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LECTURE NOTES ON ORDINARY DIFFERENTIAL EQUATIONS SOFTWARE
USER'S GUIDES FOR ODE, RKF45, GEAR AND EPISODE

J. A. Wenzel and R. E. Funderlic

ABSTRACT

Four software packages for the numerical solution of
initial wvalue problems for systems of ordinary differential
equations are demonstrated with sample problems and solutions.
These packages are contained in the Core Library of Numerical
Software of the Computer Sciences Division.

I. INTRODUCTION

A. Definition of the Problem

Ordinary differential equations are encountered whenever the rate of
a dependent variable, call it y, with respect to an independent variable,
say t, is a function of t and y, that is, dy/dt = f(t,y). A system of
ordinary differential equations is a collection of differential equations
the rate of change of each of the dependent wvariables y-j, y2>--"»yn d0-
pends on one or more of the dependent variables as well as on the inde-

pendent variable:

dy-j/dt = fj (t.y-| (D), y2(1),... ,yn(D))

dy2/dt = £ .y ), y2(0) .. ...

dyn/dt

n(t,y1(), y2(t) yn(t))



If we let Y(t) be the vector (y-|(t), y2(t)> - ’ then the s-ystem
may be written as dY/dt = F(t,Y(t)) where F is a vector-valued function.
When the value of Y is desired at a point t and it is known that at
t = tg, y(tQ) = y”™, then the problem is an initial wvalue problem.

A system is called stiff if the components of the solution are
decaying at greatly differing rates. A classic example comes from Gear's

text [7]:

solve y° 998y-| + 1998y2

= 999yl - 1999y2

<
\S)
[

subject to the initial condition

y-| (0) = 1 and y2(0) = 0 .

The solution in closed form can be found to be

v,() 2e-t - e-,000t

y2(t) -e-t + e-,000t

and the graph is shown in Figure 1.



Yn (t)

Fig. 1. A Stiff System

The lecture notes from which this report was taken originally con-
tained much background material and we originally planned to include
this. Since then an excellent course on numerical methods was given by
M. T. Heath (CSD) from a book by Forsythe, Malcolm and Moler [6].

This book is available from many sources at the Oak Ridge facilities
and we recommend reading Chapter 6 for a clear discussion of methods

for solving ordinary differential equations.

B. The Four Packages

There are many techniques which can be used to find a numerical
solution of an initial value problem. Four of the most efficient and
accurate software packages for doing this are contained in the Core
Library of Numerical Software which is maintained by the Computing
Applications Department of the Computer Sciences Division. Each
package is a set of FORTRAN subroutines which employ double-precision
floating point variables. While the packages were designed for different

types of problems and use different techniques, all are well-documented,



easily accessible, as well as reliable and efficient.

The first software package that is demonstrated is ODE, which was
written by L. F. Shampine and M. K. Gordon at Sandia Laboratories. It
uses a modified divided-differences version of the Adams-Bashforth-
Moulton formulas in a predictor-corrector mode. Adjusting the order of
the formula and the step size as it moves across the interval, it will,
in the interest of efficiency, go beyond the terminal value for t and
then interpolate to find the desired value for Y(t) = (y-| (t),... ,yn(t)).
The package is thoroughly examined in [11] and additional examples may
be found in [8], [12] and [13]. This package is a good choice when high
accuracy is required and the system is not stiff.

If the system is not stiff, high accuracy is not essential or
appropriate, and it is fairly inexpensive to evaluate the function, then
the RKF45 package developed by H, A. Watts and L. F. Shampine at Sandia
Laboratories is called for. It uses a modification by Fehlberg, [4] and
[5], of the classical Runge-Kutta formulas. The order of the method,

4 or 5, is determined before the integration advances a step towards
the terminal value of t. The step size is also controlled. See [6] for
a full discussion of the program.

A. C. Hindmarsh at Lawrence Livermore Laboratory wrote the computer
code for GEAR based on the technique developed by C. W. Gear [7] for
solving systems which are stiff but otherwise well-behaved. It uses the
backward differentiation formulas for the predictor and the chord method
with the Jacobian matrix of partial derivatives to calculate the cor-
rector. See [9] for further details.

G. D. Byrne and A. C. Hindmarsh reworked the ideas in GEAR and



produced EPISODE to treat stiff systems which are oscillatory or highly
nonlinear. The algorithm is discussed in [1], the package is examined
in [10] and some interesting comparisons between GEAR and EPISODE appear
in [2] and [3].

A survey of several methods for solving non-stiff systems is found
in [14]. The uses outlined above exploit the strengths of each of the
packages although it is possible to use ODE on moderately stiff systems
and to use GEAR on non-stiff systems. Of the four packages, ODE is the
most versatile and perhaps the easiest to use. If you experience
problems or have questions which aren't answered by these introductory
guides, call a numerical consultant in the Computer Applications De-
partment. Their names are given in the HELP file CORLIB. Listings of
the codes and card decks are available from the Computer Librarian,
ext. 4-5317, although normally these should not be needed since both the

codes and documentation are available on the computers.

II. ODE
A. Description of the Subroutines

This software package comsists of four FORTRAN double-precision
subroutines, ODE, DE, STEP, and INTRP, which integrate dY/dt = F(t,Y)
from t = T to TOUT. It is possible to advance TOUT and call ODE again
as the wvariables are returned with all the information necessary to
continue the integration.

The subroutine ODE allocates storage in two auxilliary arrays,
WORK and IWORK, and calls the subroutine DE. DE controls the process

by calling STEP repeatedly until TOUT has been reached or exceeded and



checks for conditions which would cause termination: too many function
evaluations, possible stiffness, or demands for excessive accuracy. If
the integration precedes beyond TOUT, DE calls INTRP to interpolate for
Y at TOUT. The subroutine STEP advances the integration one step at a
time using an Adams-Bashforth formula to predict and an Adams-Moulton
formula to correct. Based on tests it adjusts the order of the method
and the step-size to control local error by using a divided difference
method and local interpolation. Since the code chooses the step size
to be as large as possible while still meeting the error tolerance
specified by the user, the integration usually advances beyond TOUT. In
which case, INTRP is called. It uses a polynomial whose degree is based
on the order of the method last used and interpolates to find the value
of Y at TOUT. This package was written by L. F. Shampine and M. K.
Gordon at the Sandia Laboratories. The computer code was obtained from

the National Energy Software Center at Argonne National Laboratory.

B. The Calling Program

The user needs to supply a calling program using double precision
FORTRAN that

1) supplies the initial conditions,

2) sets the values of an input variable,

3) calls ODE, and optionally

4) writes out the results
and a double-precision subroutine F(X, Y, YP) that defines the system of

first order ordinary differential equations. The call list for ODE con-

sists of:



NEQN

TOUT

RELERR
and
ABSERR

IFLAG

WORK
and

[WORK

the name of the subroutine which defines the system of
differential equations. (Note: F must also be declared
in an EXTERNAL statement).

the number of equations in the system, | < NEQN.

the array that contains the values of Y at t = T when
you call ODE and that contains the values at t = TOUT
upon a successful completion of ODE.

the value of tat the beginning of the integration.

the value of tat the end of the integration. This can be
less than T but it can never equal T.

the relative and absolute local error tolerance. At each
internal step going from T to TOUT, the code tries to
control each component of the local error so that

[local errorJ<RELERR*|Y(L) I+ABSERR for I<L<NEQN.

Neither value can be negative and at least one must be
positive.

on the first call this is normally set equal to 1. Set
IFLAG equal to -l,only if it is known that it is impossible
to integrate beyond TOUT. On subsequent calls, IFLAG may
be left as it was returned.

two storage arrays controlled by ODE. The dimension of

WORK is 100 + 21*NEQN and that of IWORK is 5.



C. System Dependent Procedures

The most efficient and convenient way to access ODE is to use the
Core Library of Numerical Software. On the IBM 360 computers it resides
in LOGLIB in load module form. This is automatically available to all
FORTRAN jobs without additional JCL. The Core Library resides on the
DEC-10 in the SYS area as a REL file library and is accessed when exe-
cuting a FORTRAN program by typing

EX MYPROG,MYSUB,SYS:CORLIB/SEA

If you have questions or problems, please consult a numerical consultant

listed in the HELP file for the Core Library, or in case of a related

system problem call Programming Assistance.

D. Values Returned by ODE
The subroutine ODE will return to your calling program these values
T the value to which T has advanced. If there was no pro-
blem, then T will equal TOUT.
Y the values of Y(), Y(2),.-..,Y(NEQN) at T.

RELERR the original values unless this degree of accuracy is
and untainable on the computer with this program. In that
ABSERR case, they will be increased and IFLAG will be set to 3.

You can call ODE with these revised values and try again
to integrate.
The value of IFLAG reports the success or failure of ODE.
Val ue Interpretation
2 a normal return. The integration reached TOUT, T has

been set to TOUT, and Y contains the solution. If you



change TOUT, you may call ODE again and continue to
integrate.

3 the integration did not reach TOUT because the error
tolerances were too small for the computer being used.

T is set to the point closest to TOUT that has been
reached and Y to the solution at that point. RELERR
and ABSERR have been increased so that ODE may be called
again and another attempt made to integrate to TOUT.

4 the integration did not reach TOUT because more than
MAXNUM(= 500) steps were needed. T is set to the point
closest to TOUT that was reached and Y to the answers at
that point. If you want to continue, call ODE again.

5 more than MAXNUM(= 500) steps were required to reach TOUT
and the equations appear to be stiff. T is set to the
point closest to TOUT that was reached and Y to the an-
swers at that point. You probably should switch to
another software package (e”™., GEAR. See Chapter I1II1.),
but you often can get accurate results with ODE if you
are willing to pay the costs (more function evaluations
which mean more time).

6 the integration did not begin because at least one of
the input parameters is not valid. See Section B above.

If IFLAG had been set equal to -1, and if the integration did not reach

TOUT, then IFLAG will return as -3, -4, or -5.
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E. Examples
There are three examples (problem, sample program, output) in this
section. The first solves a second order differential equation and the
calling program is copiously commented. The second example demonstrates
the ease with which ODE can handle a jump discontinuity in the first
derivative. The third uses ODE to create a table although it could just
as easily be combined with a plotting routine to create a graph.
1. ODE-1 A second order differential equation.
Solve y" +y =0
subject to y(0) = 0, y°(0) = 1.

We transform this second order differential equation to a system

of two first order equations by introducing the wvariables y-| = y and
Y2 =y =yj° The equivalent problem is
Solve Yj =y2
y2 = A1 7
subject to y~O) = 0, y2(0) =1

Analytically, the solution may be found in closed form to be
y-j(t) = sin t and y2(t) = cos t .
The double precision calling program which sets the initial con-
ditions and calls ODE is shown in Figure 2. [Note: The same problem

appears as the example RKF45-2 in Chapter III].
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ORNL-DWG 78-10767

BAKE ALL NOH-ITHTEGER VARIABLES DOOBLE-PRECISIOH VARIABLES

IMPLICIT REALMS(A-H,0-2)
SET THE DIHEBSION FOR 7 TO BE THE ROBBER OF EQUATIONS IN THE STSTEH
SET THE DIMENSION FOR WORK TO BE 100 ¢ 21*NEQN
SET THE DIMENSION FOR IWORK TO BE 5

DIMENSION T(2), WORK (142), IWORK (5)
DECLARE F TO BE AN EXTERNAL SOBROOTINE

EXTERNAL F
SET NEQN AND THE INITIAL CONDITIONS

NEQN = 2

T(l1) = 0.0DO

T(2) = 1.0D0
SET THE INITIAL AND TERMINAL VALUES OF THE INDEPENDENT VARIABLE T

T = 0.0DO
TOUT = 3.1415926535D0

SET THE ERROR BOUNDS

RELERR = 1.0D-8
ABSERR = 1.0D-8

SET IFLAG = | FOR THE FIRST CALL TO ODE
IFLAG = 1

Fig. 2. Calling Program for Example ODE-1
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ORNL-DWG 78-10768

WRITE THE VALDES OSED TO CALL ODE

10

20

100

101

102

103

WRITE (6,100) HEQN, T(1), 1(2), T, TOOT, RELERR, ABSERR, IFLAG

CALL ODE

CALL ODE(F, NEQN, T, T, TOOT, RELERR, ABSERR, IFLAG, WORK, IWORK)

CHECK IFLAG

IF (IFLAG .NE. 6) GO TO 10

WRITE (6,101)

STOP

IF (IFLAG .EQ. 2) GO TO 20

WRITE(6,102) IFLAG, T, T(1), T (2), RELERR, ABSERR
STOP

WRITE OOT THE RESOLTS

WRITE (6,103) T, Y(1), 1(2)

FORHATS

1
2
3

FORMAT(/,5X,38HTHESE ARE THE VALDES DSED TO CALL ODE:.//,5X,
SHNEQN  =16./,5X,8HY(1) =.,D20.10./,5X.8HY(2) —=.D20.10,/,5X
SHT —,D20.10,/,5X,8HTOOT  =,D20.10,/,5X,8HRELERR —,D20.10,
/,5X,8HABSERR =,D20.10./,5X,8HIFLAG =.,16.//)

FORMAT(5X,67HIFLAG = 6. AT LEAST ONE OF THE INPDT VALDES IS WRON

1G. TRY AGAIN.)

1
2

1

FORMAT(SX,8HIFLAG =,13,27H. TAKE APPROPRIATE ACTION.,//.5X,

SHY (1) =,D20.10./,5X.8HY (2) —D20.10,/,5X,8HRELERR  D20.10,
/,5X,8HABSERR =,D20.10)

FORMAT(5X,23HTHIS IS A NORMAL RETORN./_5X,8HT —.D20.10,/,5X,
SHY (1) =, D20. 10, /. 5X, SHY (2) =,D20.10)

STOP

END

Fig. 2. (Centld)
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The subroutine F(T,Y,YP) is shown in Fig. 3.

ORNL-DWG 78-10769
SOBROOTINE F(Tr T, TP)

HAKE ALL THE NON-INTEGER VARIABLES DOOBLE-PRECISION ARIABLES
IHPLICIT REAL*8(A-H,0-Z)
SET THE DIHENSION FOR T AND TP TO BE THE NOHBER OF EQOATIONS

IN THE STSTEH
DIHENSION T (2)r TP(2)

DEFINE THE STSTEH OF EQUATIONS

TP (1) = T (2)
TP (2) = -T(1)
RETORN

END

Fig. 3. Subroutine F for Example ODE-1

The results are shown in Figure 4.

ORNL-DWG 78-10770

THESE APE THE VALUES OSED TO CALL ODE

NEQN 2

Y(1) 0.0

Y(2) 0.10000000000 01
T 0.0

TOOT 0.3141592654D 01
PELEPR 0. 1000000000 D-07
ABSERR 0. 1000000000D-07
IFLAG I

THIS IS A NORMAL RETORN

T 0.3141592654D 01

1 0.1369487599D-07

7(2) -0.1000000013D 01
rHC002I STOP 0

Fig. 4. Output from the Program for Example ODE-1
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2. ODE-2 A jump discontinuity in the first derivative:

if 0<X<1
Solve

-y if 1<X<2

subject to y(o) = 1

Analytically the closed form solution is:

ex 1f 0<X<l

e2~x 1f 1<X<2

The calling program, without comments, and the subroutine F are shown

in Fig. 5. The results are shown in Fig. 6.

100

101

ORNL-DWG 78-10772

IHPLICIT RE>a*8 (*-H,0-Z)

DIMENSION Y (1), WORK(121), IWORK(5)

EXTERNAL F

NEQN = |

Y (1) = 1.0D0

T = 0.0DO

TOOT = 2.000

RELERR = 0.0DO

ABSERR = 1.0D-10

IFLAG = |

WRITE(6,100) NEQN, Y(1), T, TOOT, RELERR, ABSERR, IFLAG

CALL ODE (F, NEQN, Y, T, TOOT, RELERR, ABSERR, IFLAG, WORK, IWORK)
WRITE(6,101) IFLAG, T, Y(1)

FORMAT(//,5X,33BTHESE ARE THE VALOES OSED TO CALL ODE:.//,5X,

| SHNEQN =.16,/,5X.SHY(1) =,D20.10./,5X,8HT =.,D20.10,/,5X
2 8HTOOT =,D20.10,/,5X,8HRELERR =.,D20.10./,5X,8HABSERR =,D20.10,
3 /5X,8HIFLAG =.16.//)

FORMAT (/,5X,8HIFLAG =,16.,/,5X,8HT =,D20.10,/,5X,SHY(1) =,
| D20. 10)

STOP

END

SOBROOTINE F(T, Y, YP)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y (1), YP(1)

YP (1) = Y (1)

IF (T .LE. 1.0D0) RETORN
YP(1) = - Y()

FETORN

END

Fig. 5. Calling Program and Subroutine F for Example ODE-2
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ORNL-DWG 78-10773

THESE ARE THE VALUES USED TO CALL ODE:

NEQN 1
Y(1) 0.1000000000D 01
T 0.0
TOUT = 0.20000000 00D 01
RELERR = 0.0
ABSERR = 0. 1000000000D-09
IFLAG = 1
IFLAG = 2
T = 0. 2000000000D 01
Y(1) 0. 1000000000D 01
IHC002I STOP 0

Fig. 6. Output from the Program for Example ODE-2

3. ODE-3 Creating a table.
Solve v = -y

subject to y(0o) = i
The closed form solution is y = e-t. This time a table will be printed

for t = 0, 0.1, O.2,..., 1.0. The calling program and subroutine F are
shown in Fig. 7, and the table is shown in Figure 8. [Note: The same

problem appears as the example GEAR-3 in Chapter IV.]
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ORNL-DWG 78-10774

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION 1(1), WORK (121) , IWORK(S)
EXTERNAL F
NEQN = |
T(l) = 1.0DO
T = 0.0DO
TOOT = 0. IDO
RELERR = 1.0D-10
ABSERR = 1.0D-10
IFLAG = |
WRITE(6,100) T, T(1)
DO 10 I = 1, 10
CALL ODE(F,NEQN,T,T,TOOT,RELERR, ABSERR,IFLAG,WORK,I WORK)
WRITE (6,101) T, T(1)
TOOT = TOOT ¢ O.IDO
10 CONTINOE
100 FORMAT (5X,3UHA TABLE OF VALOES FOR YP=-T.Y(0)=1.//,10X,1HT 24X,
I 1HY,/,5X,D20.10,5X,D20.10)
101  FORMAT(5X,D20.10,5X,D20.10)
STOP
END

SOBROOTINE F(T, Y, YP)
IHPLICIT REAL*8(A-H,0-Z)
DIMENSION Y (1), YP(1)
YP (1) = -Y(1)

RETORN

END

Fig. 7. Calling Program and Subroutine F for Example ODE-3

ORNL-DWG 78-10775

A TABLE OF VALOES FOR YP=-Y,Y(0)=1

T Y
0.0 0. 1000000000D 01
0. 1000000000D 00 0.90U83741800 00
0.2000000000D 00 0.8187307531D 00
0.3000000000D 00 0.7408182207D 00
0.4000000000D 00 0.6703200460D 00
0.5000000000D 00 0.6065306597D 00
0.6000000000D 00 0.5488116361D 00
0.7000000000D 00 0.4965853038D 00
0.8000000000D 00 0.44932896U1D 00
0.9000000000D 00 0.4065696597D 00
0.1000000000D 01 0.3678794411D 00
IHCO0021I STOP 0

Fig. 8 Output from the Program for Example ODE-3
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F. ODER!
A frequently encountered problem is to locate the extreme values

for one, say the ith, of the components of a solution to the system of

differential equations,

y-JU) = fl(t,y1(D),y2(t),....yn(t))
yN ) = R2¢Gy 1D, y2(), .. .,yn(1))
y!i(®) = fi(t,yl(D),y2(1),....yn(t))

yr(® = faty-| (D, y2(0),... ,yn(t))

subject to the initial conditions

yja) = cl,y2(a) = c2, ..., yn(a) = cn .

This can be done by first locating where the derivative, -, of the ith
component, y”, vanishes and then seeing if there is a local maximum or a

local minimum (or possibly neither) at this point. The suite of codes

ODERT/STEP, INTRP, DERT, ROOT, or ODERT for short, is a modification of
ODE which integrates a system of first-order ordinary differential
equations from T in the direction of TOUT until it locates the first

root of some specified (nonlinear) equation,

G(t) = g(t.yl(0),y2(0),-...yn(D),yj(),y " (D),....y15(t)) = 0 .

Upon finding a root, the code returns with all the parameters in

the call list set for continuing the integration to the next root of S
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or to the first root of a new function G. If no roots are found, the
integration proceeds to TOUT.

The routine ODERT is a supervisor that calls DERT, an adaptation
of DE, which in turn calls STEP and INTRP. After each internal step,
ODERT evaluates the function G and checks for a change in sign in the
functional wvalues from the previous step. If the sign has changed in
going from B to C, then a zero is bracketed and ODERT calls ROOT
which uses a combination of the secant method and the bisection method
to determine the root of the desired accuracy. Two new parameters,
REROOT and AEROOT, are added to the call list along with G. They set
the relative and absolute error tolerances for computing the root of

The stopping criterion is

IG(B)-G(C)| < 2*(REROOT*[B[+ AEROOT)

Example: Solve y' - 2y/t + 5,

subject to yv() = _4 s

finding all the extreme values of y over the interval from | to 7.

We need to supply the calling program and two subroutines, F and G,

Here, F determines the system of equations and G sets the derivative

equal to zero (Fig. 9).
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ORNL-DWG 78-10776

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION Y (1), YP(1), WORK(121), TWOPK(5)

NOW WE HOST INCLODE G IN THE EXTERNAL STATEMENT

EXTERNAL Fr G

NEQN = |
Y(1) = -4.0DO
T = 1.0D0

TOOT = 7.0DO
RELERR = 1.0D-10
ABSERR = 1.0D-10
IFLAG 1

PORE RELATIVE ERROR IS REASONABLE HERE

REROOT = 1.0D-10

AEROOT = 0.0DO

WRITE(6,101)NEQN,Y (1), T.TOOT,RELERR,ABSERR,IFLAG,REROOT,AEROOT
CALL ODERT(F_NEQN.Y.T.,TOOT,RELERR_ABSERR_IFLAG_WORK,IWORK, G,
I REROOT,AEROOT)

CALL F(T, Y, YP)

WRITE (6,100) IFLAG, T, Y(1), YP(1)

IF (FLAG .EQ. 7) GO TO 10

FORMAT (5X,7HIFLAG =,120./,5X,7HT =,D20. 10./.,5X_,7HY(1)

|  D20. 10./,5X ,7HYP (1) =,D20.10)

FORMAT(5X,110,5(/,D25.10) ./.115.2(/,D25.10))

STOP

END

SOBROOTINE F(T, Y, YP)
ITHPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y (1) , YP(1)

YP (1) 2.0DO*Y(1)/T ¢ 5.0DO
RETORN

END

DOOBLE PRECISION FUNCTION G(T, Y, YP)
THPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y (1), YP(1)

G = YP (1)

RETORN

END

Fig. 9. Calling Program and Subroutines F and G for ODERT.
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The program yields(Fig. 10).

ORNL-DWG 78-10777

|
-0.4000000000D 01
0. 10000000000 01
0.7000000000D 01
0. 1000000000D-09
0.1000000000D-09

1
0.1000000000D-09

0.0
IFLAG = 7
T = 0.25000 00000D 01
Y1) = -0.6250000000D 01
YP(1) = 0.0

|
—-0.6250000000D 01
0.2500000000D 01
0.7000000000D 01
0.1000000000D-09
0. 1000 00 00 00 D-09
7
0. 1000000000D-09
0.0
IFLAG = 2
T 0.7000000000D 01
Y(1) = 0.1400000G00D 02
YP (1) 0.9000000000D 01

IHC0021 STOP 0

Fig. 10. Output from the Program for ODERT.

In addition to the standard values for IFLAG (see Section D), we

have:
Value Interpretation
7 normal return, a root satisfying the criterion has been
found.
8 abnormal return, an odd order pole of G was found.
9 abnormal return, over 500 evaluations of G were reguired

to locate the root.
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Although ODERT is not in the Core Library it is available from the

Computer Librarian, ext. 4-5317.

ITII. RKF45
A. Description of the Subroutines

This software package consists of three FORTRAN double-precision sub-
routines, RKF45, RKFS and FEHL, which integrate dY/dt = F(t,Y) from t = T
to TOUT. The user can then assign a new value to TOUT and call RKF45
again as on return the parameters in the call list are set for continuing
the integration. It is also possible to use RKF45 as a one-step inte-
grator to advance the solution a single step in the direction of TOUT.

The subroutine RKF45 serves as an interface between the users'
calling program and the subroutine RKFS. This subroutine checks the in-
put parameters for errors, determines the accuracy of the particular
computer being used and determines if the next step can be taken. If it
can, it sets the step size and advances the approximate solution by one
step towards TOUT by calling FEHL where the integration actually is per-
formed. It checks the error criteria and if the step was successful,
continues to advance towards TOUT. Since the step size is changed, it
maybe that the step just taken advances the solution almost to TOUT and
that another step can not be made without exceeding the computer's accu-

racy. In that case, the solution at TOUT is determined by extrapolation.

The classical fourth-order Runge-Kutta method is given by

yntl = yn + (kO + 2kl + 2k2 + k3)/6
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where
kO =
k] = hf(tn + h/2,yn + kQ/2)
k2 = hf(tn + h/2,yn + kl1/2)
k3 = hf(tn + h’yn + k2) '

Fehlberq discovered a set of values for the coefficients a., 6i'j.’ i for

n+1

which result in a fifth-order method for a predictor and a fourth-order
method for a corrector. The difference between the predictor and the
corrector is used to compute the local error estimate in controlling the

step size. This package was written H. A. Watts and L. F. Shampine [6].
B. The Calling Program

The user needs to write a calling program that
1) supplies the initial conditions,
2) sets the values of the imput variables,
3) invokes RFK45, and optionally
4)  writes out the results,
as well as a subroutine F(T,Y,YP) that defines the system of first order

ordinary differential equations. The input variables for RFK45 are



NEQN

TOUT

RELERR
and
ABSERR

IFLAG

WORK
and
IWORK
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the name of the subroutine which defines the system of

differential equations. (Note: F must be declared in

an EXTERNAL statement.)

the number of equations in the system I<NEQN.

the array that contains the initial wvalues of Y(l),

Y(2), ---. Y(NEQN) at t = T when you call RKF45 and

that contains the values of Y(1),Y(2), ..., Y(NEQN) at

t = TOUT upon a successful completion of RFK45.

the starting point of integration.

the output point at which the solution is desired. This

value can be less than T.

the relative and absolute error tolerances. At each

internal step going from T to TOUT the code requires that
| local error | < RELERR*] Y | + ABSERR

for each component of Y. Neither value can be negative,

at least one must be positive, and ABSERR must be positive

1f the solution wvanishes.

set this equal to | the first time RKF45 is called, unless
one-step integrator control is necessary. Then use -1.
On the return from RKF45, it will have the value 2 if the
integration was completed successfully,

two arrays to hold information internal to RKF45 which is
necessary for subsequent calls. The dimension of WORK

is 3 + 6*NEQN and that of IWORK is 5.
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C. System Dependent Procedures

The most efficient and convenient way to access RKF45 is to use the
Core Library of Numerical Software. On the IBM 360 computer it resides
in LOGLIB in load module form. This is automatically available to all
FORTRAN jobs without additional JCL. The Core Library resides on the
DEC-10 in the SYS area as a REL file library and is accessed when exe-
cuting a FORTRAN program by typing

.EX MYPROG,MYSUB,SYS: CORLIB/SEA

If you have questions or problems, please consult a numerical consultant
or Programming Assistance.

D. Values Returned by RKF45

The subroutine RKF45 will return to your calling program these

values:
T the value to which T advanced. If there was no trouble,
then T will equal TOUT.
Y the values of Y(1),Y(2)....., Y(NEQN) at the current

value of T.

RELERR the same values as when the program began unless RELERR

AgggRR is too small. In this case, [FLAG will equal 3 and
RELERR will be increased so that you can call RKF45 again
and continue from the current value for T.

The value of IFLAG reports the success or failure of RKF45.
Value Interpretation
= 2 a normal return. The integration reached TOUT. The user

may reset TOUT and call RKF45 again to continue integration,

a single step has been successfully taken in the direction
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of TOUT. The users may reset TOUT and call RFK45 again to
continue integration.
the integration did not reach TOUT because the relative
error tolerance was too small. RELERR has been increased
appropriately for continuing.
the integration was not completed because more than 3000
derivative evaluations were needed. This is approximately
500 steps. The user may continue to integrate from the
current value of T by calling RKF45 again,
the integration was not completed because the solution
vanished which made a pure relative error test impossible.
Make ABSERR nonzero if you wish to continue,
the integration was not completed because the requested
accuracy could not be achieved using the smallest allow-
able stepsize. You must increase the error tolerance
before continued integration can be attempted and reset
IFLAG to 2 or -2.
it is likely that RKF45 is inefficient for solving this
problem. Too much output is restricting the natural step-
size choice. Switch to the one-step mode or try ODE.
at least one of the input parameters is incorrect. One
or more of the following errors has occurred:

NEQN is less than 1.

T = TOUT and IFLAG is not equal to 1.

RELERR or ABSERR is less than O.
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IFLAG is equal to O, is less than -1, or is

greater than 8.

E. Examples

1. RKF45-1 A second order differential equation.
Solve y" +y =20
subject to y(0) = 0,y'(0) = 1
We transform this second order differential equation to a system of two

\}

first order equations by introducing the wvariables y-| =y and y2 = y' =y

The equivalent problem is;

Solve y* = y2
y2 = "yl
subject to y-|(0) = 0,y2(0) =1

Analytically, the solution may be found in closed form to be

y-[(t) = sin t and y2(t) = cos t .

The main program which sets the initial conditions and calls RKF45

is shown in Fig. 11 and the subroutine F(T,Y,YP) is shown in Fig. 12.
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ORNL-DWf: 78-10791

SET THE DIMENSION FOR T TO BE THE NONBER OF EQUATIONS IN THE STSTEH
SET THE DIMENSION FOR WORK TO BE 3 ¢ G6*NEQN
SET THE DIMENSION FOR IWORK TO BE 5
DIMENSION 1(2), WORK (15), IWORK(S)
DECLARE F TO BE AN EXTERNAL SUBROUTINE
EXTERNAL F
SET NEQN AND THE INITIAL CONDITIONS
NEON = 2
1(1) = 0.0
1) = 1.0
SET THE INITIAL AND TERMINAL VALOES OF THE INDEPENDENT VARIABLE T
T = 0.0
TOOT = 3.1#15926535
SET THE ERROR BOUNDS
RELERR = 1.0E-9
ABSERR = 1.0E-9
SET IFLAG = | FOR THE FIRST CALL TO RKF45
IFLAG = 1

WRITE THE VALUES OSED TO CALL RKF45
WRITE(6,100) NEQN, T(1), T(2), T, TOUT, RELERR, ABSERR, IFLAG
CALL RKF45
CALL RKF45(F,NEQN,T,T,TOOT,RELERR,ABSERR,IFLAG,WORK,[WORK)
CHECK IFLAG
IF (IFLAG .NE. 8) GO TO 10
WRITE(6,101)
STOP
10 TIF (IFLAG .EQ. 2) GO TO 20
WRITE(6,102) IFLAG, T, T(1), T(2), RELERR, ABSERR
STOP
WRITE OUT THE RESULTS

20 WRITE (6,103) T, Y(1), T (2)

FORMATS

100 FORMAT(/,5X,40HTHESE ARE THE VALDES OSED TO CALL RKF45:.//,5X,
I S8HNEQN  =.,16./,5X,8HT (1) =, E20. 10./, 5X, 8HT (2) =,E20. 10,/,5X
2 8HT =,E20.10./,5X,8HTOOT —,E20.10,/,5X,8HRELERR —,E20.10,
3 /,5L,SHABSERR —,E20.10,,,5X,SHIFLAG =—.16.//)

101 FORMAT(SX,67HIFLAG = 8. AT LEAST ONE OF THE INPUT VALOES IS WRON

1G. TRT AGAIN.)
102 FORMAT (5X,8HIFLAG =,I13,27H. TAKE APPROPRIATE ACTION.,//,5X,

1 SHT (1) = E20.10,/,5X,8HI(2) —,E20.10,/,5X,8HRELERR E20.10,
2 /_5X_SHABSERR = E20.10)

103 FORMAT (5X,23HTHIS IS A NORMAL RETURN,/_5X,8HT —,E20.10./,5X,
I 8HT (1) =.E20.10,/,5X,8HY(2) =,E20.10)
STOP
END

Fig. 11 Calling Program for Example RKF45-1
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ORNL-DWG 78-10792

SOBROOTINE F(T, Y, YP)

SET THE DIMENSION FOR Y AND YP TO BE THE NOMBER OF EQOATIONS
IN THE SYSTEM

noon

DIMENSION Y (2) , YP(2)

DEFINE THE SYSTEM OF EQOATIONS

non

YP (1)
YP (2)
RETORN
END

Y (2)
-Y (1)

Fig. 12 Subroutine F for Example RKF45-1

When your job runs, you will get the results shown in Figure 13

ORNL-DWG 78-10793

THESE APE THE VALOES OSED TO CALL FKFUS5:

NEQN = 2

Y(1) = 0.0

7(2) = 0. 1000000000E 01
T = 0.0

TOOT = 0.3141592026 E 01
FELEFR = 0.9999998607E-+09
ABSERR = 0. 9999998607E-m09
IFLAG = 1

THIS IS A NORMAL RETORN

T = 0.3141592026E 01

7(1) = -0. 15 18428326 E--04

7(2) = —0.9999980330E 00
THCO002I STOP 0

Fig. is Output from the Program for Example RKF45-1

[Note: This problem appears in Example ODE-1 in Chapter 11.]
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2. RKF45-2 The motion of two bodies under mutual gravitational
attraction.
The following example comes from [6, pp. 122-133].
"Let y(t) denote the position of one body in a coordinate

system with the origin fixed in the other body. The
differential equations derived from Newton's laws of

motion are

-ax(y)
x" {1 = R[Y)

where

() = W)L + »(1)2]3/2

and a is a constant involving the gravitational constant,
the masses of the two bodies, and the units of measurement.
If the i1nitial conditions are chosen as

x"0) = 0,

v ol jee)y/2

I
|
o

x[0)

I
=

y(0)

for some parameter ¢ with 0 £ e < 1, the solution turns out
to be periodic with period 2n/a. The orbit is an ellipse
with eccentricity e and with one focus at the origin.

To write this as a system of four first-order equations,

we introduce
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The equations and initial conditions then become

a
¥\ =i/ mnoy =1 -e.
22 - 2/4, 72(0) = 0,
/3(0) = 0,

By rescaling the time variable, it is possible to elimi-
nate a, but we have not done this because we wish to illus-
trate the use of FORTRAN Common to pass parameters such as
a from the main program to the subroutine defining the
equations.

The parameter IFLAG is an important control wvariable.
It should be set to | for the first entry to RKF45. Ordi-
narily, RKF45 will reset it to 2, and it should be left at
2 for subsequent entries. Values other than 2 returned by
RKF45 signal wvarious warning and error conditions
described in detail in the comments. IFLAG = 4 and
IFLAG = 7 are warnings that RKF45 must work very hard to
obtain the requested accuracy. It is possible to continue,
but the user may want to consider increasing the error
tolerances or changing to a subroutine which uses a
multistep method. IFLAG = 3 indicates that too much
relative accuracy is being requested, and IFLAG = 5 or
6 indicates that the error tolerances must be changed
before continuing. IFLAG = 8 indicates that RKF45 is
being called incorrectly. The user is strongly advised
to include a check on IFLAG in his main program.

In this sample run, we have taken e = 0.25 and a =
n/4 and have printed the position for 0 < t < 12 in
steps of 0.5. The output is in Table 6.2. Notice that
the orbit is periodic with a period of z = 8."
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Table 6.2 OUTPUT FROM SAMPLE PROGRAM, [6]

WORXRXINADLUNRBERWLWLUNN =00
NMNOUNOUNMOULMOUMOUMOULMOULMO LSO LD

—
— oo
S WO

1.5
12.0

0.750000000
0.619769032
0.294417538
-0.105176382
-0.490299793
-0.813942832
-1.054031517
-1 .200735042
-1.250000001
-1.200735042
-1 .054031517
-0.813942932
-0.490299793
-0.105176383
0.294417537
0.619768031
0.749999996
0.619768024
0.294417526
-0.105176395
-0.490299806
-0.813942843
-1 .054031524
-1.200735047
-1 .250000002

0.000000000
0.477791373
0.812178519
0.958038092
0.939874996
0.799590802
0.575706078
0.300160708
-0.000000001
-0.300160709
-0.575706079
-0.799590803
-0.939874996
-0.958038092
-0.812178518
-0.477791370
0.000000006
0.477791379
0.812178522
0.958038091
0.939874991
0.799590794
0.575706068
0.300160697
-0.000000011
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The main program is shown in Fig. 14.

10

20

25
30
40

50

60

70

80

11

41
71
81

ORNL-DWG 78-10794

EXTERNAL ORBIT
REAL T, Y(U), TOOT, RELERR, ABSERR

REAL TPINAL, TPRINT, ECC, ALFA, ALFASQ, WORK(27)
INTEGER IWORK (5), IFLAG, NEQN

COHHON ALFASQ

ECC = 0.25

ALFA = 3.141592653589/4.0

ALFASQ = ALFA*ALFA

NEQN = 4
T = 0.0
T(1) = 1
T@) = O.
TGE) = 0
Y4) = A

TOOT =
CALL RKF45(ORBIT,NEQN,Y.T,TOOT,RELERR,ABSERR,IFLAG , WORK,IWORK)
WRITE(6,11) T, Y (1), Y(Q2)

GO TO (80, 20, 30, 40, 50, 60, 70, 80), IFLAG

TOOT = T ¢ TPRINT

IF (T .LT. TFINAL) GO TO 10

WRITE(6,25)

FORMAT (///,5X,39HTHIS IS A NORMAL COMPLETION OF RKFU5 ..///)
STOP

WRITE(6,31) RELERR, ABSERR

GO TO 10

WRITE(6,41)

GO TO 10

ABSERR = 1.0D-9

WRITE (6,31) RELERR, ABSERR

GO TO 10

RELERR = 10.0*RELERR

WRITE(6,31) RELERR, ABSERR

IFLAG = 2

GO TO 10

WRITE(6,71)

IFLAG = 2

GO TO 10

WRITE(6,81)

STOP

—

FORMAT (F5.1,2F15.9)

FORMAT (17H TOLERANCES RESET, 2E12.3)
FORMAT (11H MANY STEPS)

FORMAT (12R HOCH OOTPOT)

FORMAT (14H IMPROPER CALL)

END

Fig. 14. Calling Program for Example RKF45-2
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The subroutine ORBIT is shown in Fig. 15.

SOBKOOTINE OBBIT(T, Y, YP)
PEAL T, Y(4), YP4) r P, ALFASQ
COMfION ALFASQ

P=YM*YA) ¢ YQ)*Y(Q)

P = R* SQPT (P) /ALFASQ

YPA) = Y@3)
YP(2) = Y4
YP3) = -Y(1)/R
YP4) = -YQ)/R
PETORN

END

Fig. 15. Subroutine ORBIT for Example RKF45-2

The results are shown in Fig. 16.

The following statement by Watts and Shampine occurs in the listing

of RKF45:

"RKF45 is primarily designed to solve non-stiff,
and mildly stiff differential eguations when
derivative evaluations are inexpensive. RKF45
should generally not be used when the user is
demanding high accuracy."



0.0

0.750000000

0.0 0.750000000
TOLERANCES RESET
0.5 0.619767427
1.0 0.294415772
1.5 -0.105182588
2.0 -0.490307987
2.5 -0.813949347
3.0 -1.054026604
3.5 -1.200708389
4.0 -1.249939919
4.5 -1.200632095
5.0 -1.053875923
5.5 -0.813728869
6.0 -0.490025043
6.5 -0.104854643
7.0 0.294736445
7.5 0.619973838
8.0 0.749956071
8.2 0.725498140
MANY STEPS
8.5 0.619443297
9.0 0.293920815
9.5 -0. 105715394
10.0 -0.490790486
10.5 -0.814329267
11.0 -1. 054275513
11.5 -1.200806618
12.0 -1.249875069
THIS

Fig.

16.

Output from the Program for Example RKF45-2
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0. 100E-08

IS A NOHHAL COMPLETION

0.0
0.0
0.1
0.477788806
0.812172532
0.958026409
0.939852118
0.799551964
0.575650275
0.300088167
-0.000086818
-0.300254643
-0.575793087
-0.799649894
-0.939874530
-0.957933247
-0.811916292
-0.477347434
0.000545219
0.212828636

0.478255749
0.812429488
0.958052158
0.939681590
0.799231887
0.575223446
0.299594939
-0.000607297

OF
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IV. GEAR
A. Description of the Subroutines

This software package consists of seven FORTRAN double-precision
subroutines, GEAR, INTERP, STIFF, COSET, PSET, DEL, and SOL, which
integrate dY/dt = F(t,Y) fro™ t = T to TOUT. The user can repeatedly
reset TOUT and integrate again or the user can specify that control
is to be returned after one step in the direction of TOUT. While there
are many options, the chief virtue of GEAR is that it works well in
solving stiff systems by using the '"stiffly stable" technique of Gear [7],

a modification of the backward differentiation formulas.

ORNL-DWG 78-10778

Cal ling
Program
INTERP
STIFF
COSET
DIFFUN
PEDERV

Fig. 17 Block Diagram for GEAR.
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The subroutine GEAR controls the calls to the other subroutines
and returns the solution and messages to the main program. STIFF per-
forms a single step of the integration and tries to control the local
error by selecting the step size and the order of the method. Since
the last step may go beyond TOUT, INTERP computes the interpolated
values for y-j, ..., yn at TOUT. The subroutines COSET and PSET set
various constants and DEC and SOL are used in solving linear algebra

problems associated with the differential equations.

B. The Calling Program
The user needs to write a calling program using double-precision
floating-point variables and two subroutines also in double precision.
The calling program

1) supplies the initial values and sets the parameters in the

call list,

2) calls the routine DRIVE, and optionally

3) writes out the results.

The parameters in the call list are:

DIFFUN the name of the user supplied subroutine DIFFUN(N,T,Y,DOT)
which computes the vector function YDOT = F(T,Y).

PEDERV the name of the user supplied subroutine PEDERV(N,T,Y,PD,NO)
which computes the N by N Jacobian matrix of partial de-
rivatives and stores it in PD as an NO by NO array. [Note:
PD(,J) is the partial derivative of YDOT(I) with respect
to Y(J)]. This subroutine is called only if MITER (See

below) is set equal to 1. In all other cases, PEDERV will



TO

HO

Y0

TOUT

EPS

MF
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be a dummy subroutine.

the number of equations, | <N < 20.

the starting value for the independent variable t.

the initial value for the step size, h. It should start
out low, and if it is not low enough to pass the error
test based on EPS, the program reduces h automatically.
the array that contains the values for , YN ... YN at
TOUT.

the terminal value for t. The interval of integration
goes to TO to TOUT.

the local error bound. Estimates of the single step
error 6" in Y (t) divided by YMAX", the previous maximum
absolute value of Y#, are kept less than EPS in the

following sense:

{[(61/YMAX1)2 + ... + (6n/YMAXn)2]/n}1/2 < EPS .

the method flag. You have a choice of two methods, each
with four types of iterations for the corrector formula.
The selection is determined by the input variable MF,
MF = 10*METH + MITER |,
where METH indicates the method
| implicit Adams methods.
2 Gear's '"stiffly stable" method.
and MITER indicates the corrector iteration technique
0 functional iteration - no partial derivatives

are needed.
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| the chord method with the Jacobian supplied by the

user supplied subroutine PEDERV.

2 the chord method with the Jacobian calculated in-

ternally by finite differences.

3 the chord method with the Jacobian replaced by a
diagonal approximation based on a directional
derivative.

If the problem is not stiff then you should use ODE in-

stead. If the problem is stiff, use MF = 21 or 22 for

best results.

INDEX a flag used for input and output.
Val ue Interpretation
| this is the first call for this integration problem.
0 this is not the first call for the problem and integration
is to continue.
-1 this is not the first call for the problem and the user
has reset at least one of N,EPS, or MF.
2 the same as 0 except that TOUT is to be attained without
interpolation. This assumes that TOUT is greater than
or equal to the current value of T.
3 the same as 0 except that control is returned to the cal-
ling program after one step without regard to TOUT.
The subroutine DIFFUN(N, T, Y, YDOT) defines the system of equations
while the subroutine PEDERV(N, T, Y, PD, NO) is used if MF = 11 or 21
and applies the Jacobian matrix (i.e., the matrix of the partial de-

rivatives) 8f./9y.. In all other cases a dummy routine
(0]



39

SUBROUTINE PEDERV (N, T, Y, PD, NO)
RETURN

END

must be supplied. Both subroutines must be declared to be EXTERNAL.

C. System Dependent Procedures
The most efficient and convenient way to access GEAR is to use the
Core Library of Numerical Software. On the IBM 360 computers, it re-
sides in LOGLIB in load module form. This is automatically available
to all FORTRAN jobs without additional JCL. The Core Library resides on
the DEC-10 in the SYS areca as a REL file library and is accessed when
executing a FORTRAN program by typing
.EX  MYPROG,MYSUB,SYS:CORLIB/SEA
If you have questions or problems, please consult a numerical consultant

or Programming Assistance.

D. Values Returned by GEAR

The subroutine GEAR will return these values to your calling

program:
HO the step size last used in STIFF whether it was successful
or not.
Y0 the values of y-|,....yn at t = TOUT.
TOUT it the integration was successful and INDEX was not set

to 3 on input, then TOUT is unchanged from its input
value. Otherwise, TOUT is the farthest value of t for

which integration has been completed.
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INDEX indicates the results of the last call.

0 the integration was successfully completed.

—1 the integration was stopped after failing to pass
the error test even after reducing the step size by
a factor of 10"~ from its initial wvalue.

—2 the integration was stopped after some success
because EPS was too small.

—3 the integration was stopped after failing to achieve
corrector convergence even after reducing the step
size by a factor of 107

-4 at least one input value was illegal, that is,

EPS <0, N <O, (TO-rOUT)*HO < O,
or index was illegal.
-5 INDEX was —| but TOUT was not beyond the current

value for t.

E. Examples

GEAR-1 A second-order differential equation.

Solve y lly' + 10y = 0

subject to y(0) = 1, y' (0) = -1

The equation may be transformed into a system of two first order

equations by introducing the wvariables y-, =y and y2 = y' =yl
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Solve =yl

Y2

“1ly2 - 10y ,

subject to y-[(0) = 1, y2(0) = -1.
The closed form solution is y = e"”. The double precision calling

program which sets the initial conditions and calls GEAR is shown in
Fig. 18. All eight combinations of the two methods and the four iter-
ation techniques are used. The common block

COMMON/GEAR9/HUSED ,NQUSED_NSTEP_NFE_NJE
has been accessed in the calling program so that the number of steps
taken (NSTEP), the number of function evaluations (NFE), and the number
of times the Jacobian was evaluated (NJE) could be printed out. [Note:

The same equation appears in example EPISODE-1 in Chapter V.]
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non 000
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NcKB ML NOMINTESEB VARIABLE DOUBLE PBECISZOE VABZABLES
IHFLICIT REALMS(A-HrO-Z)
DECLARE THE VARIABLES HELD IH COHHON
COMMON /GEARS/HUSED, NQUSED, NSTEP, NFE, NIE
SET THE DIMENSION OF TO
DIMENSION TO(2)
DECLARE DIFFON AND PEDERV TO BE EXTERNAL SUBROUTINES
EXTERNAL DIFFON, PEDERV
TEST THE FOUR TECHNIQUES ON BOTH METHODS.
DO 10 METH = 1, 2
DO 20 MITERI = I, 4
MITER = MITER] - |
SET N (THE NUMBER OF EQUATIONS) AND THE IHITAL CONDITIONS.
N =2

TO (1)
TO (2)

1.0D0
-1.0DO

SET THE INITIAL AND TERMINAL VALUES OF T.

TO = 0.0DO
TOUT = 100.0D0

SET THE INITIAL STEP SIZE AND THE ERROR BOUND

HO = 1.0D-10
EPS ¢ 1.0D-10

SET INDEX = | FOB THE FIRST CALL TO GEAR
INDEX = |
SELECT THE METHOD AND TECHNIQUE
MF = 10*METH ¢ MITER
WRITE THE VALUES USED TO CALL GEAR.
WHITE (6, 100) N, TO, HO, T 0 (1) ,TO(2) , TOUT, TERROR, MF ,INDE X
CALL GEAR
CALL GEAR(DIFFON,PEDERV,N,TO_HO,TO,TOUT,EPS,MF, INDEX)
CHECK INDEX

Fig. 18. Driver Program for Example GEAR-I
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IF (INDEX .EQ. 0) GO TO 30
KBITI THE BESOLTS.
BBITE (6, 101) INDEX,HO,YO(1)fT0(2) ,TOOT,EPS,HF
30 IC—}I%ITTOE(é? 102) HF, TOOT, TO(1|, 10(2), NSTEB, NFE, NJE

IF(HITEB1.EQ.2.0B.HITEB1.EQ.4)WRITE(6,104)
20 CONTINOE
10 CONTINOE

FORHATS
100 FOBHVT (//.5X,39HTHESE ABE THE VALUES OSED TO CALL GEAB:,//,5X,
| SHN », 17./, 5X, SHTO =,020.10,/,5X,8HH0 * D20.10,/,5X,
2 8HYO{l) *.,D20. 10,/5X,8HY0(2) *,D20.10./,5X8HTOOT =,D20.10,/,
3 5X_SHEPS * D20.10,/,5X,8HHF =,17./,5X,SHINDEX =,17)
101  FCBHAT (//,5X16HWARNING INDEX =,13,/,5X.8HHO =,D20.10./,5X,
| 8HYO (1) s,D20. 10./,51,SHY0(2) =D20.10./,5X,8HTOOT =,D20.10,
2 /,5X,8HEPS », D20. 10,/, 5X, SHHF *=17)

102 FOHHAT (//,5X,13HHF WAS SET TO,13,/,5,8 HTOOT  *.D20.10,/,5X,
| 8HYO(1) «,D20.10,/,5X,8HYO (2) m,D20. 10,/5X,28HTHE PROBLEH WAS C
2CHFLET ED IH,I5,7H STEPS.,/,5X,10HTHERB WEHE,I5,21H CALLS TO DIFFON
3 AND,/, 5X, I0HTHERE BERS.,IS, 17H CALLS TO PEDERV.)

103 FORHAT (//.5X,29HTHIS IS A HOBHAL TEBHINATION.)

104 FORHAT (1HI)
STOP
END

Fig. 18. (Cont’d)
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Note that all four modifications of both methods will be used. The

two subroutines are shown in Fig. 19.

SCBROUTINE DIFFUN(N, T, Y, YDOT)

MAKE ALL NONINTEGER VARIABLE DOUBLE PRECISION VARIABLES

oNeoNe!

IMPLICIT RIAL*8 (A-HrO-Z)

DIMENSION Y AND YDOT FOR THE SYSTEM OF EQUATIONS.

oNeoNe!

DIMENSION Y (2) r YDOT (2)

DEFINE THE SYSTEM OF EQUATIONS.

ano

YDOT (1)
YDOT (2)
RETURN
END

Y(2)
-10. 0D0*Y (1) - 11.0D0*Y(2)

SUBROUTINE PEDERV (Nr T, Yr PD, NO)

a

MAKE ALL NONINTEGER VARIABLE DOUBLE PRECISION VARIABLES

an

IMPLICIT REAL*8(A-H,0-Z)

SET THE DIMENSION FOR PD r THE JACOBIAN MATRIX OF PARTIAL
DERIVATIVES.

oNoloNe)

DIMENSION PD (NO, NO)

a

DEFINE THE NO BY NO MATRIX PD

a0

PD(1,1) = 0.0DO
PD (1,2) = 1.0DO

PD (2,1) = -10.0D0
PD (2,2) = -11.0DO
RETURN

END

Fig. 19. Subroutines PEDERV and DIFFUN for Example GEAR-I

When your job is executed you will have the results displayed in

Fig. 20.
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THESE ABE THE VALUES OSED TO CALL GEAR:

N 2

TO 0.0
HO = C. 10CO00CO00D-m09
YO (1) = 0.1000000000D 01
YO (2) = -0.1000000000D 01
TOOT = C. 10COCCO000D 03
EPS = 0.7863217309E 66
MF = 10
IN DEX = 1

MF HAS SET TC 10

TOOT = 0. 1000000000D 03
YO (1) = 0.1165759789D-12
YO (2) = -C. 11 6575S789D-11

THE PRCEIEM WAS COMPLETED IN 1332 STEPS
THERE WERE 2213 CALLS TO DIFFON AND,
THERE WERE 0 CALLS TO PEDERV.

TH ESE ARE THE VALUES OSED TO CALL GEAR:

N 2
TO = 0.0
HO C. 10C0CC0000D-09
YO (1) 0. 1000000000D 01
YO 2) = -0. 1000000000D 01

TOOT = C.10COCCOO00D 03
EPS = 0.78 63317309 E 66
MF = 11
INDEX = 1

MF WAS SET TC 11

TOOT = 0. 1000000000D 03
YO (1) 0.3578126631D-18
YO (2) -0. 3625S7C288D-1 8

THE PRCEIEM WAS COMPLETED IN 203 STEPS
THERE WERE 277 CALLS TO DIFFON AND,
THERE WERE 25 CALLS TO PEDERV.

Fig. 20. Output for Example GEAR-1
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THIS! AP 7 THE VALUES USED TO CALL GEAR:

N - 2
TO = 0.0

HO - C. I0CO00CO00D-09
Yo (1) 0.1000000000D 01

YO (2) -0.1000000000D 01
TOUT = C.I0CO0OCCO0OOD 03

EPS - 0.7863317309E 66
MF = 12
INDEX = 1

MF «AS SET TO 12

TOUT = 0. 1000000000D 03
YO (1) = 0.66086922040-19
YO (2) = -0.6631521927D-19

THE PRCEIEM WAS COMPLETED IN 222 STEPS
THERE WERE 375 CALLS TO DIFFUN AND,
THERE WERE 29 CALLS TO PEDERV.

THESE ARE THE VALUES USED TO CALL GEAR:

N - 2
TO = 0.0
HO = C.10C0CCC000D-09

YO (1) = 0.1000000000D 01
YO 2) ~ -0. 1000000000D 01
TOUT = C.10COCCOO00D 03
EPS = 0.7863317309E 66
MF = 13
IN DEX 1

MF WAS SET TO 13

TOUT 0. 1000000000D 03

YO (1) -0.5391672358D-10

YO (2) = C. 4927 87223 0D-10

THE PRCEIEM WAS COMPLETED IN 297 STEPS
THERE WERE 633 CALLS TO DIFFUN AND,
THERE WERE 70 CALLS TO PEDERV.

Fig. 20. (Cont'd)
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THESE AEI THE VALDES USED TO CALL GEAR:

N = 2
TO = 0.0
HO = C. 10CCCO0000D-+09
YO (1) = 0. 1000000000C 01
YO 2) = -0.1000000000D 01
TOOT = C.I10CO0CCO0OOD 03
EPS = 0.7863317309E 66
MF = 20
IN EEX = 1

MF HAS SET TC 20

TOUT 0. I000000000D 03
YO (1) = -0.759732724 2D-12
YO (2) = C.7597327242D-11

THE FRCEIEK HAS COMELETEE IN 1313 STEPS
THERE HERE 2116 CALLS TO DIFFUN AND,
THERE HERE 0 CALLS TO PEDERV.

THESE ARE THE VALUES USED TO CALL GEAR:

N - 2
TO = 0.0
HO = C. I0COOCO000D-09
YO (1) = 0. 10000000000 01
YO (2) = -0. 1000000000D 01
TOUT = C. 10COCCO000D 03
EPS = 0.7863317309E 66
MF = 21
IN EEX 1

MF HAS SET TC 21

TOUT - 0. 1000000000 D 03
YO (1) = 0. 71 1281479 5D-13
YO2) - -C.7112814795D-13

THE PRCEIEM HAS COMELETEE IN 325 STEPS
THERE HERE 362 CALLS TO DIFFUN AND,
THERE HERE 27 CALLS TO PEDERV.

Fig. 20. (Cont'd)
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THESE API THE VALDES OSED TO CALL GEAR:

N = 2
TO = 0.0
HO = 0.10CO000CO00D-m09
VO (1) = 0.1000000000D 01
VO 2) = -0. 1000000000E 01
TOOT = C.10CO0CCO00D 03
EPS 0.7863317309E 66
MF = 22
IN EEX = |

MF HAS SET TC 22

TOOT 0. 1000000000D 03

YO (1) 0.71 12814797D-13

YO (2) -C.71 12614797D-13

THE PRCEIEM WAS COMELETEE IN 325 STEPS
THERE WERE 416 CALLS TO DIFFON AND,
THERE HERE 27 CALLS TO PEDERV.

THESE ARE THE VAIOES OSED TO CALL GEAR:

N 2

TO 0.0
HO = C.10COCO0000D-=09
VO (1) = 0.1000000000E 01
Vo <2) = -0. 1000000000D 01
TOOT = C.10CO0OCCO00D 03
EPS = 0.7863317309E 66
MF = 23
IN EEX = 1

MF WAS SET TC 23

TOOT 0. 1000000000 D 03
YO (1) ~0.217616 86 99D-10
YO (2) 0.1990345713D-10

THE PRCEIEM HAS COMELETEE IN 364 STEPS
THERE HERE 588 CALLS TO DIFFON AND,
THERE HERE 53 CALLS TO PEDERV.

IHCO02 I STOP 0

Fig. 20. (Cont'd)



49

2. GEAR-2 A pair of stiff equations

Solve 998yl + 1998y2

y2 -999yl - 1999y2
subject to y-,(0) = Ly2(0) = 1.

Analytically, the closed form solution is:

y](t) = de-t - 3e"1000t

y2(t) = -2e-t + 3e“1000t

The calling program and the two subroutines are shown in Fig. 21 and the

printout for this program is shown in Fig. 22.
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IBFLICIT RIM,*8(»-Hr0-Z)

COHHOH /QEAH9/HD31D, HQOSID, ISTIP« IM. MIB
DIHEHSION 10(2)

EXTERNAL DIFFON, PEDERV

N =2
TO (1) = 1.0DO
T0 2) = 1.0D0
TO = 0.0DO

TOOT = 1.0DO

HO = 1.CD-10
EPS = 1.0D-10
HF = 21
INDEX = |
WRITE(6,100) N,T0,HO,TO (1),TO (2),TOOT.EPSHF,INDEX
CALL GEAR (DIFFON,PEDERV,N,TO,HO,TO,TOOT,EPS,HF,INDEX)
WRITE (6,10 1) HF, INDEX, TOOT, TO (1), 10(2), NSTEP, NFE, NJE
WRITE (6,102)
100 FORHAT(//.5X,39HTHESE ARE THE VALOES OSED TO CALL GEAR:.//,5X,

| $HN —.,17,/,5X,8HT0 =,020.10,/,51,8HH0 =,D20.10,/,5X,
2 8HTO(1) =,D20.10./5X,8HTO(2) =,D20.10./.5X,8HTOOT =,D20.10,/,
3 5X,8HEPS =,D20.10 ,/,5X,8HHF —.17./,5X,8HINDEX =,17)

101 FORHAT (//,5X,13HHF WAS SET TO,13.//,5X,8HTOOT =,D20.10.,/,5X,
| 8HTO (1) =, D20. 10./, 5X, SHT0(2) =D20.10./5X ,28HTHE PROBLEH WAS C

20HPLETED IN,I5,7H STEPS.,/_5X,10HTHERE WERE,I5,21H CALLS TO DIFFON
3 AND,/,5X,10HTHERE SERE,I5,17H CA7.LS TO PEDERV.)
102 FORHAT (//.5X,29HTHIS IS A NORHAL TEBHINATION.)
STOP
END

SOBROOTXNB PEDERV (N, % 7Pr
IMPLICIT REAL*8(A-B.
DIHENSION PD (NO, NO)

PO (1,1) o  998.0D0
PD(1,2) * 1998.0D0
PD(2,1) - -999.000
PD (2,2) - -1999.0D0
RETORN

END

SOEBOOTINE DIFFON (N, T, I, TDOT)
IHPLICIT BEAL*S(A-H,0-7)

DIHENSION T(2) , TDOT(2)

TDOT (1) ® 998.0D0*T (1) ¢ 1998.0*1 (2)
TDOT (2) - -999.0DO*T(1) -1 999 .0DO*T (2)
EETORN

END

Fig. 21. Calling Program and Subroutines PEDERV and DIFFUN for

Example GEAR-2
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THESE ARI THE VALUES USED TO CALL GEAB:

N = 2
TO = 0.0
HO - C. 10C0CCC000D-09
10 (1) - 0. 1000000000E 01
Vo 2) = 0. 1000000000 E 01
TOUT = C. 1CC0CCC000D 01
EPS = 0. 1000000000 E-09
MF = 21
IN EEX - 1

MF WAS SET TC 21

TOUT - 0.0
YO (1) = 0. 1000000000D 01
YO (2) = C. 1411 517766D 01

THE PRCEIEM WAS COMELETEE IN***** §T
THERE WERE 389 CALLS TO DIFFUN AND,
THERE WERE 427 CALLS TO PEDERYV.

MF *AS SET TC 32

TOUT

THIS IS A NORMAL TERMINATION.

THC0021 STCF 0

Fig. 22. Output from the Program for Example GEAR-2
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3. GEAR-3 Creating a table:

Solve y' = -y

subject to y©0) = 1| »

The closed form solution is y = e t. A table of values for y will

be printed for t = 0, 0.1, 0.2, ..., 1.0. The main program and two sub-

routines are shown in Fig. 23. The printout for this program is shown
in Fig. 24. Since MF has been set to 10, the subroutine PEDERV is never
called so a dummy subroutine has been used. [Note: The same problem

appears in Example ODE-3 in Chapter II.]

IRELICIT BEAL*8(A-BfO-t)
COHHOH /8BAB9/H081Qr 1QOSID, HSf
DIHEHSION TO (1)

ﬁXTEHlNAL DIFFON, PEDERT

TO (1) = 1.0DO

TO = 0.0DO

TOOT = 0. IDO

HO = 1.0D-10

IPS = 1.0D-10

HF = 10

INDEX. = |

HRITE(6,100) TO, TO(1)

C SET OP THE LOOP TO roBH THE TABLE.

DC 10 I =1, 10
CALL GEAR(DIFFON,PEDERYV, N,TO, HO,TO,TOOT,EPS,HF,INDE )
SRITE (6,10 1) TOOT, TO(1)
TOOT « TOOT ¢ 0.1DO0
10 CCNTIHOE
100  FORHAT (5X,39HA TABLE OF VALOES FOR TP * -T, T(0) m 1,//,10X,IHTf
| 24X,1HT,/,5X,D20.10,5X,D20.10)
101  FORHAT(5X,D20.10,5X,D20.10)
STOP
END

Fig. 23, Calling Program and Subroutines DIFFUN and PEDERV
for Example GEAR-3



53

SOBHOOUME DIFFOB ¢=, T, I. YDOT)
IHPLICIT HE)KL*8(X-H,0-Z)
DIHEHSION 1(1), IDOT (1)

YDOT (1) * -Y(1)

RETURN

END

SUBROUTINE PEDERV (N, T, I. PD, NO)
RITORN
ZBE

Fig. 23. (Cont'd)

A TABLE OF VALDES

T

0.0

0.1000000000E 00
0.2 0000000 00E 00
0.3CCO000000D 00
0.qO0CCCCCcoCcobp 00
0.5000C00000E 00
0.6CCO000000D 00
0.7CCCCCCOCOD CO
0.8000000000E 00
0. 90C0000000E 00
0.1CCC000000D 01

IEC0021 STOP 0

Fig. 24.

FOR YP = -Y, Y(©0) = 1

Y
0.1000000000D
0.9048374179D
0. 8187307531D
0. 740 8182207D
0.670320046 0D
0.6065306597D
0. 5488 116360D
0.496 585303 7D
0.4493289640D
0.4065696596D
0. 36787944 10D

01
00
00
00
00
00
00
00
00
00
00

Output from the Program for Example GEAR-3
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V. EPISODE

A. Description of the Subroutines

This software package consists of eight FORTRAN double-precision
subroutines, EPSODE, INTERP, TSTEP, COSET, ADJUST, PSET, DEC, and SOL,
which integrate dY/dt = F(t,Y) from t = T to TOUT. The user can repeatedly
reset TOUT and call EPSODE to continue the integration or the user can
specify that control is to be returned after one step in the direction of
TOUT. EPISODE was designed to solve a typical set of problems from chem-
ical engineering and works well on stiff systems that are oscillatory or
highly nonlinear. The user is advised to select the option METH = 2,

which uses a variable-order, variable-step size backward differentiation

method.
ORNL-DWG 78-10796
Cal ling
Program EPISODE
INTERP
TSTEP
COSET
DIFFUN ADJUST
PEDERV

Fig. 25. Block Diagram for EPSODE
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The Subroutine EPSODE is called once for each output value of T. It
then makes repeated calls to TSTEP and one call to INTERP. It returns the
solution and messages. TSTEP is the integration subroutine and controls
the error by selecting the step size and the order of the method. Since
the last step may go beyond TOUT, INTERP computes the interpolated values
for Y(I), Y(2), --.. Y(N) at TOUT. COSET sets coefficients used in TSTEP
and ADJUST adjusts the history array on reduction of order. Only when
MITER equals | or 2 are PSET, which computes and processes the Jacobian
matrix, DEC, which performs the LU decomposition of a matrix, and SOL,
which solves a linear system AX = B where A has been processed by DEC,

called.

B. The Calling Program
The user needs to write a calling program using double-precision
floating point variables and two subroutines which also use double-
precision. The main program:
1) supplies the initial wvalues,
2) sets the wvariables in the call list,
3) calls the routine EPSODE, and optionally
4) writes out the results.
The wvariables in the call list are
DIFFUN the name of the user supplied subroutine DIFFUN(N,T,Y,
YDOT) which computes the vector function YDOT = F(T,Y).
PEDERV the name of the user supplied subroutine PEDERV(N,T,Y,
PD, NO) which computes the N by N Jacobian matrix of

partial derivatives and stores in PD as an NO by NO
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array. [Note: PD(,J) is the partial derivative of
YDOT(I) with respect to Y(J).] This subroutine is called
only if MITER is set equal to | (See below). In all

other cases, PEDERV will be a dummy subroutine.

the number of equations, | < N £ 20 (it is possible to
increase this upper bound of 20).

TO the starting value for the independent variable t.

HO the initial value for step size, h. It should start

out small; and if it is not small enough to pass the
error test based on EPS, the program automatically
reduces h by up to a factor of 10_3 before stopping.

YO the array that contains the values for Y(), Y(2), ...,
Y(N) at t =TO. After EPSODE returns control to the
main program, Y0 contains the values of Y(1), Y(2), ...,

Y(N) at TOUT.

TOUT the terminal wvalue for t at the end of this call to
DRIVE.
EPS the relative error bound used on the first step. Let

R() denote the estimated relative local error in Y(I)
(i.e., the error relative to YMAX()). Then EPS is a
bound on the root mean square norm of the vector R,

that 1is.

[{(R(D)? + ... + (R(N))2}/N]1/2<EPS
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[ERROR the error flag.
Value Meaning
| absolute error control, YMAX() = 1.
2 error relative to ABS(Y) is controlled. If

the initial wvalue of Y(I) is 0, then YMAX() is
equal to | initially.

3 error relative to the largest value of YMAX(I)
seen so far is controlled. If the initial
value of Y(I) is 0, then YMAX(I) is set to |
initially.

MF the method flag. It is a two-digit decimal integer.

METH

| indicates a variable step size, variable
order Adams method suitable for nonstiff
problems.

METH

1]
o

indicates a variable step size, variable
order backward differentiation method
suitable for stiff problems.

MITER indicates the method of interative correction.

MITER 0 indicates functional iteration and no
partial derivatives are needed.

MITER

Il
—_

indicates a chord or semi-stationary
Newton method with a Jacobian matrix of
partial derivatives supplied by the user-
written subroutine PEDERV.

MITER indicates a chord Newton method in an

I
[N}

internally computed Jacobian.
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MITER = 3 indicates a chord Newton method with an
internally computed diagonal matrix
approximation to the Jacobian.

INDEX a flag used for input and output

Value Interpretation

I this is the first call for this integration
problem.

0 this is not the first call for the problem and
integration is to continue.

-1 this is not the first call for the problem and
the user has reset at least one of N,EPS, or
MF.

2 the same as 0 except that TOUT is to be at-
tained without interpolation. This assumes
that TOUT is greater than or equal to the cur-
rent value of T.

3 the same as 0 except that control is returned
to the calling program after one step without
regard to TOUT.

The subroutine DIFFUN(N,T,Y,YDOT) defines the system of differential
equations while the subroutine PEDERV(N,T,Y,PD,NO) provides the Jacobian
matrix of partial derivatives. If you do not use MF = 1l or 21, you can
use the dummy routine

SUBROUTINE PEDERV(N,T,Y,PD,NO)
RETURN

END
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Both subroutines must be declared to be EXTERNAL.

C. System Dependent Procedures

The most efficient and convenient way to access GEAR is to use the
Core Library of Numerical Software. On the IBM 360 computers, it resides
in LOGLIB in load module form. This is automatically available to all
FORTRAN jobs without additional JCL. The Core Library resides on the DEC-
10 in the SYS area as a REL file library is accessed when executing a
FORTRAN program by typing

EX MYPROG,MYSUB,SYS:CORLIB/SEA

If you have questions or problems, please consult a numerical consultant
or Programming Assistance.

D. Values Returned by EPSODE

The subroutine EPSODE will return to your calling program these

values:
HO the step size used last whether or not the step was
successful.
YO the wvalues of Y(1),Y(2)y...» Y(N) at TO.
TO the last value of t reached successfully. It is TOUT

in most cases.
Val ue Interpretation
INDEX = 0 the integration was completed to TOUT or
beyond.
the integration was halted because the error
test was failed--even after reducing h by a

factor of 1010 from its initial wvalue.

-2 after some initial success, the integration
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was halted by repeated error test failures.
Perhaps too much accuracy is being requested
or a bad choice of MF was made.

-3 the integration was halted because the cor-

rector failed to converge even after reducing

h by a factor of 10"° from its initial wvalue.

-4 an error was made in the values of the input
parameters.
-5 INDEX was -1 on input but TOUT was not beyond

T. Interpolation to t = TOUT was performed.
The user may reset INDEX to -1, assign a new
value to TOUT and call EPSODE again.
-6 INDEX was 2 on input but TOUT was not beyond
T. No action was taken.
The following statement is taken from the Abstract to [3]:
"We conclude that EPISODE is generally faster than
GEAR for problems involving wave fronts or transients
on the interior of the interval of integration. For
linear or simply decaying problems, these roles are
usually reversed."
E. Examples
1. EPISODE-1 A second-order differential equation.

Solve y" + lly' + 10y =0

subject to y0) = 1,y (0) = -1
The equation may be transformed into a system of two first-order
equations by introducing the variables yj =y and y2 = y' = y** The

equivalent problem is
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Solve *1] = H
y2 = -Tly2-10yl
subject to yij (0) = 1, y2(0) = -1 »
The closed form solution is y = ¢ . The double-precision main

program which sets the initial conditions and calls EPSODE is shown in

Fig. 26

[eNeNel [eNeNel [eNeXel

[eNeNel

[eNeN el [eNeNe} [eNeNel

[eNeN e

[eNeNe]

HAKB ALL NOHIHTEGEB VARIABLE DOUBLE PEECI3ION VARIABLES
IBFLICIT HIAL*8<A-H.,0-Z2)
DECLARE THE VARIABLES HELD IN COHHON
COBHON /EPCOH9/ HOSID, NQUSED, NSTEP, NFE, NIE
SET THE DIHENSION OF TO
DIHENSION 10 (2)
DECLARE DIFFUN AND PEDERV TO BE EXTERNAL SUBROUTINES
EXTERNAL DIFFUN,PEDERV
TEST THE FOUR TECHNIQUES ON BOTH HETHODS.
DO 10 HETH = 1, 2
DO 20 HITERI =1.4
HITER = HITERI - |
SET N (THE NUHBER OF EQUATIONS) AND THE INITAL CONDITICNS.
N =2

YO (1)
YO (2)

1. 0DO
-1 .0DO

SET THE INITIAL AND TERHINAL VALUES OF T.

TO = 0.0DO
TOUT = 100.0DO

SET THE INITIAL STEP SIZE AND THE EHHOH BOUND

HO = 1.0D-10
EPS = 1.0D-10

SET INDEX = 1 FOR THE FIRST CALL TO EPSODE.
INDEX = 1
SELECT THE HETHOD AND TECHNIQUE

HF = 10*HETH ¢ HITER

Fig 26. Calling Program for Example EPISODE-1
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SIT IEKROB = 3}

[EREOB = 3
WRITE THE VALDES DSED TO CALL EPSODE.

WRITE (6f 100) NrTO,HO, TO (1) , TO (2) , TOOT,EPS, IERROR, EE,I NDEX
CALL EPSODE

CALL EPSODE(DIFFON,fEDERV,N_TO,HO,TO,TOOT,EPS,JERROR,HF, 1 NDEX)
CHECK INDEX
IE(INDEX _EQ. 0) GO TO 30
WRITE THE RESOLTS.

WRITE (6, 101) INDEX, HO, TO (1), TO (2) ,TOOT , EPS , HF
GO TO 20
30 WRITE (6, 102) HF, IERROR, TOOT, TO(1), TO(2), NSTEP, NFE, NJE
IF (HITER1.EQ.2.0R.HITER1.EQ.4) WRITE(6,10 4)
20 CONTINOE
10  CONTINOE .

EOFH ATS

100 FORHAT (//,5X,4lHTHESE ARE THE VALOES OSED TO CALL EPSODE:.//.5X,
| 8HN =,16./,5X,8HT0 =.020.10,/,5X_8HH0 =.D20.10,/,5X,
2 8HTO (1) =,D20. 10./5X,8HT0(2) =,D20.10./.5X,8HTO0T =,1>20.10./,
3 5X_SHEPS =,D20.10,/,5X,8HIERROR =,16,/,5X,8HHF =.16.,/,
4 5X8HINDEX =,I6)

101  FORHAT (//,5X16HWARNING INDEX =,13./,5X,8HH0 —.,D20. 10,/,5X,
| 8HTO (1) =, D20. 10,/, 5X,8HT0(2) =,D020.10./,5X,8HTOOT =,D20.10,
2 /,5X,8HEPS =,D20. 10,/,5X,8SHIERROR=,16,/,5X,8HHP =.16)

1C2  FORHAT(/,5X,13HHF WAS SET TO,I7./,5X_.17HIERROF WAS SIT TO,13.//
| 5X,8HTOOT =,D20.10./,5X,8HT0(1) =.D20.10./,5X,8HT0(2) =,
2 D20.10,/,5X,28HTBE PROBLEH WAS COHPLETED IN,I5,7H STEPS.,/,5X,
3 10HTHERE WERE,I5,20H CALLS TO DIFFON AND,/.5X,10HTHERE WERE,15,
0 17H CALLS TO PEDERV.)

1C3  FORHAT (//,51.,29HTHIS IS A NORHAL TEBHINATION.)

104 FORHAT (1H1)
STOP
END

Fig. 26. (Cont'd)
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Note that all four types of iteration techniques on the corrector will be

used with each of the two methods so that there will be eight solutions.

The two subroutines, DIFFUN and PEDERV, are shown in Figures 27 and 28.

[Note:

C
C
C
C
C
C
C
C
C

=

=

=

=

=

=

=

=

=

(—}

The same equation appears in Example GEAR-1 in Chapter 1V.]

SOBFOOTINE DIFFUN (Nr T, Y, YDOT)
MAKE ALL NONINTEGER VARIABLE DOUBLE PRECISION VARIABLES
IBFLICIT RIAL*8 (A-HrO-Z)
DIMENSION Y AND YDOT FOR THE SYSTEM OF EQUATIONS.
CIMENSION Y (2) r YDOT (2)
DEFINE THE SYSTEM OF EQUATIONS.
YDOT (1) = Y (2)
YDCT (2) = -10.0D0*Y (1) - 11.0D0*Y(2)

RETURN
END

Fig. 27. Subroutine DIFFUN for Example EPISODE-1

SUBROUTINE PEDERV (N, Tr Yr PDr NO)

MAKE ALL NONINTEGER VARIABLES DOUBLE PRECISION VARIABLES.

IMPLICIT REAL*8 (A-HrO-Z)

SET THE DIMENSION FOR FD , THE JACOBIAN MATRIX OF PARTIAL
DERI VA 11 VES.

DIMENSION PD (NO, NO)

DEFINE THE NO BY NO MATRIX PD

PD (1,1) = 0.0DO

PD (1,2) = 1.0DO
FD (2,1) = -10.0D0
FD (2,2) = -11.0DO
RETURN

END

Fig. 28. Subroutine PEDERV for Example EPISODE-1
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When your program runs you will get the results displayed in Figure 29.

THESE ARE THE VALUES USED TO CALL EPSODE:

N 2

TO 0.0

HO C. 10C0 CGC000D-09
VO (1) 0. 1000000000E 01
YO (2) ~0. 1000 0000 00 E 01
TOUT C. 1CCOCCCO00D 03
EPS 0. 1000000000E-09
IERROR 3

MF 10

INDEX 1

HF HAS SIT TO 10

IERROR HAS SIT TC 3

TOUT = 0. 1000000000 D 03
YO (1) 0. 10 U0 599335D- 10

TO (2) - C. 10HCS5SS335D-09

THE FFCEIEH HAS COEELETEC IN 2912 STEPS.
THERE HERE 3U12 CALLS TO DIFFUN AND
THERE HERE C CALLS TO PEDERV.

THESE ARE THE VALUES USED TO CALL EPSODE:

N 2

TO 0.0

HO C. 10 COGOCOOOD-09
YO (1) 0. 1000000000 E 01
YO (2) 0. 1000000000D 01
TOUT C. 10CCCCCOO0D 03
EPS 0. 1000000000 D-09
TERROR 3

MF 11

INDEX |

MF HAS SET TO 11

IERROR HAS SET TC 3

TOUT = 0. 1000 000000D 03
YO 1) = -0.6644411195D-12
YO 2) = C. €64441 11950-11

THE FRCEIEE HAS COKPLETEC IN 363 STEPS.
THERE HERE 564 CALLS TO DIFFUN AND
THERE HERE 61 CALLS TO PEDERV.

Fig. 29. Output from the Program for Example EPISODE-1
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THIS! HR! IRE VHLOES USED 10 CALL EPSODE

i s 2

70 - 0.0

BO s C. 10C00C0000D-09
70(1) 2 0.1000000000D 01
70 2) =  -0. 1000000000 E 01
TOOT 2 C. 10C0C0C000D 03
EPS z 0. 1000000000 D-09
[ERROR = 3

BE z 20

INDEX = I

HF WAS SIT TO 20

IERRCB WAS SET TC 3

TOOT - 0. 1000000000D 03
T0 (1) = 0. 1508 24456 OD- 12
T0 (2) = -C.15C8244560D-11

IRE FRCEIEt WAS COEELETEE IN 1443 STEPS.
THERE WERE 2375 CALLS TO DIFFON AND
THERE WERE 0 CALLS TO PEDERV.

THESE ARE THE VAIOES OSED TO CALL EPSODE

N z 2

TO z 0.0

HO mn C. 10COO0COOOD-09
70 (1) m 0.1000000000D 01
70 (2) m -0.1000000000D 01
TOOT " C.1QCOOCO00O0D 03
EPS a 0. 1000000000 D-09
TERROR a 3

HF ° 21

INDEX = 1

HF WAS SIT TO 21

IERROR WAS SIT TC 3

TOOT m 0. 1000000000D 03
70 (1) m 0.5898197618D-11

702) =z —C.5858 197618D-11

THE FRCEIEE SAS CCBFIETBE IE 304 STEPS.
THERE WERE 379 CHL1S TO DIPPOB AHD
THERE HIRE 44 CALLS TO PEDERV.

Fig. 29 (Cont'd)
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THESE ABI THE VALDES OSED TO CALL EPSODE:

N = 2
TO = 0.0

EO = C. I0COCCCOOOD-09
Yo (1) = 0.1000000000C 01
YO 2) = -0.1000000000C 01
TOOT - C. 10CCCCCOCOD 03
EPS = 0. 1000000000C-09
TEEROR = 3

MF = 12

INDEX = 1

MF WAS SET TO 12

IERROR WAS SET TC 3

TOOT 0. 1000000000D 03
YO() = 0. 16 96466502D- 19
Y0R2) = -C.16S564693360-19

THE PRCEIE!! WAS COMPLETE! IN 407 STEPS.
THERE WERE 783 CALLS TO DIFFON AND
THERE WERE 80 CALLS TO PEDERV.

THESE API THE VAIOES OSEE TO CALL EPSODE:

N 2
TO 0.0

HO C. 1I0CCCOCOO0D-09
Yo1) = 0. 1000000000 E 01
YO (2) ~0. 1000000000 D 01
TOOT C. ICCOCOCO00D 03
EPS 0. 1000000000 D-09
TERROR = 3

MF 13

INDEX = 1

MF WAS SIT TO 13

IERROR WAS SET TC 3

TOOT 0. 1000000000E 03
YO (1) -0.4982889154D-09
YO 2) = C.4077953845D-09

THE PRCEIEE WAS CCMPLETEE IN 307 STEPS.
THERE WERE 635 CALLS TO DIFFUN AND
THERE WERE 84 CALLS TO PEDERV.

Fig. 29. (Cont'd)
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THESE API THE VALOES OSED TO

N 2

TO = 0.0

EO = C.10CCCCC000D-m09
70 (1) = 0. 1000000000C 01
70 <2) = -0. 1000000000C 01
TO OT = C.10COCOCO0O0D 03
EPS = 0. 1000000000C--09
IEBBOB = 3

HF = 22

INDEX = 1

nF WHS SIT TO 22

IE EBOB BUS SET TC 3

TOOT = 0. 1000000000D 03
TO (1) = 0.5898199076D-11
YO (2) = -0.S8S8199076D-11

THE FHCEIEE HAS COEELETEE IN 30U STEPS.
THEBE HEBE «67 CALLS TO DIFFON AND
THEBE HEBE U« CALLS TO PEDEBV.

THESE ABE THE VAIOES OSED TO CALL EPSODE

N 2

TO 0.0

BO (. 10 CO CCCO 00D-09
70 (1). 0.1000000000D 01
70 (2) 0.1000000000D 01
TOOT C.IOCCCCCOO0D 03
EPS 0.1000000000D-09
IEBBOB 3

HF 23

INDEY 1

HF WAS SET TO 23

IEBBCB WAS SET TC 3

TOOT 0. 1000000000D 03

TO (1) -0.1571789988D-10

TO2) = C.26C68SS619D-10

THE PBCEIEE WAS COEELETEE IN «l« STEPS.
THEBE WEBE 775 CALLS TO DIFFON AND
THEBE WEBE 115 CALLS TO PEDEBV.

IECO02 1 STOP 0

Fig. 29 (Cont'd)
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2.  EPISODE-2 A pair of stiff equations

Sol ve y-' = 998y-| + 1998y2
-999y-| - 1999y2
subject to yi (1) = 1, y2(o) = |

Analytically, the closed form solution is:

y- (t) 4e t - 3e 1000t

y2(t) -2e-t + 3e-1000t

The calling program and the two subroutines are shown in Fig. 30.
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IBELICIT B£ia*8(A-H,0-Z)

COBNON /EPCOB9/ HOSED, NQOSED, NSTEP, NFE, HJE
DIHENSION TO(2)

EITEBNAL DIFFON, PEDERV

ALI THREE HETHODS OF ERROR CONTROL BILL BE OSED.

DO 10 I =1, 3
N =2
T0 (1) = 1.0D0
TO 2» = 1.0D0
T0 = 0.0D0

TOOT = 1.0DO
HO = 1.0E-10
EPS = 1.0D-10
HF * 21

SET IERROR.

[ERROR = 1
INDEX = |
WRITE (6,100) N,TO,HO,TO(1) ,YO(2) ,TOOT,EPS,TERROR,HF,INDEX
CALL EPSODE (DIFFON_PEDERV_N,TO0_HO.TO,TCOT.EPS,TERROR,HF,INDEX)
IF (INDEX .NE. 0) WRITE(6,101) INDE X,HO,TO (1),TO (2) ,TCOT, EP S, HF
IF (INDEX .EQ. 0) HRITE(6, 102) HF.IERROR,TOOT,TO (1) , TO(2) _NSTEP,
| NFE,NJE
IF (I .EQ.2) WRITE (6 ,104)
10 CONTINOE
WRIT E(6,10 3)
100 FCRHAT (//.51.41HTHESE ARE THE VALOES OSED TO CALL EPSCDE:,//,5X,

| 8HN =.16,/,51,8HT0 =,D20.10,/,5X,8HH0 =,D020.10,/,5X,
2 8HTO (1) =,D20.10./5X,8HY0(2) =,D20.10,/,5X.8HTO0T =,D20.10,/,
3 EX.SHEPS =,D20.10,/,5X,8HIERRCR =,16./,5X,8HHF =.16./,
4 5X,8HINDEX =,16)

101 FCRHAT (//.5X16HWARNING INDEX =,I3./.5X.8HH0 =D20.10,/,5X%,
I 8HYO (1) =D20. 10,/, EX, 8HY0(2) =, D20.10./,5X,8HTOOT =,D20.10,
2 /_5X_.8HEPS —D20.10,/,5X,8SHIEFROR=,16,/,5X,8HBF =16)

102 FORHAT (//.5X,13HHF WAS SET TO,I7./.5X,17HIERBCR WAS SIT TO,13.//
| 5X, 8HTCOT =, D20.10./,5X,8HTO (1) =,D20.10./,5X,8HT0(2) =,

2 D20. 10,/, 5X, 28HTHE PROELEH-WAS COHPLETED IN,I5,7H STEFS. ./,5X,
3 | CHTHERE WERE,I520H CALLS TO DIFFON ANC,/.5X,10HTHERE WERE,15,
4 17H CALLS TO PEDERV.)

103 FCRHAT (//.5X,29HTHIS IS A NORHAL TERMINATION.)

104 FCRHAT (1H1)
STOP
END

SOBROOIINB PEDERV (N, T, I, PD, NO)
IHPLICIT REAL*8 (A-H,0-Z)

DIMENSION PD(NO, NO)

PD (1, 1) * 998.0D0

PD(1,2) * 1998.0D0

PD (2,1) - -999.0D0
PD (2.2) - -1999.0D0
IETORN

END

SUBROUTINE DIFFUN (N, T, T, TDOT)
IMPLICIT REAI*8(A-H,0-Z)

DIHENSION 1(2), TDOT(2)

TDOT(1) * 998.000*1(1) + 1998.000*1(2)
IDCT (2) * -999.000*1 (1) - 1999.0*1(2)
FFTURN

END

Fig. 30. Calling Program and Subroutines DIFFUN and PEDERV

for Example EPISODE-2
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The printout for this program is shown in Fig. 31.

THESE AH1 THE VALDES USED TO CALL EPSCDE:

N = 2

TO = 0.0

EO = C. 10C0CCC000D--09
VO (1) = 0. 1000000000 E 01
Vo 2) = 0. 1000000000E 01
TOUT = C. 1CCCCCC000D 01
EPS = 0. 1000000000E-09
TERROR = 1

MF = 21

INDEX = 1

MF WAS SET TO 21

IERROR HAS SET TC 1

TOOT = 0. 10 00 000000D 01
YO (1) 0.1471517767D 01

YO (2) -C.73S75EE835D 00

THE PRCEIEE WAS CCMPLETEE IN U03 STEPS.
THERE WERE 507 CALLS TO DIF] N AND
THERE HERE 51 CALLS TO PED]

THESE ARE THE VAIOES OSED TO

N = 2

TO = 0.0

HO = C. 10C00CCO0O0D--09
VO (1) = 0. 1000000000E 01
VO (2) = 0. 1000 000000D 01
TOUT - C. ICCOCCCO0O0D 01
EPS = 0. 1000000000 D--09
IERROR = 2

MF = 21

INDEX = 1

Fig. 31. Output from the Program for Example EPISODE-2
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MF WAS SET TO 21
IEKBCK WAS SET TC 2

TOOT 0. 1000000000 D 01

YO (1) 0. 1471517766D 0 |

YO (2) = ~C. 73575E6832D 00

THE PRCEIEH WAS CCEELETEE IN 382 STEPS.
THERE WERE 534 CALLS TO DIFFON AND
THERE WERE 62 CALLS TO PEDERV.

THESE ARE THE VALOES OSED TO CALL EPSODE

N 2

TO 0.0

EO C. 1I0CCCOCOOO0OD-09
70 (1) 0.1000000000C 01
70 (2) 0.1000000000E 01
TOOT C. ICCOCCCOOO0D 01
EPS 0. 1000000000E-09
IERROR 3

MF 21

INDEX = 1

MF WAS SET TO 21

IERRCR WAS SET TC 3

TOOT = 0. 1000000000 E 01

70 1) = 0. 1471517767D 01

YO (2) = - C. 73 E75E8834D 00

THE PRCEIEE WAS CCKELETEE IN 365 STEPS.
THERE WERE 492 CALLS TO DIFFON AND
THERE WERE 51 CALLS TO PEDERYV.

THIS IS A NCEMAL TERMINATION.

IEC002 I STOP 0

Fig. 31. (Cont'd)
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3. EPISODE-3 Creating a table

The system of differential equations comes from [2, pp. 141-142] and
[3, pp. 34-41]. "This test problem was motivated by a study of concen-
trations of minor chemical species in the earth's atmosphere. Some of
these concentrations are governed by photochemical reactions which vary
diurnally (with the sunlight present), as a square wave with a 24-hour
period." [3, 34].

A one-dimensional model mockup of such a process is given by

Solve y'(®) = H'(®) - Bly(®) - H®]

subject to y(0) = H(0) for 0 < t < 432,000
where

H() = [D + A*E(t)]/B, A = 10"18, B = 108, D = 10-19
and

{exp [-Cw/sin to t], sin tot > 0

0, sin tot < 0
C = 4, to = 11/43200

The solution can be seen to be y(t) = H(t). This solution is
represented by what is nearly a square wave of period 86,400 seconds
(24 hours), which starts at 0 at t = 0, abruptly attains its maximum,
holds it for almost 12 hours (corresponding to the twelve daylight hours)
and abruptly drops to its minimum, which is held for almost 12 hours (the

nighttime). Output will be taken every 43,200 seconds.
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ORNL-DWG 78-10806

11 7

10 -

0-9 -

0-8 -

0-7 -

0-6 -

0-S -

torn = 1.0R6

0-t-

03 -

0-1 -

0-0 - T 1 | — |
40 60 80 10-0 12-0 14-0 16-0 18-0

T NI10O*

Fig, 32, Solution for Example EPISODE-3

0
The time constant T = 1/B = 10 is very small in comparison with

the length of the interval of integration and the problem is very stiff.
We shall use MF = 23 and EPS = L.OD - 6 because they worked well
in [3], A subprogram has been written for the function H(t).

The calling program is shown in Fig, 33.



74

IBELICIT BfAL*8 (A-H,0-2)

COBHON /BPCOH9/ BOSID, NQOSED, NSTEP, IPE, NJE
DIHENSION TO(1)

]SXTERNAL DIFFON, PEDEBV

TO (1) = H (0. ODO)
TO = 0.0DO

TCOT = <«.32D4
HO = 1.0D-6

EPS = 1.0D-6

KF = 23

IERROR = 3
INDEX = |

BRITE(6,100) N,TO,BO,TO (1),TOOT,EPS,IEBROB,HF,INDEX
BBITE (6, 10 1) TOOT, 10(1)
DO 10 I =1, 10
CALL EPSODE(DIFFON_PEDEBV,H,TO_HO,TO,TCOT,EPS,IEBROB,HF,INDEX)

BT = fl(TOOT)
AE = BT - TO (1)
RE = AE/YO (1)

BRITE (6,102) TOOT, 10(1), HT, AE, BE
TOOT = TOOT ¢ 4.32D4
10 CONTINOE
BRITE (6,103)
ICO FORHAT(//.5X,41HTHESE ARE THE VALOES OSED TO CALL EPSODE:.//.5X,

| 8HN =.16./,5X,8HT0 -.D20.10,/,5X,8HHO =,020.10./,5X,
2 8HYO(1) =.D20.10,/5X, SHTOOT ~ =,D20.10./,
3 5X,8HEPS =,D20.10./,5X,8HIERROR =,16./,5X,8HHF =.16./,

4 5X8HINDEX =,16)
101 FORKAT(//.5X,39HA TABLE OF VALOES FOR EIAHPLE EPISODE-3,//,
| 10X,4HTIHE ,21X,
2 4HY(T),2IX,4HH (T), 1 6X,8HABSOL DTE,7X,8HBELATIVE, /_ 10X,
3 10HIN SECONDS,60X,5HERROR,10X,5SHERROH,/,2 (5X.D20.10))
102 FORHAT (3(5X,D20. 10), 2 (5X, D10. 5))
103 FORHAT(//.5X,29HTHIS IS A NCRHAL TERHINATION.)
STOP
STOP
END

Fig. 33. Calling Program for Example EPISODE-3
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The subroutine DIFFUN is shown in Fig. 34.

SOBBOOTIMB DIFFON (H, I, T( TDOT)
IHPLICIT BEHL*8 (H-H ,0-Z)
CIBENSION 1(1), IDOT (1)

A » 1.0D-18
B m 1.0D8
C « 4.0D0
D = 1.0D-19

OHEOA = 3.1415926535D0/4.32D4
£01 = DSIN (OHEGA*T)

EDI = 0.0DO

IF (SOT ,GT. 0.0DO) EDT = C*OHEGA*OHEGA*DCOS(OHEGH*T)*DEXP(-C*
1 OHEGA/SOT)

HD1 = A*ENT

IDOT (1) = HOT - B*(M1) - H(T))

fETOBN

END

Fig. 34. Subroutine DIFFUN for Example EPISODE-3

The double-precision function H is shown in Fig. 35.

ECUBLE PRECISION FUNCTION H (T)
IMPLICIT REAL*8(A-Hr0-Z)

A = 1.CD-18

E = 1.0ES8

C = 4.0D0

D = LOD-19

CMEGA = 3. 141592653 5D0/4.32D4

SCT = DSIN (OMEGA*T)

ET = 0.0DO

IF (SOI .GT. 0.0DO) ET = DEXP(-C*CMEG A/S CT)
H= (D ¢« A*ET)/B

FETURN

END

Fig. 35. Double-Precision Function H for Example EPISODE-3
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The dummy subroutine PEDERV is shown in Fig. 36-

SUBROUTINE PEDERV (N, T, Y, FD, NO)

RETURN
END

Fig. 36. Subroutine PEDERV for Example EPISODE-3

The output you get is shown in Fig. 37.



THESE AHI THE VALUES OSED TO CALL EPSODE:

N |

TO 0.0

EO C.1CC0000000D-05
20¢1) 0.1000000000D-26
TOOT 0.0320000000D 05
EPS 0.1000000000D-05
IEBBOB 3

HP 23

INDEX l

A TABLE OF VALDES

TIHE

IN SECONDS
0.03 20000000 E
0.0320000000 C
0.86 0 0000000 D
0. 1256CCCOO0D
0. NJe€CcoCOCOoC
0.21600000 00E
0. 2592000000 C
0.3 C20000000D
0.3056CCCOCOD
0.5€€€00CO0COC
0. 0320C00000 E

THIS

IEC0021 STOP 0

FOB EXAHPLE EPISODE-3

Fig.

IS A NOBMAL TEB HINATIOH.

37.

Y(T)

0. 1000000000D-26
0.9999999998D-27
0. 100000 1522D-26
0.1000000000D-26
0.1000000000D-26
0. 100 0000013D-26
0.1000000000D-26
0.1000000000D-26
0.1000000000D-26
0.9999999955D-27
0. 100000002 8D-26

H(T)

0.1000000000D-26
0.1000000000D-26
0.1000000000D-26
0. 1000000000D-26
0.1000000000D-26
0.1000000000D-26
0.1000000000D-26
0.1000000000D-26
0. 1000000000D-26
0. 1000000000D-26

ABSOLUTE
EBROB

-17878D-36
Foskok ko ok ok K Ok

-U0564D-39

.0
s sk sk ok sk ok sk ok ok

Sekokoskoskosk ok ok ok ok

.0
4451 1D-35

s ok sk sk sk s skeoskoskook

Output from the Program for Example EPISODE-3

BELATIVE
EBBOB

. 17878E-09
sk ok ok ok ok ok ok ok K

-40564D-12

S sk ke ok sk ok sk ok ok ok

S st st se e s sk s e ok

.0
. 4451 ID-08

s ok s sk sk sk sk skook
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