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ABSTRACT 
In this report we discuss the application of various signal processing methods to extract 

energy storage information from plasma diamagnetism sensors occurring during physics 
experiments on the Tandom Mirror Experiment-Upgrade (TMX-U). We show how these 
processing techniques can be used to decrease the uncertainty in the corresponding sensor 
measurements. The algorithms suggested are implemented using SIG, an interactive signal 
processing package developed at LLNL. 



Chapter 1 

INTRODUCTION 

Controlled fusion of heavy isotopes of hydrogen (deuterium and tritium) would enable 
a virtually limitless supply of energy |lj and therefore provide a solution to the dwindling 
supply of conventional energy sources. Ultimately, deuterium, which occurs naturally in 
water, represents a fuel reserve that would last for billions of years. Fusion reactions 
occur when ions of the hydrogen isotopes, heated to sufficient temperatures, collide and 
overcome the electrical forces of separation. When the nuclei fuse, enormous amounts of 
energy are released in the form of neutrons and protons from a relatively small amount of 
matter. The basic requirement for controlled fusion is to heat a plasma (or ionized gas) 
to high temperatures, in excess of 10 8 degrees, and confine it for times long enough that a 
significant number of fusion events occur. In order to confine, heat, sustain, and maintain 
purity the hot plasma must be isolated in a vacuum from contact with the surrounding 
vessel walls. One method of accomplishing this is call magnetic confinement. 

The magnetic confinement method presently used at Lawrence Liverraore National 
Laboratory (LLNL) is the result of over 30 years of research [2,3j, starting with a single 
magnetic mirror cell and evolving to a tandem mirror with thermal barriers [4-6], the 
Tandem Mirror Experiment - Upgrade (TMX-U) experiment. Results from this experiment 
are leading to ijosign principles for a commercial reactor. In Figure 1-1 we show a schematic 
of the TMX-U experiment presently operating at LLNL. As shown in the figure, the tandom 
mirror consist of a large sausage-shaped region (centra/ celt) with a mirror cell at each end. 
Here the magnetic forces confine the plasma within the reacting region until after many 
collisions they eventually escape. The confining magnetic fields are produced by 24 water 
cooled coils requiring 20 MW of power to generate peak fields of 2.2T. A target plasma is 
generated by electrical breakdown of deuterium gas with intense beams of microwaves. The 
high power microwaves, 800 KW at 24 GHz, also heat the electrons by electron cyclotron 
resonance heating (ECRH) to temperatures in excess of 50 KeV. Hot deuterium ions are 
created by ionization and charge exchange with the target plasma of neutral deutcriarn 
atoms injected at 15 KeV using a neutral beam system consisting of up to 24 neutral 
beams producing 5 MW of power for 60 msec pulses. Additional heating of ions can be 
obtained by ion cyclotron resonance heating (FeRH) using rf power injection of 200 KW 
in the frequency range of 1.5-4.0 MHz. This electrical environment requires specialized 
diagnostic sensors and processing techniques to accurately measure plasma parameters 
without perturbing the confined plasma. 

A parameter of significant improtance to magnetically confined plasmas is the diamag-
netism of the plasma. This is a measure of the energy density stored in the hot particles. 
It is also used to determine the beta, fi, the ratio of kinetic pressure (nKT) to magnetic 
field pressure (B2/2fir,) and indicates the efficiency of utilization of applied magnetic fields. 
A single-turn loop transformer is used as the sensor for the plasma diamagnetism [7-9], As 
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the plasma particle pressure increases due to heating, it will exclude magnetic field lines 
from inside thus increasing the apparent magnetic field around the plasm column. The 
single-turn transformer has d<j>/dt generated as its output. Thus, time integration of this 
waveform can be used to calculate the plasma, P. On TMX-U we expect values of 0 up to 
0.5 in the end-cell regions. 

In the TMX-U plasma, a number of noise sources are present which make the estima­
tion of 0 difficult. Variations of the magnetic field used to contain the plasma are present 
because of feedback circuits and ripple currents in the main power system. In many cases 
the signal that is used to determine the plasma diamagnetism is so badly corrupted with 
coherent frequency noise (ripple) that the plasma perturbation due to diamagnetism is not 
even visible. The present noise removal process involves subtraction of a short block of 
signal that represents the noise component only from data during the time that plasma is 
present. The noise reference block is aligned in phase with each of the signal plus noise 
data blocks so that the offending ripple component is removed. The result is integrated 
and a measure of the plasma diamagnetism is obtained. When the signal are approaching 
the noise level, or when the feedback control system has introduced a linear trend to the 
data, this approach is no longer satisfactory. A more sophisticated technique must be used 
for the processing of the measured signals. It must incorporate trend removal with the 
capability of removing the coherent noise without affecting the frequency content of the 
plasma perturbation itself. The development of this technique and associated processing 
is the goal of this project and discussed in the remainder of this report. 

This completes the background informal ion. In the next chapter we discuss the acqui­
sition and processing of the diamagnetic loop measurements for plasma diagnostics. We 
summarize the results of this effort and present more detailed information about the signal 
processor employed and the software package (S I6 ) utilized. 
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Chapter 2 

SIGNAL PROCESSING OF TMX-U MEASUREMENTS 

In this section, we analyze the acquired diamagnetic loop (DML) sensor measurements 
and show how the data can be processed to retain the essential information required for 
post-experimental analysis. The measured DML data is analog (anti-alias) filtered and 
digitized at a 25 KHz sampling rate (40 it sec sample interval). A typical experiment gen­
erates a transient signal (plasma) which is recorded for approximately 650 msec (Hi,38'] 
samples). The raw data and corresponding frequency spectrum arc shown in Figure 2-1 
along with an expanded section of the transient pulse and noise. We note that the raw 
data is contaminated with a drift or trend and random noise as well as sinusoidal distur­
bances at harmonics of 60 Hz, the largest at 360 Hz. The pulse is also contaminated by 
these disturbances and we see that some of the plasma information appears as high energy 
spikes(pulses) riding on the slower plasma build-up puise. We will discuss methods to ex­
tract this plasma information in a subsequent section, but here we are primarily interested 
in performing the basic processing to preserve this information and reduce uncertainties 
in the data. 

An examination of the measurement spectrum reveals that most of the plasma infor­
mation lies below 10 KHz indicating that the data is being slightly oversampled, however. 
the main objective of sampling in this case is to sample fast enough to preserve the plasma 
high energy spikes. It is desirable to operate on fewer samples for speed and other numer­
ical reasons, therefore, the raw data was investigated to determine the smallest sampling 
rale that would preserve the vital plasma characteristics. It was found that the raw DML 
data could be resampled at a 6.25 KHz rate (160 (i sec interval) reducing the number of 
data samples required. The resampled data and spectrum as well as the pukes are show in 
Figure 2-2. Comparing these results to the previous figure we note very slight differences 
except in smoothing of the higher frequencies and reduction in noise. 

For the purposes of trend and disturbance removal the raw data is pariitioned into 
two sections: one with the disturbances and one with the signal (pulse) and disturbances. 
These records art then utilized for further processing. The raw processing or pre-processing 
is automatically accomplished in SIG, a software package developed by the Signal and 
Image Processing Research Group of the Engineering Research Division (EE Department) 
by selecting the appropriate menu item. The application of SIG to this problem is discussed 
in Appendix C below. 

2.1 Sinusoidal Disturbance and Trend Rtmovat 

In this section, we discuss the techniques used to enhance and extract the desired 
signal information from noisy DML measurement data. A close examination of the pre-
processed DML data indicalcs that the data is contaminated by trends, both linear and 
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sinusoidal, as well as higher frequency sinusoids and associated harmonics generated by 
the power supplies utilized in the experiment. The dominant sinusoidal distrubances are 
at 120 and 360 Hz (see Figure 2-2). 

A processor must be developed that will eliminate these disturbances, yet preserve all 
of the essential features of the transient pulse and associated energy spikes. This problem 
is ideally suited for a technique called noise cancelling. The basic requirements of the 
data are that a reference file of noise and of the signal and noise are available. For best 
results, the signal and noise should not be correlated (see Appendix A for details). These 
conditions are satisfied by the DML measurement data, since the onset of the measurement 
consists only of the disturbances (trend and sinusoids), and tf e signal is availabte at the 
time of the transient pulse. The measured data is modelled by 

y(t) = *( t)+ #(?-')<•(<) + "(*) ( 2 - 1 ) 

where 

y is the measured data, 

s is the signal, 

H is the se.jsor or measurement system dynamics, 

r is the measured reference noise, and 

v is the random disturbance or noise. 

The measurement dynamics are given by the polynomial, 

H(g-1) = A(0) + h[l)q-> + •-- + k{N)q-J\ 

and q is a shift or delay operator (i.e., o _ , r ( i ) = r(I — i)). 

The noise canceller processes the data and cancels the effects of the disturbances by de­
veloping an estimate of the system dynamics, H(q~l), estimating the noise, and then 
subtracting it from the data to give, 

z(t) = S{t) + [#(<,"') - H(Q-l)]r(t) ~ v(t) (2 - 2). 

Clearly, as H —> H, the effects of the disturbances are cancelled. Note that the random or 
uncorrected noise, v(t), must still be processed, even after cancelling, since like the signal, 
it is also uncorrected with the disturbances. 

The noise canceller algorithm was constructed using various commands in SIG, and 
the results are shown in Figure 2-3. Here we see the raw and processed data and corre­
sponding spectra. Note that the sinusoidal disturbances and trend have been eliminated 
(spectrum) and that the noise spectrum has been reasonably estimated. 
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A closer examination of the estimated transient pulse (see Figure 2-4) shows that not 
only have the disturbances been removed, but that the integrity of the pulse has been 
maintained and all of the high frequency energy spikes have been preserved. 

To show the performance of the processor on another independent set of measure­
ments, consider the data show in Figure 2-5. Here we see that the disturbance consists not 
only of a linear trends but a low frequency sinusoidal trend as well. The raw and processed 
signal are overlayed for comparative purposes and we see again that the processor is able 
to reject the disturbances quite well. 

Once these disturbances have been removed, the processed signal can be integrated to 
remove or deconvolve the effects of the differentiating DML probe and provide an estimate 
of the stored energy build-up in the machine. The results are shown in (see Figure 2-6). 
The completes the disturbance removal phase of the DML signal processing. In the next 
section, we show how the TMX-U energy spikes can be extracted from the processed DML 
data. 

2.2 Energy Spike Estimation 

In this section, we discuss signal processing techniques which can be used to provide 
estimates of the energy spikes present in the transient plasma build-up. For diagnostic 
purposes, it is of high interest to be able to extract this information, which previously 
was not available. One approach to solving this problem is to appiy a nonlinear filtering 
technique called the median filter. The noise cancelled data, {.z(z)}, is further processed 
by selecting a window of a fixed number of samples, sliding it (computationally) through 
the data, and replacing the current sample value, with the median or middle value (in 
amplitude) within the window. The effect of this nonlinear operation is primarily to 
remove the high frequency spikes and provide a smoothed estimate of the plasma build-up 
pulse. Mathematically, this processor can be represented by 

x(t)=AUd^z(n), ( 2 - 3 ) 

where Med — means select the median value in the window of length M. 
Once the plasma build-up pulse is estimated, it can be subtracted from the cancelled 

data to provide estimates of the energy spikes of interest, i.e., 

«W=*(0-*W- (2-4) 
The results of this processing operation is shown in Figure 2-7. First, we see that 

median Altering the cancelled data, has essentially eliminated all of the high frequency 
spikes and provided a smoothed estimate of plasma build-up. Next we see the estimated 
energy spikes. Comparing these estimates to the original data indicates that this procedure 
gives reasonable estimates. This completes the discussion on signal processing of the DML 
data, in the next section, we suggest methods that should be investigated to improve the 
results even further. 
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Figure 2-5 Disturbance Removal of Linear and Sinusoidal Trend 

11 



at Hifi C l t l u t M i l f f l * . t i u l i * <Uncai»M> 

P ' t y j t o / * ^ ^ 
(Me a.i« 4.14 

T I M 

Dt H i t C » t l a * t M Signal t i u l t . C | n c i i : « i 

Figure 2-6 Estimated Plasma Build-Up 

12 



a **ia nMiM rutwM M I 

Figure 2-7 Median Filtering and Energy Spike Removal 

13 



2.3 Future Signal Processing 

Various approaches c»n be taken to process the transient signal resulting from the 
TMX-I7 runs. Better estimates of the plasma build-up pulse can be obtained by developing 
a processor based on the characteristics of the DML, itself. System identification techniques 
can be applied to independent experimental DML data to obtain a parameterized model 
of the sensor. Once obtained the model can easily be used to remove the effects of sensor 
from the acquired data. This approach offers a realistic alternative to merely integrating 
the cancelled data. 

'If more specific information about the plasma is required, then one must resort to 
more powerful model-based signal processing methods to extract it 111 ]. Model-based signal 
processing is the incorporation of a mathematical model into a processing scheme to extract 
the desired information. The models primarily describe the underlying phenomenology, in 
this case the plasma dynamics and characteristics. Processors can easily be constructed 
which provide more direct information for analysis. 
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Chapter 3 

SUMMARY 

In this report, we have discussed the various signal processing methods employed to 
extract the desired plasma information from measured diamagnetic loop data. We have 
shown how fundamental signal processing methods can be employed to pre-process the 
noisy data. The removal of both trends and sinusoidal disturbances was accomplished using 
noise cancelling signal processing methods. The estimated plasma build-up was provided 
by integrating the processed data. Next the desired energy spiJces were estimated by using 
a nonlinear filtering method to estimate the plasma build-up pulse and remove it from the 
data. Finally, we have suggested work for future improvements in signal processing by 
using model-based methods to extract the information for analysis. 
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Appendix A 

NOISE CANCELLING 

In this appendix we derive the algorithm for the noise canceller applied to the plasma 
diamagnetic signal discussed in Chapter 2 above. The concept of noise cancelling evolves 
naturally from applications in the biomedical (EKGs, patient monitoring, speech, etc.) 
and seismological areas (for details see Jlj). Ideally, for noise cancelling to be effective 
the measured data contains little or no signal information for a period of time so that the 
only information recorded is the noise, therefore, when the signal occurs it is uncorrected 
with the reference noise (e.g. pulses in radar, etc.). The initial algorithms developed were 
adaptive requiring long data records in order for the algorithm to converge (new approaches 
eliminate this requirement \2}). Variations from the ideal case still met with success. For 
example, even if signal information is present in the reference record, a reasonable signal 
estimate can still be obtained. Also, independent measurements can be used rather than 
the same data record partitioned into reference and signal plus reference. The removal of 
60 Hz disturbances can be accomplished by measuring the line voltage as the reference, 
for instance. In any case, the plasma diagnostics required for monitoring fusion is an 
idea) candidate for cancelling, since the reference noise can be obtained directly from the 
measured signal plus noise record and the signal is uncorrelated with the noise. 

The fundamental noise cancelling problem is depicted in Figure A-l. Here we assume 
that the noise corrupting the signal is passed through a linear system, 

y(t) = s{t) + ht(t) * n{t) + vt(t), (A - 1) 
r'{t) = h2(t) * n[t) + v2[t) (A - 2) 

where 
y is the measured data 
s is the signal 
n is the disturbance or noise 
v is the random disturbance or noise 
r' is the measured reference noise, and 
h is the sensor or measurement system dynamics. 

The convolution operation * is defined by 

JV N 

h(i) * n(t) = £ A(i)n(i - i) = 5>(0«"'nM = *(«-')*(*) 

for 
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Hiq-1) = k{0) + fe(l)9_1 + • • • + k{N)q~N, 

and q is a shift or delay operator (i.e., « - , n ( 0 = n{t — i)). 

Thus, using these relations the convolution equations of (A-1,2) can be expressed as 

y{t) = a[t) + I f i tg -^nW -f w,(I), (A - 3) 
r'{t) = J f t f a - 'WO + "8(0- (-4 - 4) 

The noise cancelling problem can be defined in terms of a parameter estimation prob­
lem by eliminating n from the above relations, i.e., if we assume that Hi is invcrtible 
(exists), then we have 

n(0 = Vfo~VM-#S~V')«*(0-

Substituting for n in the measurement equation, we obtain 

v(0 = s(t) + #,{,-»)[#2-VV(') - * fV)«*w] x «t(0. 
or more simply, 

y[t) = s{t) + H[q-l)r[t) + vil) ( A - 5 ) 

where #(<T«) = ffifo"1^^^1). r(t) = r»(t) - „ t ( t ) , and «(() = »,(!). 

Equation (A-5) defines an input/output model for the noise cancelling problem with the 
input sequence given by {r(i)} and the output by {y(t)}. Using this formulation, we can 
state the corresponding noise estimation problem as 

Given the mode) of (A-5), measurement sequence {y(t)}, and the noise ref­
erence sequence {r(i)}, Find the best (minimum error variance) estimate of the 
noise, n(t). 

This problem diners from the classical signal estimation problemt because more informa­
tion is available about the characteristics of the noise in the reference data. Using the 
solution to this problem, the canceller is constructed as depicted in Figure A-] . We see at 
the output of the canceller, that the estimated or filtered response is given by 

z{t)=y(t)-h(l). ( A - 6 ) 

t Actually this estimation problem is a system identification problem as noted by 
Ljung [3] 
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The minimum variance estimate, h{t), removes or cancels the reference noise, as is easily 
seen by substituting the estimator, 

m = fffo-'MO [A - 7) 
above and using (A-5) for y(t) to obtain 

£{t) = a(t) + [//(<,-') - W(v" J )]r(0 + v(t). (A - 8) 

Clearly, as H —» H then z -* s + v. If the random measurement noise, v(t) were minimal 
(small variance), then i —* s, i.e., the estimator would provide the minimum variance 
estimate of s as well, however, for v significant, further processing must be used 1o obtain 
the minimum variance estimate of s. 

Thus, we see thai noise cancelling can be viewed as a two step process: 

1. Obtaining the minimum variance estimate of the noise, n(t) , and 
2. subtracting the estimated noise, n{t), from the measured data, y(t). 

If we define the criterion function, 

J[t) = E{<?(t)} 

where the error is given by t(t) = y(t) — ft(t), then the minimum variance eslimator is 
obtained by finding the H{q~l) that minimizes the criterion, i.e., 

minjjj(t). 

The solution to this problem is obtained by differentiating J with respect to each of the 
h{i), setting the result to zero and solving the resulting set of equations, i.e., 

dh{k) - dh{k)Ei< l ' ) } 

The error gradient is found by substituting (A-7) for n(l) to obtain 

and therefore, 

J ^ = ~2E{(y{i) + £>(*>(* - i))r{t - k)}, 
N 

= -2{E{y(t)r{t - k)} - J>(»)£{r(< - i)r{t - k)}), k=l,---,N. 
1=1 
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Setting this expression to zero and solving, we obtain 

„v 
- M * ) = 5>(0*r(A-*}> * = 1, •-,-¥. (A-9) 

1=1 

Carrying out the summations, we obtain the set of linear vector-matrix equations, 

/ ^ r ( l ) \ / R,[0) Rr(-l) - A ( l - W ) W f t ( l ) 

V R,r'(N) J V Rr(N - 1) R,(N - 2) • • Rf(0) J \ h[N) 

or solving for h wc obtain 
h(N) = -KHin&rW [A - 10) 

It is straightforward to show that the corresponding error variance, R, is given by 

R = A,(0j - &,iN)RrlWEvW ^ - 11) 

This set of linear equations can be solved using standard techniques in linear algebra 
or since the covariance matrix to be inverted has a Toeplitz structure, a more efficient 
technique employing the generalized Levinson approach can be applied ^see Appendix B 
for details). Before we close this section, consider the following example to demonstrate 
the approach. 

Example . Suppose we have a simulated pulse disturbed by three sinuosoidal signals 
and zero mean gaussian noise with a standard deviation of 0.01. We apply the noke 
cancelling algorithm to the contaminated data set, y(t), shown in Figure A-2 along with 
its corresponding spectrum, Y{f). Note that the pulse spectrum is below 0.01 Hz while 
the sinusoidal disturbances are at frequencies of 0.01, 0.02, and 0.03 Hz. The output 
signal-to-noise ratio is high, therefore, the random noise, v(t), is barely noticable. As a 
reference sequence, we use the noise free sinusoids. The noise canceller is constructed by 
first calculating the optimal (minimum variance) filter response as in equation (A-10) from 
estimated correlations, Rr(k) and Ry,(k). The estimated response, h{t), and corresponding 
spectrum, H{f) are also shown in the figure. Note th&t the filter is optimized to pass the 
disturbances {sines and noise) and attenuate any signal information. From the spectrum 
of H(f), we see that the filter will pass frequencies from approximately 0.008 to 0.08 Hz 
with unity gain and attenuate lower frequencies. Finally, the noise reference sequence, 
r(t), is filtered (convolved) with h[t) to produce the estimated noise, h(t) which is then 
subtracted from the measured data to obtain the cancelled output, z[t). The results of 
the canceller are also shown in the figure. Note that the desired pulse has been recovered 
and the sinusoidal disturbances removed or cancelled (see spectra). Also, note that the 
random noise added to the measured data and not the reference has rlso been passed by 
the canceller, since it is also uncorrected with the reference sequence, as expected. This 
completes the example. 

21 
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So, we see that the noise cancelling concept can be very useful and provide results 
superior to classical signal estimation when more information is available in a reference 
sequence. 
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Appendix B 

TOEPLITZ INVERSION: 

Levinson-Wiggins-Robinson (LWR) Recursion 

The noise canceling problem requires the solution of the following set of linear equa­
tions 

h(N) = -R;l(N)R,rW (B-l) 

where Rr(N.) is a Toeplitz matrix. Efficient algorithms to invert Toepliu matrices recur­
sively were developed by Levinson [1], and extended to the so-called "generalized" case by 
Wiggins and Robinson {2]. In this appendix, we develop the LWR which is implemented 
in S1G to solve this problem. The LWR recursion can be developed in two steps. The 
first establishes the basic recursion, and the second is the standard Levinson recursion for 
inverting Toeplitz matrices. We will use the notation {fe*} to denote the i l h coefficient 
of the kih order filter and the corresponding autocorrelation as ry = E{x(t)z(l •+ j)} and 
crosscorrelation as g^ = E{x(t)y(t -*- j)}. In this notation, Eqn. B-l becomes 

h(N) = -iTl{N-)9(K) (B-2) 

Let us assume that we have the kth order filter that satisfies the set of normal equations, 

'TO 

Irk 

and we want the [k + l)ih order solution given by 

r 0 J 

T n * + h 

t.k+1 

go 

LSJt+iJ 

( B - 3 ) 

(B-4) 

Suppose the optimum solution for the (k •+ l)th order filter is is given by the klh order, 
then h'(k + 1) = [ h'(k) :. 0 J and g'(k + 1) = | g'(k) ': Vk ] with V* = g M . We can 
rewrite Eqn. B-4 as 

ro »"* rjfc-n 

n r0 j 
0 

(B~B) 

where V,-= £ } = 0 f e } r , - > + 1 . 
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We must perform operations on Eqn. B-5 to assure that Vj = gjt+i for the correct 
solution. Let us assume there exists a solution { a * + 1 } such that 

r0 ••- r i + 1 i r a ^ j "Jfc+1 

. o 
(B-6) 

Now by elementary manipulations, wo can reverse the order of the components, mul­
tiply by a constant, -ft^+i and subtract the result from Eqn. B-5, that is, 

ro 

' • *+! 

r*+i 

fo 

* ' A * ' ak+t 
1 ' ' S o ' • o ' 

' k 
0 

- t f * + l 

, 

' = - • 

k 

- Kk + t 0 

'O 

r*-ri ro J 

A+l A 0 - Kk+i<*kJrl 

A* - # i + ] a * + 1 / = \ 

So 

9* 

. lVk- Kk-ivt+i. 

(B-7) 

Here the multiplier K^~\ is selected so that 

By identifying the coefficients k(k + J),ff(& +1) from Eqn. B-7 with oj, = 1, we obtain the 
first part of the recursion 

Initialize : vt = ro — r?/ro, Vo = n 
f o r t = l,...,jfc 

i 

„ V j - g i - f i 
^i-n = —; 

W-rl 
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In order to satisfy the recursion, we must obtain, {a* + I },u*+i from the solution of 

Eqn. B-6. Using the same logic as before we assume that o/(fc + 1) = | a'(fc) i 0] such 
that 

r*+r ' Vk ' 

ro . 0 
0 

Ak. 

(B-9) 

where the discrepancy Aj = 0, if the kth order solution is optimal and A, is given by 

Continuing as before, if we reverse the order in Eqn. B-9, multiply by the constant 
•'i&.i • a n ^ subtract, we obtain 

r o • •• rk+x 

Tjfc-n ••• r 0 

«\-KUA 

LL -K'k+l4 
> = t-

0 

A* - f*-H|Vfc J . 

(B - 10) 

where K'k+1 is selected such that 

A* - K J U I " * = 0 

By identifying the coefficients of a ( i - r l ) , i>jt+|, we obtain the well-known Levinson-Durbin 
recursion for the {&!} as: 

Initialize : VQ = ro, AQ = rt, K\ = 

For i = l , - - . , f c 
y 

IT- - ^ 

-f-l/ro 

( f l - l l ) 

< & ! = - ^ 1 
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«£" = «i - Kl*i4-s-n for \<3<i 
fi+i = Vi - K-+1Ai 

This completes the derivation of the solution to the Toeplitz inversion using the gen­
eralized Lcvinson algorithm. 

References 

jl] N. Lcvinson, UA heuristic exposition of Wiener's mathematical theory of prediction and 
filtering," J. Math. Pliys., vol. 25, 1947. 

(2j E. Robinson, Multichannel Time Series Analysis with Digital Computer Progams, 
Holden-Day: San Francisco, 1967. 

|3] E. Robinson and S. Treitel, Geophysical Signal Analysis Prentice-Hall: New Jersey, 
1980. 

27 



Appendix C 

SIG FOR TMX 

In this appendix we discuss the application of SIG, a signal processing software pack­
age developed by the Signal and Image Processing Group of the EE/Engineering Research 
Division. SIG enables a user to employ various signal processing techniques and develop 
algorithms by creating command files {in the SIG language) and executing them directly or 
in menu mode. We chose to use the menu mode so that the processing could be automated 
on the MFE DEC-10 computer system. 

The basic SIG menu for the TMX diagnostics is shown below in Figure C-l. Here 
we see that the operations performed are the: (1) pre-processing, (2) plasma build-up 
estimates, (3) energy spike estimation, and (4) noise cancelling analysis. An example, of a 
SIG command file for the plasma build-up estimates is shown in Figure C-2. Here we see 
the construction of the cancelling algorithm from SIG commands. For example, the noise 
estimate given by 

h(t) = h(t) * r{t), 

is implemented using the 

1. IMPULSE command to estimate, h{t), and 

2. CONVOLVE command to obtain, n(t). 

The cancelling algorithm operation is then completed by calculating 

*(0 = y{t) - Mi) 
using the SUBTRACT command to obtain, z{t). 

The cancelled pulse is then integrated ( INTEGRATE )to provide an estimate of 
the plasma build-up phase of the experiment. So, we see how various procedures can 
be implemented within SIG to accomplish the required signal processing tasks for this 
problem. This completes the appendix on the application of SIG. 

28 



< : : : : : : : : : : : HFE: Plasiia Diagnostics : : : : : : : : : : > 

1) Pre-process Raw Diagnostic Data 
2) Extract PlasNa DHL Signal 
3) Extract Plasna Energy Ounps 
4) Exact Noise Canceller 
5) Adaptive Noise Canceller 
6) Analyze Noise Canceller Performance 
7) RETURN to Main Menu -
8) Exit SIC 

Menu iten? (0=redispIag, CTRL-Z=return to SIG)> 

Figure C-l SIG TMX Diagnostics Menu 
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erase 

j i i imii i t j i i imji i i j iuni 
I I 11 I 111111 1111 I IIPerfon. The 

ni imii i i i i i i i imi i i i i im 

l ! ! l l l l ] | ] i H I I I I I I I ! l i l l l l l l l l ! ! l l l l ! l l 
Basic Signal Processing| |11!I 11 11 111 11 I I 
11111111111111111111111! 111! I M I 11111111 

l l l l l l l l l l l l l l l l l i m i l l l l l l 
1111111 j111111111iReaore the 
I I I I I I I I I I I I I I I I M I I I I I I I I I I I 

miiimmiii i i i i i i i i i imii i i iMimi 
Sinusoidal Disturbances!)1111111111111111 

l l l l l l l l l l l l l l i M l l i m i l l l l l M M i m i 

•rase 

1111111111111 
I I I I I I I I I U I I 
i i i i i i m i i i 

i i i i n m i i i i i ! 
H I |EXACT Noise 

niimiimiin 

l l l l l l l i m i l l l l i l l l l l l M I I I I I I I I I M I M I 
C u e c l l u r U I I I I I I 111111111 (111111(11 III I i i immii i imimimnmii imi im 

Bpulse 910 911 91S 64 .1 ! Estimate Filter for Noise 
dstitle 915 Optimal Impulse Response 
convolTe 915 910 916 !Estimated Noise 
iicut '16 917 1 2048 
dstitle $17 Estimated Noise 
subtract 911 917 916 iEatimate Signal (Cancelled Noise) 
dstitle 918 Estimated Signal (Noise Cancelled) 
erase 

1 1 1 1 1 1 1 1 1 1 1 1 E I j 1 i 
l l l l l l l l l l l l l l l l ! 
i i m i i i m i i i J i i 

i i i i i i i i i m i i i i i i m i i i i i i i i i i i m i i i i i i i i i i i i m i i i 
| Integrate to Obtain the Energy|!11 111 I I 11 I I 11 I I I I I I I 
I If 111JIII11 1111J1111111 I 1111111111111 I 1111 I 11 I 11 I I I I 

ntegrate 916 919 
pfw plo» . vpname 2x1" 
pfw plot.mpmode s ingle 
pfw plot.pause page 
tsp 91S 919 
exec restore 

Figure C-2 SIG Plasma Build-Up Command File 
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