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Abstract
Using the technique developed by Chapman and Enskog for deriving the
Navier-Stokes equations from the Boltzmann equation, a framework is set up
for deriving diffusion theories from the transport equation. The procedure
is first applied to give a derivation of isotropic diffusion theory and
then of a completely new theory which is naturally flux-limited. This new

flux-limited diffusion theory is then compared with asymptotic diffusion thqpry.
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Introduction

In many problems involving transport theory one is often forced by
computational or cost considerations to adopt some approximate method to
handle the transport phenomena. By far the most common such methods in
use today involve approximating the angular information by various forms
of diffusion approximation, typically based on equilibrium diffusion theory
(E!)T),.Ia isotropic diffusion theory (IDT),2 or asymptotic diffusion theory
(ADT)."”3’4 A11 these theories impose restrictions on significant spatial
variations over distances of a mean free path and all yield expressions for
the flux which can violate causality (the magnitude of the flux can be no
greater than the density times the maximum %“ransport speed) when these
restrfciions are exceeded. While these constraints are reasonable for many

physical problems, they are often violated in problems that arise in plasma

physics and astrophysics. 1In the past this has led to the ad hoc introduction

of a f'lux-h‘miter,4 usually with some degree of arbitrariness, in order to
preserve causality in the presence of large spatial gradients. It is one
purpose of this paper to present a diffusion theory which is naturally flux-
limited, and thus circumvents some of the restrictions usually imposed.

1t will be called flux-Timited diffusion theory (FDT).

The setting of what follows will be radiation transport theory, although
the result makes no special use of this fact and may be applied to any onme
speed transport problem. For simplicity,only the case of isotropic elastic
scattering will be treated here but the procedure can be generalized to
handle anisotropic and weakly inelastic scattering. The transport equation

for the specific intensity I{(2, r, t) of photons has the form

.7 = S
3,1 + a.vl + orl = - (oAB + osU) (1)
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3
where 0, v, and t are the angular, spatial, and temporai variables, ¢ is the
speed of light, aA(F}t) is the absorption coefficient, as(F}t) is the

scattering coefficient, oy = optog is the total interaction coefficient, B(r,t)

is the black body energy density, and U(r,t} is the energy density as defined

by

uFe) = L [ 1@, 7, t) de (2)
J,

These equations may be considered to be either frequency-dependent with the
frequency parameter suppressed or gray equations.

Integrating (1) over @ shows that U{r,t) satisfies
8,0 + 7-F + cop(U-B) = 0, (3)
where F(r,t), the energy flux, is defined by

F(F,t) = f QUT, T, t) do (4)
4n

1f one can obtain an expression for F in terms of U then equation (3) would

determine U(r,t) completely. By {(4) it clearly suffices to derive an expression

for I in terms of U, and the second purpose of this paper is to demonstrate

the power of the Chapman-Enskog technique to derive such expressions.

The Chapman-Enskog Technigue

The idea of Chapman--Enskog5 is to derive an expression for I in terms

of U such that whenever U satisfies equation (3) then I(U) will at least

approximately solve equation (1). This requirement is turned into a nonlinear

functional differential equation for I in terms of U which is then solved .E'




approximately. The procedure is as follows.

Let I{U) be some functional for I in terms of U with the 0 dependence
The corresponding functional for F is obtained using equation (4)
and a consistency condition is obtained from equation (2). The functional

derivative of I with respect to U is denoted %% and defined by the formula

d_
g 1 (U+tH) .

I is a linear operator acting on H, an infinitesmal displacement of U.

Using this notation, one may rewrite equations (1) and (3) as

8l 1= o _cC
3,U + 5T (e-9U) + cTI ol ™ (oAB+aSu)

Oj—

§F = -
3+ o W+ caA(U-B) =0

Since it is assumed U satisfies (5b), it may be used to eliminate 3,U from

The resulting equation is the previously mentioned noniinear functional

differential equation
El(5—1.!-1—£'VU- (U-B)) + 0.1 = £ (g,B+o U)
s c &l A T 4r TATCS

Clearly now, if I(U) solves (6) and U(r,t) solves (5b), then I{2,r,t) = I{U)
solves (5a).

Finding the general solution of (6) is fuily as difficult as solving the
general initial value problem for (1); however, that is not the goal here.
that is needed to complete our theory is one solution of (6), and the

difficulty 1ies solely in picking which one. The choice is narrowed considerably
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by Tooking only for solutions that primarily depend on the local values of
U. That is to first approximation I{U) is an explicit function of U and
its spatial derivatives. Such solutions can be found approximately by
employing standard asymptotic techniques which suppress the functional
derivatives in (6).

There is just one fine point to watch when carrying out such a procedure.
Observe that, as a direct consequency of its derivation one finds upon
integrating (6) over all angles (sda) an identity is obtained. Therefore
consistency requires that any asymptotic procedure satisfy this identity

to alt orders.

A Derivation of IDT

As an illustrative example of the procedure for obtaining approximate
solutions of the nonlinear functional differential equation (6), 2 derivation
of isotropic diffusion theory (IDT) is presented. A formal parameter, e,

js introduced into (6) as

Cn
—

e S @ - W) + ¢ 5 (04(B-)) - & §= 0p(B-U)

=)

O}

==l

<™
.

+UT(1-“§—“'U)=U (7

Here the first two epsilons suppress the functional derivatives and the third
insures consistency of the asymptotic scheme. This is clearly the simplest
implementation of the considerations at the end of the preceding section.

Now look for a formal solution of the form

_ 2
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and define

Fk=f 71, (Mde
Ur

Solving (7) to zero order yields

at

(8)

(9)
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one can solve (7) to second order. In general, for n > 1, one can write down

the following recursion formula for In+1 as a function of lowar arder terms:

51 n sl sF, sl
I i W | nk Sk o n e
Tt == 57 [su W) - ¥ =u GT W +gy (oalB ”’)]
k=1 :

It is a straightforward matter to check that for n > 1

"' 1.(3,U) do = 0 =
4 N :

as was insured by the consistency requirement.
Taking as the approximate solution of (6) the first two terms of

the above expansion as given by (8) and (9) yields ?3

€ 1 S5 '
I~z (v - E—-Q-VU) (10a)
T
F=_-S 7y ' {10b)
¥y

and using (10b) in equation (3) produces the well-known IDT result:
. T — i _B) =
U v-(30T vU) + CGA(U B) =0 (11)

The Derivation of FDT

Clearly if more information is going to be extracted from equation (6),

a little more information will have to be put into it. This is provided by

£
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the preceding derivation of IDT which showed that, to leading order, I~ %; u.

This motivates the introduction of the new dimensionless quantit.:s ¢ and
¥ which are defined by the formulas
1= cls (12a)
F = cUF (12b)

Equations (2) and (4) then reduce to

I= #(n) do (13a)
L,

?=f5¢(5) da (136}
4

To leading order IDT gave the result ¢ ~ %;-. The goal now is to transform

eguation (6) into an eguation for ¢ and solve the transformed equation by
asymptotic nethods.

Using the identities

1 &1 _ &8¢
caw-**Ug
1 &F_ = 5F
Em-f“’“m

equation (6) may be rewritten as
U 88 (@)U 5 +Teoy (U-B)) + (opBrogli(a-F) Fu-0 S5.70)
= 1= (apBtogl) (18)

A formal parameter, e, is then introduced that suppresses all the

functional derivatives.
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5 —_ = T — F —
<U % ((8-F) -7 - v gﬁ- T - op(U-B)) - ello %% T
+ (opBrogl + (B-F)-TU)e = J= (spBrogl) (15)

This scheme is asymptoticly consistent without having to suppress any additional

terms as in IDT.

Now look for a formal solution of the fcrm
- 2
¢—¢0+5¢'-|+e®2+...

and define

"o [ m@ e (16)

Solving (15) to zero order gives

1
W= ————= a7)
0 4 § +?-0 F-5-¥
apBtogl -_ T
where v = is the effective albedo and X = - —— 1is the dimeusionless
UTU °TU

gradient. Normalizing 9y to either (12a) or (12b) relates F; to X as

k1
fo = A(m) = X (18)
where X = [X| and* g
AR} = & (coth R - ) (19)
R R

*see appendix
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10
The fact tkat both normalizations are equivalent follows from the consistency

of the scheme. Using (19) one can now write 9o directly in terms of X and

H
o= v (20)
0741 ¥ coth (f)-ﬁ-i

In general, a recursive formula for B4 35 2 function of Tower order ?

& terms can be written down. This invoives solving the iinear equation

(wtfy-X-2-X)o g + 0X-F = 9, (21)

vhere Jn contains terms of order np and Tess. Multiplying this equation by

_}'f___ and integrating and using (16) gives
(..,+f0.x-sz-f)
sinh 2X - =  _ Xg
& X‘fn'l"[ -f +F o X-TeX JI‘I da
4g WTTTOTHT

which when substituted back up into (20), produces

1 2% X2 :
3 = J - = ] J_ g i
AL -i.a.i[ n sinh X °f o F X ] -

0 4r ¢ i

" 1t can then be checked directly from (21} that

J; o 4p(R)da =0 .
i T

as was insured by the consistency reguirement.

So taking (20) as the approximate solution of (6) and defining

DlasX) = 3 A(H) (22)

w
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allows the FDT expression for the flux to be written as E
F = -Dlu,X) & (23) i
c &
T
and upon using this result in equation (3) gives ?
3,0 = T+ {Dg{w,X) g—TVu) + cap(U-B) = 0 (24)
It should be pointed out that in the limit of X and w-1 being small, FDT é
reduces to IDT as it should,
Comparisons with ADT
Asymptotic Diffusion Theory (ADT) gives an expression for the flux]b’B’4
F=-D_{u) £ W
a or
which while not being flux-limited, is albedo-dependent. The diffusion ?
coefficient is defined by :
. é
Dylw) = =5
*
where o solves é
o = tanh =
When w < 1, o is real, when w > 1, « is imaginary, and when w =1, D (u) = g
1
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ADT and FDT can be related as follows:
For w <1 Da(u) < Df(w,X) when X < a
Da(m) = Df(m,u) .
Da(m) > Df(m,X) when X > a

Forw>1 " Dyla) > De(w,X)

For w + 0 Dy(w) v T-u ;

1 N
Df(m,X) v Y (1 - T

4

4

For w + = Da(w) " -1:2‘-1—‘-)
Df(m,X) v J

In Figure 1 a graphic comparison is shown between Df(m,ﬂ), Da(m), and Df(m,l). i
3

For 0 < X < 1 one has P
Delwst) < Dp{waX) < Delw,0)

with Df(m,x) intersecting Da(w) at w = —~——§T~—3 while for X > 1 E
' tanh™ X 3

Df(m,X) < Df(w,'l)

Summary
The power of the Chapman-Enskog procedure has been demonstrated by showing

that it may be employed in a very natural way to derive an intrinsically

flux~1imited diffusion theory (FDT), This theory gives a diffusion coefficient

which depends on both the albedo, w, and the magnitude of a dimensionless

QResee

gradient, X. In the 1imit of small gradients and albedos near unity, it
reduces to IDT as it should. When the gradient is related to the albedq
as it is in the slab penetration problem in ADT, then FDT agrees with ADT.
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Furthermore, it agrees qualitatively with ADT over a large range of w and
X in which one would expect ADT to be valid. However, most importantly,

as X gets large, FDT will not violate causality.
Thus FOT provides a very promising approach toward replacing the very
disparate collection of ad hoc flux-limiters currently in use with a theoretic-

ally consistent and hopefully more accurate method. Detailed evaluation

of this approach is currently underwzy in a number of lLaboratory transport

codes.
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Appendix:  A(R
In equation (19) the function A(R) was defined by

A(R) = %-(coth R - %)

This monotonically decreasing function in R > O has the fallowing limiting

forms
2
MR) ~ - B+ o(rh) for R << 1
AR) ~ % - lﬁ'* U(G-ZR) for R >> 1
R

A simple rational approximation is

R
Ap(R) = Gi3Rin2

which was fit by the requirements

agl0) = ;"
Aﬁ(O) =0
AglR) ~ ‘ﬁ - iz + o(};g) for R >> 1

in Table 1 this approximation is compared with the exact expression. It

is seen that the maximum retative error occurs around R = 2.5 and is

about 7.2%.
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Table 1
MR)
.333
332
.328
.313
.292
.269
.245
.224
.205
.188
73
.160
.139
.122
.109
.099
.090

Ap(R)
.333
.330
.323
.300
.275
.250
.228
.208
.191
77
.164
.152
.133
118
.106

094

.088
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