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Abstract 

Using the technique developed by Chapman and Enskog for deriving the 

Navier-Stokes equations from the Boitzmann equation, a framework is set up 

for deriving diffusion theories from the transport equation. The procedure 

is f i r s t applied to give a derivation of isotropic diffusion theory and 

then of a completely new theory which is naturally f lux- l imi ted. This new 

f lux- l imi ted diffusion theory is then compared with asymptotic diffusion theory. 
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Introduction 

In many problems involving transport theory one is often forced by 
computational or cost considerations to adopt some approximate method to 
handle the transport phenomena. By far the most common such methods in 
use today involve approximating the angular information by various forms 
of diffusion approximation, typically based on equilibrium diffusion theory 

la 2 
(EOT), isotropic diffusion theory (IDT), or asymptotic diffusion theory 
(AOT). ' ' All these theories impose restrictions on significant spatial 
variations over distances of a mean free path and all yield expressions for 
the flux which can violate causality (the magnitude of the flux can be no 
greater than the density times the maximum transport speed) when these 
restrictions are exceeded. While these constraints are reasonable for many 
physical problems, they are often violated in problems that arise in plasma 
physics and astrophysics. In the past this has led to the ad hoc introduction 

4 of a flux-limiter, usually with some degree of arbitrariness, in order to 
preserve causality in the presence of large spatial gradients. It is one 
purpose of this paper to present a diffusion theory which is naturally flux-
limited, and thus circumvents some of the restrictions usually imposed. 
It will be called flux-limited diffusion theory (FDT). 

The setting of what follows will be radiation transport theory, although 
the result makes no special use of this fact and may be applied to any one 
speed transport problem. For simplicity,only the case of isotropic elastic 
scattering will be treated here but the procedure can be generalized to 
handle anisotropic and weakly inelastic scattering. The transport equation 
for the specific intensity I(n, F, t) of photons has the form 

1 3 t I + n-vl + o TI = j ^ {o AB + o sU) (1) 



where v., r, and t are the angular, spat ia l , and temporal variables, c is the 

speed of l i g h t , a«(F,t) is the absorption coef f ic ient , a ^F . t ) is the 

scattering coeff ic ient, uj = ^ + o s is the total interaction coef f ic ient , B(F,t) 

is the black body energy density, and U(r~,t) is the energy density as defined 

by 

U{r,t) = J- f I(n, F, t) dfl (2) 
J 4TT 

These equations may be considered to be either frequency-dependent with the 

frequency parameter suppressed or gray equations. 

Integrating ( I ) over a shows that U(F,t) sat isf ies 

btU + v-F + caA(U-B) = 0 , (3) 

where F ( r , t ) , the energy f l ux , is defined by 

f(r,t) = f l i l ( a , F, t ) dft (4) 

I f one can obtain an expression for F in terms of U then equation (3) would 

determine U(F,t) completely. By (4) i t clearly suffices to derive an expression 

for I in terms of U, and the second purpose of this paper is to demonstrate 

the power of the Chapman-Enskog technique to derive such expressions. 

The Chapman-Enskoq Technique 
5 

The idea of Chapman-Enskog is to derive an expression for I in terms 

of U such that whenever U satisf ies equation (3) then I(U) w i l l at least 

approximately solve equation (1). This requirement is turned into a nonlinear 

functional d i f ferent ia l equation for I in terms of 11 which is then solved 
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approximately. The procedure is as follows. 

Let I{U) be some functional for I in terms of U with the n" dependence 
suppressed. The corresponding functional for F is obtained using equation (4) 
and a consistency condition is obtained from equation (2). The functional 
derivative of I with respect to U is denoted -rrr and defined by the formula 

f j H o j k l (UrtH) 
t=0 

< 5 l 

TIT is a l inear operator acting on H, an infinitesmal displacement of U. 

Using this notation, one may rewrite equations (1) and (3) as 

I § 3 t u + m ("-'u ) + -r 1 = h <°AB+asu> ^ 

3 tU + |g -VU + caA(U-B) = 0 (5b) 

Since it is assumed U satisfies (5b), it may be used to eliminate 3.U from 
(5a). The resulting equation is the previously mentioned nonlinear functional 
differential equation 

|i (£2.VU - 1 £ -VU - aA(U-B)) + aTI = ̂  (a^U) (6) 

Clearly now, if I(U) solves (6) and U(r",t) solves (5b), then I(JT,F,t) = I(U) 
solves (5a). 

Finding the general solution of (6) is fully as difficult as solving the 
general initial value problem for (1); however, that is not the goal here. All 
that is needed to complete our theory is one solution of (6), and the 
difficulty lies solely in picking which one. The choice is narrowed considerably 
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by looking only for solutions that primarily depend on the local values of 
U. That is, to first approximation I(U) is an explicit function of U and 
its spatial derivatives. Such solutions can be found approximately by 
employing standard asymptotic techniques which suppress the functional 
derivatives in (6). 

There is just one fine point to watch when carrying out such a procedure. 
Observe that, as a direct consequency of its derivation, one finds upon 
integrating (6) over all angles [fdn) an identity is obtained. Therefore 
consistency requires that any asymptotic procedure satisfy this identity 
to all orders. 

A Derivation of IDT 
As an illustrative example of the procedure for obtaining approximate 

solutions of the nonlinear functional differential equation (6), a derivation 
of isotropic diffusion theory (IDT) is presented. A formal parameter, e, 
is introduced into (6) as 

£ § <"•'"" £ f • • * > + c w < °A< B - U » " e I T *A< B- U> 

+ o T ( 1 - ^ 1 0 = 0 (7) 

Here the f i r s t two epsilons suppress the functional derivatives and the th i rd 

insures consistency of the asymptotic scheme. This is clearly the simplest 

implementation of the considerations at the end of the preceding section. 

Now look for a formal solution of the form 

I - 1 , , + eI, + s 2 I 2 + . . . 
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and define 

J 11, 1 Uir 

Solving (7) to zero order yields 

I = — U 
L0 4* U 

(8) 

which implies 

F0 = ° 

6U " 4u 

6U = 0 

at 

Making use of these results, one can solve (7) to f i r s t order and arrive 

I, = - £-J-a-?U 
1 4TT OJ 

(9) 

which gives Fick's law 

F i - ^ 

Then using 

lb 
4TT <JJ 



'JSH^a*ir~f,r. 

6U 3oj v 

one can solve (7) to second order. In general, for n >_ 1 , one can wri te down 

the following recursion formula for I + , as a function of lower order terms: 

V l 
1 •" k - l 

It is a straightforward matter to check that for n >_ 1 

,U) dn - 0 
'4ir 

as was insured by the consistency requirement. 
Taking as the approximate solution of (6) the first two terms of 

the above expansion as given by (8) and (9) yields 

I -u f- (U - — fl'VU) (10a) 

F = - ^ - v U (10b) 

and using (10b) in equation (3) produces the well-known IDT resu l t : 

3tU - v . ( ^ - ? U ) + caA(U-B) = 0 (11) 

The Derivation of FDT 
Clearly if more information is going to be extracted from equation (6), 

a little more information will have to be put into it. This is provided by 



^:r^r^.^r^,^r^r?r.'_'ET^Tr^r;"^irin)'*'-^T^^'a^Tv^-

8 

the preceding derivation of IDT which showed that, to leading order, I % £ - U. 

This motivates the Introduction of the new dimensionless quantities * and 

7 which are defined by the formulas 

I = cU* (12a) 

F = c U f (12b) 

Equations (2) and (4) then reduce to 

I = f *(si) da (13a) 

f = / R*(n) dn (13b) 

To leading order IDT gave the result <s> % j - . The goal now is to transform 

equation (6) into an equation for $ and solve the transformed equation by 

asymptotic methods. 

Using the ident i t ies 

C 6U * u 6U 

1 i E = ? + u i f 
C SU T u 811 

equation (6) may be rewritten as 

U |J ((fi-f).vU-U |J .vU-oA(U-B)) + (a A&* sU*(0-T) .VU-U | f ^ ) 

= h ( < IA B + 0S U> < 1 4> 

A formal parameter, e, is then introduced that suppresses all the 
functional derivatives. 



£U U ((n-f).vU - U | J -vU - o A(U-B» - eU* | J .«J 

+ (aAB+osU + (B-7)-vU)* = j^ (cAB+asU) (15) 

This scheme is asymptoticly consistent without having to suppress any additional 

terms as in IDT. 

Now look for a formal solution of the form 
2 

* = <tn + E*I + e *2 + 

and define 

fk = / n*k(n) dn (16) 
' 4 T T 

Solving (15) to zero order gives 

0 4 * wtTjj.X-ii.X 

° A B + a S U - vU where w = n— is the effective albedo and X = - —JT i s t n e dimensionless 
o-i-U 0 j U 

gradient. Normalizing * Q to either (12a) or (12b) relates fjj to J as 

V»$£* ( 1 8 ) 

where X = [XI and* 

A(R) = J- (coth R - J-J (19) 

*see appendix 
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The fact that both normalizations are equivalent follows from the consistency 

of the scheme. Using (19) one can now write «Q directly in terms of X~ and 

*o = h 1 v __ (20) 
0 4 * X coth H-n-X 

to 

In general, a recursive formula for * n + 1 as a function of lower order 
terms can be written down. This involves solving the linear equation 

<*? 0.*-a.x)« n + | + « 0x.? n + 1 = o n (21) 

where J contains terms of order n and less. Multiplying this equation by 
'-~~z—and integrating and using (16) gives 

((1)+f0.X-fl.X) 
sinh 2X J t j = j- „ M j d„ 

J 4 2 X n + 1 ' 4 w «4?0.X.Jf.X n 

which when substituted back up into (20), produces 

V l ; -?r .xL n s i n h x ° J 4 i r u»+fc,-x-fl.x n J u+f0"X 

I t can then be checked direct ly from (21) that 

as was insured by the consistency requirement. 

So taking (20) as the approximate solution of (6) and defining 

O^.X) = J »<£) (22) 
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allows the FDT expression for the flux to be written as 

F"= -D-U.X) ̂ -vU (23) 
f Oj 

and upon using this result in equation (3) gives 

3tU - V.{Df(u>,X) |-vU) + CoA(U-B) = 0 (24) 

I t should be pointed out that in the l im i t of X and w-1 being small, FDT 

reduces to IDT as i t should. 

Comparisons with APT 

Asymptotic Diffusion Theory (ADT) gives an expression for the f lux ' ' 

f = -QU) — vU 

which while not being f lux - l im i ted , is albedo-dependent. The diffusion 

coeff ic ient is defined by 

D>) = 1=£ 

where a solves 

a = tanh -
03 

When u <_ 1 , a is rea l , when u >_ 1 , a is imaginary, and when OJ =1, n

a U ) = 
1 
3 ' 
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ADT and FDT can be related as follows: 

For w < 1 D„(oi) < Df(u»X) when X < a 

Da(u3) = D f ( a i , a ) 

D (ID) > Df(u),X) when X > a 

For in > 1 ^ a ^ y "f(«>iX) 

For w -»• 0 Q&M ^ 1-tD 

D f U,Xl -V 1 {1 - £) 

For u + •» D,(<u) •>- - r -

D f(«,X) - i j 

In Figure 1 a graphic comparison is shown between Df(o>,0), D (u), and D f(w,1). 

For 0 < X < 1 one has 

D f(oi,l) < Df{<asX) < D f(u,0) 
y 

with D^(ID,X) intersecting Da(oi) at w = ?—, while for X > 1 
' T a tanh"' X 

0 f(».X) < D f(«,l) 

Summary 

The power of the Chapman-Enskog procedure has been demonstrated by showing 
that it may be employed in a very natural way to derive an intrinsically 
flux-limited diffusion theory (FDT). This theory gives a diffusion coefficient 
which depends on both the albedo, m, and the magnitude of a dimensionless 
gradient, X. In the limit of small gradients and albedos near unity, it 
reduces to IDT as it should. When the gradient is related to the albedo, 
as it is in the slab penetration problem in ADT, then FDT agrees with ADT. 



13 

Furthermore, it agrees qualitatively with ADT over a large range of u and 
X in which one would expect ADT to be valid. However, most importantly, 
as X gets large,FOT will not violate causality. 

Thus FDT provides a very promising approach toward replacing the v&ry 

disparate collection of ad hoc flux-limiters currently in use with a theoretic­
ally consistent and hopefully more accurate method. Detailed evaluation 
of this approach is currently underwey in a number of P.aboratory transport 
codes. 
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Appendix: x(R) 

In equation (19) the function x(R) was defined by 

x(R) = ̂  (coth R - 1) 

This monotonically decreasing function in R ̂ 0 has the following l imi t ing 

forms 

2 
A(R) -o j - ^g- + 0(R4) for R « 1 

*(R) ^ 1 - V + 0(e"2R) for R » 1 

A simple rational approximation is 

, to\ - 2+R_ 
V K J " 6+3R+RZ 

which was f i t by the requirements 

XR(0) - I 

A R (0) = 0 

xR(R) ^ ^ - V + ^V f o r R ^ ] 

R R 

In Table 1 this approximation is compared with the exact expression. It 
is seen that the maximum relative error occurs around R = 2.5 and is 
about 7.2%. 
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R 

0.0 

0.25 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 
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Table 1 

mi 
.333 

.332 

.328 

.313 

.292 

.269 

.245 

.224 

.205 

.188 

.173 

.160 

.139 

.122 

.109 

.099 

.090 

* R(R) 

.333 

.330 

.323 

.300 

.275 

.250 

.228 

.208 

.191 

.177 

.164 

.152 

.133 

.118 

.106 

,094 

.088 



FIGURE 1 

A ^ O f * ) 
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