32 

TOUT

THIS IS A NORMAL TERMINATION. 

IHC002I STCF 0

Fig. 22. Output from the Program for Example GEAR-2
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3. GEAR-3 Creating a table:

Solve y' = -y

subject to y(0) = 1 •

The closed form solution is y = e_t. A table of values for y will 

be printed for t = 0, 0.1, 0.2, ..., 1.0. The main program and two sub­

routines are shown in Fig. 23. The printout for this program is shown 

in Fig. 24. Since MF has been set to 10, the subroutine PEDERV is never 

called so a dummy subroutine has been used. [Note: The same problem 

appears in Example ODE-3 in Chapter II.]

IRELICIT BEAL*8(A-BfO-t)
COHHOH /8BAB9/H081Qr IQOSID, HSf
DIHEHSION TO (1)
IXTEHNAL DIFFON, PEDERT 
H = 1
TO (1) = 1.0D0 
TO = O.ODO 
TOOT = O. IDO 
HO = 1.0D-10 
IPS = 1.0D-10 
HF = 10 
INDEX. = 1
HRITE(6,100) TO, TO(1)

C
C SET OP THE LOOP TO FOBH THE TABLE. 
C

10
100

101

DC 10 I = 1, 10
CALL GEAR(DIFFON,PEDERV, N,TO, HO,TO,TOOT,EPS,HF,INDE 
8RITE (6,10 1) TOOT, T0(1)
TOOT « TOOT ♦ 0.1 DO 

CCNTIHO E
FORHAT (5X,39HA TABLE OF VALOES FOR TP * -T, T(0) ■ 1, 

1 24X,1HT,/,5X,D20.10,5X,D20.10) 
FORHAT(5X,D20.10,5X,D20.10)
STOP
END

X)

//,10X ,1 HT f

Fig. 23, Calling Program and Subroutines DIFFUN and PEDERV

for Example GEAR-3
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SOBHOOUME DIFFOB (>, T, I, YDOT) 
IHPLICIT HE)kL*8(X-H,0-Z) 
DIHEHSION 1(1), I DOT (1)
YDOT (1) * -Y(1)
RETURN
END

SUBROUTINE PEDERV (N, T, I, PD, NO)
RITORN
ZBE

Fig. 23. (Cont'd)

A TABLE OF VALDES FOR YP = -Y, Y(0) = 1

T
0. 0
0.1000000000E 00 
0.2 0000000 00 E 00 
0.3CCOOOOOOOD 00 
0.qOCCCCCOCOD 00 
0.5000C00000E 00 
O.6CCOOOOOOOD 00 
0.7CCCCCC0C0D CO 
0.8000000000E 00 
0. 90C0000000E 00 
0.1CCC000000D 01

Y
0.1000000000D 01 
0.9048374179D 00 
0. 8187307531D 00 
0. 740 8182207D 00 
0.670320046 0D 00 
0.6065306597D 00 
0. 5488 116360D 00 
0.496 585303 7D 00 
0.4493289640D 00 
0.4065696596D 00 
0. 36787944 10D 00

IEC002I STOP 0

Fig. 24. Output from the Program for Example GEAR-3
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V. EPISODE

A. Description of the Subroutines 

This software package consists of eight FORTRAN double-precision 

subroutines, EPSODE, INTERP, TSTEP, COSET, ADJUST, PSET, DEC, and SOL, 

which integrate dY/dt = F(t,Y) from t = T to TOUT. The user can repeatedly 

reset TOUT and call EPSODE to continue the integration or the user can 

specify that control is to be returned after one step in the direction of 

TOUT. EPISODE was designed to solve a typical set of problems from chem­

ical engineering and works well on stiff systems that are oscillatory or 

highly nonlinear. The user is advised to select the option METH = 2, 

which uses a variable-order, variable-step size backward differentiation 

method.
ORNL-DWG 78-10796

PEDERV

DIFFUN ADJUST

COSET

EPISODE

INTERP

TSTEP

Cal 1ing 
Program

Fig. 25. Block Diagram for EPSODE



55

The Subroutine EPSODE is called once for each output value of T. It 

then makes repeated calls to TSTEP and one call to INTERP. It returns the 

solution and messages. TSTEP is the integration subroutine and controls 

the error by selecting the step size and the order of the method. Since 

the last step may go beyond TOUT, INTERP computes the interpolated values 

for Y(l), Y(2), ..., Y(N) at TOUT. COSET sets coefficients used in TSTEP 

and ADJUST adjusts the history array on reduction of order. Only when 

MITER equals 1 or 2 are PSET, which computes and processes the Jacobian 

matrix, DEC, which performs the LU decomposition of a matrix, and SOL, 

which solves a linear system AX = B where A has been processed by DEC, 

called.

B. The Calling Program

The user needs to write a calling program using double-precision 

floating point variables and two subroutines which also use double­

precision. The main program:

1) supplies the initial values,

2) sets the variables in the call list,

3) calls the routine EPSODE, and optionally

4) writes out the results.

The variables in the call list are

DIFFUN the name of the user supplied subroutine DIFFUN(N,T,Y,

YDOT) which computes the vector function YDOT = F(T,Y). 

PEDERV the name of the user supplied subroutine PEDERV(N,T,Y,

PD, NO) which computes the N by N Jacobian matrix of 

partial derivatives and stores in PD as an NO by NO
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array. [Note: PD(I,J) is the partial derivative of 

YDOT(I) with respect to Y(J).] This subroutine is called 

only if MITER is set equal to 1 (See below). In all 

other cases, PEDERV will be a dummy subroutine.

N the number of equations, 1 < N £ 20 (it is possible to

increase this upper bound of 20).

TO the starting value for the independent variable t.

HO the initial value for step size, h. It should start

out small; and if it is not small enough to pass the 

error test based on EPS, the program automatically
_3

reduces h by up to a factor of 10 before stopping.

YO the array that contains the values for Y(l), Y(2), ...,

Y(N) at t = TO. After EPSODE returns control to the 

main program, YO contains the values of Y(l), Y(2), ..., 

Y(N) at TOUT.

TOUT the terminal value for t at the end of this call to 

DRIVE.

EPS the relative error bound used on the first step. Let

R(I) denote the estimated relative local error in Y(I) 

(i.e., the error relative to YMAX(I)). Then EPS is a 

bound on the root mean square norm of the vector R, 

that is.

[{(R(l))2 + ... + (R(N))2}/N]l/2<EPS .
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the error flag.

Value Meaning

1 absolute error control, YMAX(I) = 1.

2 error relative to ABS(Y) is controlled. If 

the initial value of Y(I) is 0, then YMAX(I) is 

equal to 1 initially.

3 error relative to the largest value of YMAX(I) 

seen so far is controlled. If the initial 

value of Y(I) is 0, then YMAX(I) is set to 1 

initially.

the method flag. It is a two-digit decimal integer.

METH = 1 indicates a variable step size, variable

order Adams method suitable for nonstiff 

problems.

METH = 2 indicates a variable step size, variable

order backward differentiation method 

suitable for stiff problems.

indicates the method of interative correction.

MITER = 0 indicates functional iteration and no 

partial derivatives are needed.

MITER = 1 indicates a chord or semi-stationary

Newton method with a Jacobian matrix of 

partial derivatives supplied by the user- 

written subroutine PEDERV. 

indicates a chord Newton method in an 

internally computed Jacobian.

MITER = 2
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MITER = 3 indicates a chord Newton method with an 

internally computed diagonal matrix 

approximation to the Jacobian.

INDEX a flag used for input and output

Value Interpretation

1 this is the first call for this integration 

problem.

0 this is not the first call for the problem and 

integration is to continue.

-1 this is not the first call for the problem and

the user has reset at least one of N,EPS, or 

MF.

2 the same as 0 except that TOUT is to be at­

tained without interpolation. This assumes 

that TOUT is greater than or equal to the cur­

rent value of T.

3 the same as 0 except that control is returned 

to the calling program after one step without 

regard to TOUT.

The subroutine DIFFUN(N,T,Y,YDOT) defines the system of differential 

equations while the subroutine PEDERV(N,T,Y,PD,NO) provides the Jacobian 

matrix of partial derivatives. If you do not use MF = 11 or 21, you can 

use the dummy routine

SUBROUTINE PEDERV(N,T,Y,PD,NO)

RETURN

END
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Both subroutines must be declared to be EXTERNAL.

C. System Dependent Procedures

The most efficient and convenient way to access GEAR is to use the 

Core Library of Numerical Software. On the IBM 360 computers, it resides 

in LOGLIB in load module form. This is automatically available to all 

FORTRAN jobs without additional JCL. The Core Library resides on the DEC- 

10 in the SYS area as a REL file library is accessed when executing a 

FORTRAN program by typing

.EX MYPROG,MYSUB,SYS:CORLIB/SEA

If you have questions or problems, please consult a numerical consultant 

or Programming Assistance.

D. Values Returned by EPSODE

The subroutine EPSODE will return to your calling program these 

values:

HO the step size used last whether or not the step was

successful.

TO

YO the values of Y(1),Y(2),..., Y(N) at TO.

the last value of t reached successfully. It is TOUT

9 ••• 9

in most cases.

Val ue Interpretation

INDEX = 0 the integration was completed to TOUT or

beyond.

the integration was halted because the error 

test was failed--even after reducing h by a 
factor of 1010 from its initial value.

-2 after some initial success, the integration
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was halted by repeated error test failures. 

Perhaps too much accuracy is being requested 

or a bad choice of MF was made.

-3 the integration was halted because the cor­

rector failed to converge even after reducing 

h by a factor of 10^° from its initial value.

-4 an error was made in the values of the input 

parameters.

-5 INDEX was -1 on input but TOUT was not beyond

T. Interpolation to t = TOUT was performed. 

The user may reset INDEX to -1, assign a new 

value to TOUT and call EPSODE again.

-6 INDEX was 2 on input but TOUT was not beyond

T. No action was taken.

The following statement is taken from the Abstract to [3]:

"We conclude that EPISODE is generally faster than 
GEAR for problems involving wave fronts or transients 
on the interior of the interval of integration. For 
linear or simply decaying problems, these roles are 
usually reversed."

E. Examples

1. EPISODE-1 A second-order differential equation.

Solve y" + lly' + lOy = 0

subject to y(0) = 1, y' (0) = -1 .

The equation may be transformed into a system of two first-order 

equations by introducing the variables y-j = y and y2 = y' = y^ • The 

equivalent problem is
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Solve *1 = H

y2 = -Tly2-10yl

subject to y-j (0) = 1, y2(0) = -1 •

The closed form solution is y = e . 

program which sets the initial conditions

The double-precision main 

and calls EPSODE is shown in

Fig. 26
cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c

c
c
c

c
c
c

c
c
c
c
c
c

Fig

HA KB ALL NOHIHTEGEB VARIABLE DOUBLE PE EC13ION VARIABLES 

IBFLICIT HIAL*8<A-H,0-Z)

DECLARE THE VARIABLES HELD IN COHHON

COBHON /EPCOH9/ HOSID, NQUSED, NSTEP, NFE, NJE 

SET THE DIHENSION OF TO 

DIHENSION 10 (2)

DECLARE DIFFUN AND PEDERV TO BE EXTERNAL SUBROUTINES

EXTERNAL DIFFUN,PEDERV

TEST THE FOUR TECHNIQUES ON BOTH HETHODS.

DO 10 HETH = 1, 2 
DO 20 HITER1 =1,4 

HITER = HITER1 - 1

SET N (THE NUHBER OF EQUATIONS) AND THE INITAL CONDITICNS. 

N = 2
YO (1) = 1. ODO 
YO (2) = -1 .ODO

SET THE INITIAL AND TERHINAL VALUES OF T.

TO = O.ODO 
TOUT = 100.ODO

SET THE INITIAL STEP SIZE AND THE EHHOH BOUND

HO = 1.OD- 10 
EPS = 1.0D-10

SET INDEX = 1 FOR THE FIRST CALL TO EPSODE.

INDEX = 1

SELECT THE HETHOD AND TECHNIQUE 

HF = 10*HETH ♦ HITER

26. Calling Program for Example EPISODE-1
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SIT IEKROB = 3

IEREOB = 3

WRITE THE VALDES DSED TO CALL EPSODE.

WRITE (6f 100) Nr TO, H 0, TO (1) , TO (2) , TOOT,EPS, IERROR, EE,I NDEX 

CALL EPSODE

CALL EPSODE(DIFFON,fEDERV,N,T0,HO,TO,TOOT,EPS,IERROR,HF,1NDEX) 

CHECK INDEX

IE(INDEX .EQ. 0) GO TO 30 

WRITE THE RESOLTS.

WRITE (6, 101) INDEX, HO, TO (1) , TO (2) ,TOOT , EPS , HF 
GO TO 20

30 WRITE (6, 10 2) HF, IERROR, TOOT, T0(1), T0(2), NSTEP, NFE, NJE
IF (HITER1.EQ.2.0R.HITER1.EQ.4) WRITE(6,10 4)

20 CONTINOE 
10 CONTINOE .

EOFH ATS

100 FORHAT (//,5X,41HTHESE ARE THE VALOES OSED TO CALL EPS ODE:,//,5X,
1 8 HN =,16,/,5X,8HT0 =,D20.10,/,5X,8HH0 = ,D20.10,/,5X,
2 8 HTO ( 1) =,D20. 10./5X,8HT0(2) =,D20.10,/,5X,8HTOOT =,D20.10,/,
3 5X,8HEPS =,D20.10,/,5X,8HIERROR =,I6,/,5X,8HHF =,I6,/,
4 5X,8HINDEX =,I6)

101 FORHAT (//,5X16HWARNING INDEX =,13,/,5X,8HH0 =,D20. 10,/,5X,
1 8 HTO (1) =, D20. 10,/, 5X,8HT0(2) =, D 2 0.1 0 ,/, 5X , 8H TOOT =,D20.10,
2 /,5X,8HEPS =,D20. 10,/,5X,8HIERROR=,I6,/,5X,8HHP =,I6)

1C2 FORHAT(//,5X,13HHF WAS SET TO,I7,/,5X,17HIERROF WAS SIT TO,13,//
1 5X,8HTOOT =,D20.10,/,5X,8HT0(1) =,D20.10,/,5X,8HT0(2) =,
2 D20.10,/,5X,28HTBE PROBLEH WAS COHPLETED IN,I5,7H STEPS.,/,5X,
3 10HTHERE WERE,I5,20H CALLS TO DIFFON AND,/,5X,1OHTHERE WERE,15,
0 17H CALLS TO PEDERV.)

1C3 FORHAT (//,51,29HTHIS IS A NORHAL TEBHINATION.)
104 FORHAT (1H1)

STOP
END

Fig. 26. (Cont'd)
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Note that all four types of iteration techniques on the corrector will be 

used with each of the two methods so that there will be eight solutions. 

The two subroutines, DIFFUN and PEDERV, are shown in Figures 27 and 28. 

[Note: The same equation appears in Example GEAR-1 in Chapter IV.]

SOBFOOTINE DIFFUN (Nr T, Y, YDOT)
C
C MAKE ALL NONINTEGER VARIABLE DOUBLE PRECISION VARIABLES 
C

IBFLICIT RIAL*8 (A-HrO-Z)
C
C DIMENSION Y AND YDOT FOR THE SYSTEM OF EQUATIONS.
C

Cl MENS ION Y (2) r YDOT (2)
C
C DEFINE THE SYSTEM OF EQUATIONS.
C

YDOT (1) = Y (2)
YDCT (2) = -10. 0D0*Y (1) - 11.0D0*Y(2)
RETURN
END

Fig. 27. Subroutine DIFFUN for Example EPISODE-1

SUBROUTINE PEDERV (N, Tr Yr PDr NO)

MAKE ALL NONINTEGER VARIABLES DOUBLE PRECISION VARIABLES. 

IMPLICIT REAL*8 (A-HrO-Z)

SET THE DIMENSION FOR FD , THE JACOBIAN MATRIX OF PARTIAL 
DERI VA II VES.

DIMENSION PD (NO, NO)

DEFINE THE NO BY NO MATRIX PD .

PD (1,1) = O.ODO 
PD (1,2) = 1.0D0 
FD (2,1) = -10.ODO 
FD (2, 2) = -11. ODO 
RETURN 
END

Fig. 28. Subroutine PEDERV for Example EPISODE-1
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When your program runs you will get the results displayed in Figure 29.

THESE ARE THE VALUES USED TO CALL EPSODE:

N
TO
HO
VO (1)
YO (2)
TOUT
EPS
IERROR
MF
INDEX

2
0.0
C. 10C0 CGC000D-09 
0. 1000000000E 01 

-0. 1000 0000 00 E 01 
C. 1CC0CCC000D 03 
0. 1000000000E-09 

3
10

1

HF HAS SIT TO 10
IERROR HAS SIT TC 3

TOUT = 0. 1000000000 D 03
YO (1) = 0. 10 UO 599335D- 10
TO (2) = - C. 10HC5SS335D-09
THE FFCEIEH HAS COEELETEC IN 2912 STEPS.
THERE HERE 3U12 CALLS TO DIFFUN AND
THERE HERE C CALLS TO PEDERV.

THESE ARE THE VALUES USED TO CALL EPSODE:

N
TO
HO
YO (1) 
YO (2) 
TOUT 
EPS
TERROR
MF
INDEX

2
0.0
C. 10 COGOCOOOD-09 
0. 1000000000 E 01 
0. 1000000000D 01 
C. lOCCCCCOOOD 03 
0. 1000000000 D-09 

3
11

1

MF HAS SET TO 11
IERROR HAS SET TC 3

TOUT = 0. 1000 000000 D 03
YO (1) = -0.6644411195D-12
YO (2) = C. €64441 11950-11
THE FRCEIEE HAS COKPLETEC IN 363 STEPS.
THERE HERE 564 CALLS TO DIFFUN AND
THERE HERE 61 CALLS TO PEDERV.

Fig. 29. Output from the Program for Example EPISODE-1
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THIS! HR! IRE VHLOES USED 10 CALL EPSODE

H S 2
70 Z 0.0
BO s C. 10C00C0000D-09
70(1) z 0.1000000000D 01
70 (2) = -0. 1000000000 E 01
TOOT z C. 10C0C0C000D 03
EPS z 0. 1000000000 D-09
IERROR = 3
BE z 20
INDEX = 1

HF WAS SIT TO 20
IERRCB WAS S ET T C 3

TOOT = 0. 1000000000D 03
TO (1) Z 0. 1508 24 456 0D- 12
TO (2) = -C.15C8244560D-11
IRE FRCEIEt1 WAS COEELETEE IN 1443 STEPS.
THERE WERE 2375 CALLS TO DIFFON AND
THERE WERE 0 CALLS TO PEDERV.

THESE ARE THE VAIOES OSED TO CALL EPSODE

N Z 2
TO Z 0.0
HO m C. IOCOOOCOOOD-09
70 (1) m 0.1000000000D 01
70 (2) m -0.1000000000D 01
TOOT m C.1QCOOCOOOOD 03
EPS a 0. 1000000000 D-09
TERROR a 3
HF • 21
INDEX ■ 1

HF WAS SIT TO 21
IERROR WAS SIT TC 3

TOOT m 0. 1000000000D 03
70 (1) m 0.5898197618D-11
70(2) z -C.5858 197618D-11
THE FRCEIEE SAS CCBFIETBE IE 304 STEPS. 
THERE WERE 379 CHL1S TO DIPPOB AHD 
THERE HIRE 44 CALLS TO PEDERV.

Fig. 29 (Cont'd)
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THESE AB I THE VALDES OSED TO CALL EPSODE:

N = 2
TO = 0.0
EO = C. IOCOCCCOOOD-09
YO (1) = 0.1000000000C 01
YO (2) = -0.1000000000C 01
TOOT = C. 10CCCCC0C0D 03
EPS = 0. 1000000000C-09
TEEROR = 3
MF = 12
INDEX = 1

MF WAS SET TO 12
IERROR WAS SET TC 3

TOOT 0. 1000000000D 03
Y0(1) = 0. 16 96466502D- 19
Y0(2) = -C. 16 S6 4 693360-1 9
THE PRCEIE!1! WAS COMPLETE! IN 407 STEPS.
THERE WERE 783 CALLS TO DIFFON AND
THERE WERE 80 CALLS TO PEDERV.

THESE API ’THE VAIOES OSEE TO CALL EPSODE:

N 2
TO 0.0
HO C. IOCCCOCOOOD-09
Y0(1) = 0. 1000000000 E 01
YO (2) -0. 1000000000 D 01
TOOT C. ICCOCOCOOOD 03
EPS 0. 1000000000 D-09
TERROR = 3
MF 13
INDEX = 1

MF WAS SIT TO 13
IERROR WAS SET TC 3

TOOT 0. 1000000000E 03
YO (1) -0.4982889154D-09
YO (2) = C.4077953845D-09
THE PRCEIE E WAS CCMPLETEE IN 307 STEPS.
THERE WERE 635 CALLS TO DIFFUN AND
THERE WERE 84 CALLS TO PEDERV.

Fig. 29. (Cont'd)
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THESE API THE VALOES OSED TO

N = 2
TO = 0.0
EO = C.10CCCCC000D-■09
70 (1) = 0. 1000000000C 01
70 <2) = -0. 1000000000C 01
TO OT = C.lOCOCOCOOOD 03
EPS = 0. 1000000000C--0 9
IEBBOB = 3
HF = 22
INDEX = 1

nF WHS SIT TO 22
IE EBOB BUS SET TC 3

TOOT = 0. 1000000000D 03
TO (1) = 0.5898199076D-11
YO (2) = -0.S8S8199076D-11
THE FHCEIEE HAS COEELETEE IN 30U STEPS.
THEBE HEBE «67 CALLS TO DIFFON AND
THEBE HEBE U« CALLS TO PEDEBV.

THESE ABE THE VAIOES OSED TO CALL EPSODE

N
TO
BO
70 (1). 
70 (2) 
TOOT 
EPS
IEBBOB
HF
INDEY

2
0.0
C . 10 CO CCC0 00D-09 
0.1000000000D 01 
0.1000000000D 01 
C.lOCCCCCOOOD 03 
0.1000000000D-09 

3 
23 

1

HF WAS SET TO 23
IEBBCB WAS SET TC 3

TOOT = 0. 1000000000 D 03
TO (1) = -0.1571789988D-10
TO(2) = C.26C68SS619D-10
THE PBCEIEE WAS COEELETEE IN «1« STEPS.
THEBE WEBE 775 CALLS TO DIFFON AND
THEBE WEBE 115 CALLS TO PEDEBV.

I ECO02 I STOP 0

Fig. 29 (Cont'd)
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2. EPISODE-2 A pair of stiff equations

Sol ve y-j' = 998y-| + 1998y2

-999y-| - 1999y2

subject to y-i (1) = 1, y2(o) = 1

Analytically, the closed form solution is:

y-j (t) = 4e_t - 3e_1000t 

y2(t) = -2e-t + 3e-1000t

The calling program and the two subroutines are shown in Fig. 30.
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IBELICIT B£ia*8(A-H,0-Z)
COBNON /EPC0B9/ HOSED, NQOSED, N STEP, NFE, HJE 
DIHENSION TO(2)
EITEBNAL DIFFON, PEDERV

ALI THREE HETHODS OF ERROR CONTROL BILL BE OSED.

DO 10 I = 1, 3 
N = 2
TO (1) = 1.0 DO 
TO (2» = 1.0D0 
TO = 0.0D0 
TOOT = 1.ODO 
HO = 1.0E-10 
EPS = 1.0D-10 
HF *= 21

SET IERROR.

IERROR = I 
INDEX = 1
WRITE (6,100) N,TO,HO,TO(1) ,Y0(2) ,TOOT,EPS,TERROR,HF,INDEX 
CALL EPSODE (DIFF0N,PEDERV,N,T0,HO,TO,TCOT,EPS,TERROR,HF,INDEX)
IF (INDEX .NE. 0) WRITE(6,101) INDE X, HO , TO (1) , TO ( 2) ,TCOT, EP S, HF 
IF (INDEX .EQ. 0) HRITE(6, 102) HF,I ERROR,TOOT,TO (1) , TO(2) ,NSTEP, 

1 NFE,NJE
IF (I .EQ.2) WRITE (6 ,104)

10 CONTINOE
WRIT E(6,10 3)

100 FCRHAT (//,51,41HTHESE ARE THE VALOES OSED TO CALL EPSCDE:,//,5X,
1 8 HN =,16,/,51,8HT0 =,D20.10,/,5X,8HH0 =,D20.10,/,5X,
2 8HT0 (1) =,D20.10,/5X,8HY0(2) =,D20.10,/,5X,8HTOOT =,D20.10,/,
3 EX,8HEPS =,D20.10,/,5X,8HIERRCR =,I6,/,5X,8HHF =,I6,/,
4 5 X,8 HINDEX =,I6)

101 FCRHAT (//,5X16HWARNING INDEX =,I 3,/,5X,8HH 0 =,D20.10,/,5X,
1 8 HYO ( 1) =,D20. 10,/, EX, 8HY0(2) =, D20. 1 0,/, 5 X , 8H TOOT =,D20.10,
2 /,5X,8HEPS =,D20.10,/,5X,8HIEFROR=,I6,/,5X,8HBF =,I6)

102 FORHA T (//,5X,13H HF WAS SET TO,I7,/,5X,17HIERBCR WAS SIT TO,13,//
1 5X, 8HTCOT =, D20. 1 0,/,5X,8HT0 (1 ) = ,D20. 10 ,/, 5X , 8HT 0 (2) =,
2 D20. 10,/, 5X, 28HTHE PROELEH-WAS COHPLETED IN,I5,7H STEFS. ,/,5X,
3 1 CHTHERE WERE,I5,20H CALLS TO DIFFON ANC,/,5X,10HTHERE WERE,15,
4 17H CALLS TO PEDERV.)

103 FCRHAT (//,5X,29HTHIS IS A NORHAL TERMINATION.)
104 FCRHAT (1H1)

STOP
END

SOBROOIINB PEDERV (N, T, I, PD, NO)
IHPLICIT REAL*8 (A-H,0-Z)
DIMENSION PD(NO, NO)
PD (1, 1) * 998.ODO 
PD(1,2) * 1998.ODO 
PD (2,1) - -999.ODO 
PD (2,2) - -1999.ODO 
IET0RN 
END

SUBROUTINE DIFFUN (N, T, T, TDOT)
IMPLICIT REAl*8(A-H,0-Z)
DIHENSION 1(2), TDOT(2)
TDOT(1) * 998.000*1(1) ♦ 1998.000*1(2)
IDCT (2) * -999.000*1 (1) - 1999.0*1(2)
FFTURN
END

Fig. 30. Calling Program and Subroutines DIFFUN and PEDERV

for Example EPISODE-2
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The printout for this program is shown in Fig. 31.

THESE AH I THE VALDES USED TO CALL EPSCDE:

N = 2
TO = 0.0
EO = C. 10C0CCC000D--09
VO (1) = 0. 1000000000 E 01
VO (2) = 0. 1000000000 E 0 1
TOUT = C. 1CCCCCC000D 01
EPS = 0. 1000000000 E -0 9
TERROR = 1
MF = 21
INDEX = 1

MF WAS SET TO 21
IERROR HAS S ET T C 1

TOOT = 0. 10 00 000000 D 0 1
YO (1) = 0.1471517767D 0 1
YO (2) = -C.73S75EE835D 00
THE PRCEIEE WAS CCMPLETEE IN
THERE WERE 507 CALLS TO DIF]
THERE HERE 51 CALLS TO :PED]

THESE ARE THE VAIOES OSED TO

N = 2
TO = 0.0
HO = C. lOCOOCCOOOD--09
VO (1) = 0. 1000000000 E 0 1
VO (2) = 0. 10 00 0000 00 D 01
TOUT - C. ICCOCCCOOOD 01
EPS = 0. 1000000000 D--0 9
IERROR = 2
MF = 21
INDEX = 1

U03 STEPS. 
N AND

Fig. 31. Output from the Program for Example EPISODE-2
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MF WAS SET TO 21
IEKBCK WAS SET TC 2

TOOT = 0. 1000000000 D 01
YO (1) = 0. 1471517766D 0 1
YO ( 2) = -C. 73575E6832D 00
THE PRCEIEH WAS CCEELETEE IN 382 STEPS.
THERE WERE 534 CALLS TO DIFFON AND 
THERE WERE 62 CALLS TO PEDERV.

THESE ARE THE VALOES OSED TO CALL EPSODE

N
TO
EO
70 (1)
70 (2)
TOOT
EPS
IERROR
MF

2
0.0
C. IOCCCOCOOOD-09 
0.1000000000C 01 
0.1000000000E 01 
C. ICCOCCCOOOD 01 
0. 1000000000E-09 

3
21

INDEX = 1

MF WAS SET TO 21
IERRCR WAS SET TC 3

TOOT = 0. 1000000000 E 01
70 (1) = 0. 1471517767D 0 1
YO (2) = - C. 73 E75E8834D 00
THE PRCEIEE WAS CCKELETEE IN 365 STEPS.
THERE WERE 492 CALLS TO DIFFON AND
THERE WERE 51 CALLS TO PEDERV.

THIS IS A NCEMAL TERMINATION.

IEC002 I STOP 0

Fig. 31. (Cont'd)
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3. EPISODE-3 Creating a table

The system of differential equations comes from [2, pp. 141-142] and 

[3, pp. 34-41]. "This test problem was motivated by a study of concen­

trations of minor chemical species in the earth's atmosphere. Some of 

these concentrations are governed by photochemical reactions which vary 

diurnally (with the sunlight present), as a square wave with a 24-hour 

period." [3, 34].

A one-dimensional model mockup of such a process is given by 

Solve y'(t) = H'(t) - B[y(t) - H(t)]

subject to y(0) = H(0) for 0 < t < 432,000

where

H(t) = [D + A*E(t)]/B, A = 10"18, B = 108, D = 10-19 

and

{exp [-Cw/sin to t], sin tot > 0 

0, sin tot < 0

C = 4, to = tt/43200

The solution can be seen to be y(t) = H(t). This solution is 

represented by what is nearly a square wave of period 86,400 seconds 

(24 hours), which starts at 0 at t = 0, abruptly attains its maximum, 

holds it for almost 12 hours (corresponding to the twelve daylight hours) 

and abruptly drops to its minimum, which is held for almost 12 hours (the 

nighttime). Output will be taken every 43,200 seconds.
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Fig, 32, Solution for Example EPISODE-3

O
The time constant t = 1/B = 10 is very small in comparison with 

the length of the interval of integration and the problem is very stiff.

We shall use MF = 23 and EPS = l.OD - 6 because they worked well 

in [3], A subprogram has been written for the function H(t).

The calling program is shown in Fig, 33.
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IBELICIT B£AL*8 (A-H,0-2)
C0BH0N /BPC0H9/ BOSID, NQOSED, NSTEP, IPE, NJE 
DIHENSION TO(1)
EXTERNAL DIFFON, PEDEBV
S = 1
TO (1) = H (0. ODO)
TO = O.ODO 
TCOT = «.32D4 
HO = 1.0D-6 
EPS = 1.0D-6 
KF = 23 
IERROR = 3 
INDEX = 1
BRITE(6,100) N,TO,BO,TO (1),TOOT,EPS,IEBROB,HF,INDEX 
B BIT E (6 , 10 1) TOOT, 10(1)
DO 10 I = 1, 10

CALL EPSODE(DIFFON,PEDEBV,H,TO,HO,TO,TCOT,EPS,IEBROB,HF,INDEX)
BT = fl (TOOT)
AE = BT - TO (1)
RE = AE/YO (1)
BRITE (6,102) TOOT, 10(1), HT, AE, BE 
TOOT = TOOT ♦ 4.32D4 

10 CONTINOE
BRITE (6,103)

ICO FORHAT(//,5X,41HTHESE ARE THE VALOES OSED TO CALL EPSODE:,//,5X,
1 8 HN =,I6,/,5X,8HT0 -,D20.10,/,5X,8HH0 =,020.10,/,5X,
2 8HYO(1) =,D20.10,/5X, 8HTOOT =,D20.10,/,
3 5X,8HEPS =,D20.10,/,5X,8HIERR0R =,I6,/,5X,8HHF =,I6,/,
4 5 X,8HINDEX =,I6)

101 FORKAT(//,5X,39HA TABLE OF VALOES FOR EIAHPLE EPISODE-3,//,
1 10X,4HTIHE ,21 X ,
2 4HY(T),2IX,4HH (T),16X,8HABSOL DTE,7X,8HBELATIVE,/,10X,
3 10HIN SECONDS,60X,5HERR0R,10X,5HERR0H,/,2 (5X.D20.10))

102 FORHAT (3(5X,D20. 10) , 2 (5X, D10. 5))
103 FORHAT(//.5X,29HTHIS IS A NCRHAL TERHINAT ION.)

STOP
STOP
END

Fig. 33. Calling Program for Example EPISODE-3
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The subroutine DIFFUN is shown in Fig. 34.

SOBBOOTIMB DIFFON (H, I, T( TDOT)
IHPLICIT BEHL*8 (H-H ,0-Z)
CIBENS ION 1(1), I DOT (1)
A » 1.0D-18 
B ■ 1.0D8 
C « 4.ODO 
D = 1.0D-19
OHEOA = 3.1415926535D0/4.32D4 
£01 = DSIN (OHEGA*T)
EDI = O.ODO
IF (SOT ,GT. O.ODO) EDT = C*OHEGA*OHEGA*DCOS(OHEGH*T)*DEXP(-C* 

1 OHEGA/SOT)
HD 1 = A*ElJT
IDOT (1) = HOT - B*(M1) - H(T))
fETOBN
END

Fig. 34. Subroutine DIFFUN for Example EPISODE-3

The double-precision function H is shown in Fig. 35.

ECUBLE PRECISION FUNCTION H (T)
IMPLICIT REAL*8(A-Hr0-Z)
A = 1 .CD-18 
E = 1.0E8 
C = 4.ODO 
D = l.OD-19
CMEGA = 3. 141592653 5D0/4.32D4 
SCT = DSIN (OMEGA*T)
ET = O.ODO
IF (SOI .GT. O.ODO) ET = DEXP(-C*CMEG A/S CT)
H = (D ♦ A *E T) /B
FETURN
END

Fig. 35. Double-Precision Function H for Example EPISODE-3
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The dummy subroutine PEDERV is shown in Fig. 36-

SUBROUTINE PEDERV (N, T, Y, FD, NO)
RETURN
END

Fig. 36. Subroutine PEDERV for Example EPISODE-3

The output you get is shown in Fig. 37.



THESE AH I THE VALUES OSED TO CALL EPSODE:

N
TO
EO
?0(1)
TOOT
EPS
IEBBOB
HP
INDEX

1
0.0
C.1CC0000000D-05 
0.1000000000D-26 
0.0320OOOOOOD 05 
0.1000000000D-05

3
23

1

A TABLE OF VALDES FOB EXAHPLE EPISODE-3

TIHE Y(T) H(T) ABSOLUTE BELATIVE
IN SECONDS EBROB EBBOB

0.03 20000000 E 05 0. 1000000000D-26
0.0320000000 C 05 0.9999999998D-27 0.1000000000D-26 .17878D-36 . 17878E-09
0.86 0 0000000 D 05 0. 100000 1522D-26 0.100000000OD-26 ********** **********
0. 12S6CCCOOOD 06 0.1000000000D-26 0.1000000000D-26 .U 0564D-39 .40564D-12
o. njecocococ 06 0.1000000000D-26 0. 1000000000D-26 .0 .0
0.21600000 00E 06 0. 100 0000013D-26 0.1000000000D-26 ********** **********
0. 25 92000000 C 06 0.1000000000D-26 0.100000000OD-26 .0 .0
0.3 C20000000 D 06 0.1000000000D-26 0.1000000000D-26 ********** **********
0.3056CCCOCOD 06 0.1000000000D-26 0.1000000000D-26 .0 .0
o.seeeoocococ 06 0.9999999955D-27 0. 1000000000D-26 .4451 ID-35 . 4451 ID-08
0. 0320CO0000 E 06 0. 100000002 8D-26 0. 1000000000D-26 ********** **********

■'J

THIS IS A NOBMAL TEB HINATIOH. 

IEC002I STOP 0

Fig. 37. Output from the Program for Example EPISODE-3
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