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NOMENCLATURE

a speed of sound - ft/sec.
b GPHS width - ft.
cp specific heat - BTU/1bm °R
Cp pressure coefficient
CHy defined by Equation (A-15)
h enthalpy - BTU/1bm
kr rouchress height - ft.
KL laminar augmentation heating factor
L GPHS length - ft.
M Mach number
P pressure‘- psf
Pr Prandtl number
q heat transfer - BTU/Ft2-Sec.
Foff effective radius - ft. ‘
RN’RC’RB radius of spherical nose, corner, body - ft.
Re Reynolds number
S - wetted length - ft.
T absolute temperature - °R
u,v velocity, axial and normal - ft/sec.
ou/3s - velocity gradient - 1/sec.

Greek Symbols

a angle of attack - degrees
B velocity gradient parameter (D/um)(du/ds)0
Y . specific heat ratio cp/cv

K



NOMENCLATURE (Continued)

6*

p
Subscripts

S,0
GPHS
FFC

CW

«©

Superscripts

o

*

boundary layer displacement thickness - ft.
Jaminar compressibility factor

momentum thickness - ft.

viscosity - 1bm/ft-sec.

defired by Equation (A-14)

density - 1bm/ft?3

stagﬁation point values

General Purpose Heat Source

flat faced cyl%nder

boundary layer local conditions

cold wall conditions

wall conditions

based on conditions behind a normal shock
transition

based on momentum thickness

freestream conditions

total conditions

based on reference enthalpy conditions

i
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INTRODUCTION

A General Purpose Heat Source (GPHS) has been designed for the
purpose of supplying power to a radioisotope thermal generator intended
for interplanetary missions. The baseline configuration, nominally 2
inch x 4 inch x 4 inch with sharp edges and corners, is required to sur-
vive accidental earth reentry as well as terminal impact velocities.
Several problems have been identified relative to survival criteria during
reentry that include the module motion and the associated heat transfer.
The present paper will be concerned with flow field and reentry heating
for a broad face-on (4 inch x 4 inch) or side-on (2 inch x 4 inch) reentry
orientation. Moreover, the analysis will consider convective heat trans-
fer in the absence of roughness or ablation effects during the supersonic/
hypersonic regime of reentry..

In order to assess the structural/thermal behavior of the GPHS
module, an understanding of flow field and subsequent boundary conditions
is required. Since the basic "brick" aeroshell design has not received
any attention in past literature, experimental data on related shapes has
been used to assess the required heat transfer characteristics (boundary
conditions for a conduction heat transfer code). Data of this type are
extremely limited and prediction capability has resorted to semi-empirical
techniques and data correlations.

The objective of the present study is to determine the flow field
characteristics and subsequent local properties on the GPHS configuration
to obtain heating levels during hypersonic/supersonic reentry. This analysis
will be compared to semi-empirical techniques based on wind tunnel data.




A schematic representation of the flow field distribution about the
GPHS configuration during a broad face-on stable reentry mode is shown in
Figure 1. The bow shock is detached from the body by a value of A. The
flow expands toward the sharp corner and decompresses to the adjacent side
reaching sonic conditions at the corner. The flow further expands toward
the base region and dissipates into the wake behind the module.
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Since the GPHS module poses a difficult reentry shape to analyze,
experirental data featuring flat faced walls with flow expansion over sharp
corners was used to determine the heat flux levels. The distribution was
determined by Eq. (1) where the ratio qw/qo’ config. was obtained from
wind tunnel results. Flat faced circular and hexagonal cylinder data
provided some definition of the heat transfer distributions. These data
are available from several sources!*2?’3, The stagnation heat transfer
value was obtained from an expression that relates a hemispherical value
to the brick shape GPHS through an area aspect ratio given by Eq. (2).
Here, b and 1 represent the width and length of the module, respectively.
The velocity gradient term is represented as the ratio of a flat faced
cylinder to that of a sphere and has been taken to be 0.565. The remaining
times represent the Mangler factor (axisymmetric flow) and the area aspect
ratio. The stagnation heating for the sphere is that developed by Detra,
et al* for hypersonic flow conditions (M > 5). :
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Figure 2 shows a compilation of experimental and theoretical stag-
nation point velocity gradients taken from Perini®. One observes that
the ratio 0.565 used by previous analyst can be in error for values of
Mach number less than 5. Perini suggested the following empirical curve
fit for the velocity gradient of a sphere and flat faced cylinder; namely:

T 3.2
B> -a83 (1+Mo

c 3%53 1 Tel9+ ( )

Peee o Yo P (4)

and
/56

(/+H,,:)'77

_ou\ ® - .0+
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For a rectangular shape such as the GPHS, wind tunnel data will be
required to determine the velocity gradient. However, the flat faced cylin-
der will be used as a first order approximation.
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REFERENCE SPHERC HLCAT TRANSFER

Calculation of the reference sphere stagnation heat flux value
gives the heat flux distribution as a function of altitude (time) for a
specific trajectory. Detra, et al“ correlation was based on the classic
work of Fay and Riddel1® togother with experimental (shock tube) data.
However, the use of Eq. (6) for M < 5 is questionable as a consequence of
property evaluation’. On the other hand, Lees® considered a highly cooled
boundary layer for M >> 1 (he >> hw) and comparison of Eqs. (6) and (7)
indicated that the latter yielded values 20 to 30% higher. Consequently,
Lee's result was modified to include a reference enthalpy to account for
property variations with compressibility (given as Eq. (8)). It is recom-
mended that Eq. (8) be used for M < 5.
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Figure 3 shows the heat flux distribution for a flat faced straight
and hexagonal cylinder for both similar (Lees)® and non-similar solutions®.
The hexagonal cylinder dala indicate a higher level of heat transfer along
the adjacent wall than the straight cylinder data of References 2, 3 and
10. It should be noted that the straight cylinder data considered several
corner radii as well as sharp corners. Moreover, the hexagonal cylinder
data was obtained from a surface pzint technique and data reduction was
rendered questionable. It is possible that the higher levels were a con-
sequence of flow separation and boundary layer transition.
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NON-STVILAR BOUNDARY LAYER SOLUTION - FLOW FIELD

Figure 4-1 shows the pressure distribution predicted by the SAI
CM2DT flow field code. The solution considered the GPHS module to be
approximated as a flat-faced cylinder with finite corner radius. The
assumption of a finite corner radius is required to avoid singularities
that would be present at a sharp corner. The CM2DT code!! solves the
time dependent fuler equations using a second-order accurate finite-
difference technique, and obtains the steady flow solution as the asymptotic
1imit of the time-dependent problem. The output of CM2DT provides a defi-
nition of the flow properties throughout the shock layer, as well as defi-
nition of bow shock shape and surface properties. As can be seen in
Figure 4-1, the variations of the solutions with decreasing corner radius
are becoming smalier as the corner radius approaches 0.0625. Thus, this
value of the corner radius was accepted as a valid approximation to the
sharp corner case.

Boundary layer calculations on the GPHS module are performed using
the implicit finite-difference solution of the axisymmetric compressible
boundary layer equations described by Blottner!?. For these viscous cal-
culations, it is necessary to provide definition of the boundary layer

~edge conditions from the inviscid (CM2DT) analyses. For M > 1, the in-

formation required includes both a surface pressure distribution and a
bow shock shape (b.1. edge entropy is calculated through a mass balance
procedure). Figure 4-2 shows the results of the normalized heat flux
distribution at several Mach numbers for a given trajectory.
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WIND TUNNEL TEST PROGRAM

A wind tunnel test program was conducted on the GPHS module (twice
scale) at the AEDC von Karman Tunnel B facility at Mach 8. The Reynolds
nurber was fixed (nominally at 1.33 x ]06) and the model was subject to
several angles of atlack at four positions. The model was instrumented
on four.igrces using thin foil calorimeters (Gardon type heat gages).

The broad face (8" x 8") and side face (4" x 8") results will be given at
a = 0° 0il flow tests were also made to observe flow characteristics at
the mode) edges. Three dimensional effects were observed along the model

sides/edges.
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Figure 5 shows the normalized heat flux distribution at zero angle
of attack along the four faces containing instrumentation. The data are
shown compared to the SAI non-similar solutions. It appears that the side-
on distribution reflects slightly higher levels than the face-on values.
This is believed to be a consequence of the 3-D effects of the 4" x 8" face
compared to the 2-0,8" x 8" face area. Moreover, a significant increase
in heat transfer is evident as the sonic line (model edge) is approached.
The distribution yields very low values as the flow turns the sharp corner
during expansion (decompression). In any event, theory appears to predict
the heat flux distribution for the complex shape.
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CONCLUSTONS

e Heat transfer distributions for non-circular shapes can be obtained
for rcentry conditions using wind tunnel data for the surface dis-
tributions and a stagnation value based on a reference sphere con-
dition. The distributions obtained at a fixed Mach number (M > 1)
appear valid over an extended range of Mach numbers.

° The above requires
(1) definition of a proper velocity gradient
(2) definition of an area aspect ratio

. Flowfield predictions (inviscid) using the CM2DT program provide
a proper definition of pressure and shock characteristics for non-
similar (viscous) solutions.
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