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PLASMA-EQUILIBRIUM CALCULATIONS BY LINE SUCCESSIVE OVER RELAXATION

M. H. Redi and D. A. Larrabee
Plasma Phveics Laboratory, Princeton University

Princeton, New Jersey 08544

I. INTRODUCTION
Line successive over velaxatlon (LSCR) 1s an iterative method for solving
elliptic Adifferential ec[uaticms..I LSOR takes advantage of the CRAY vector
capabilities as compared to the point successive over relaxation {SOR) method,
which does not vectorize. The substantial advantages of LSOR on a vectorizing

2.3 By minor

machine are not wall-known, except in the field of aerodynamics.
modification of the traditional SOR elliptic equation solver, we find that in
certain coordinates an increase of a factor of two or greater in convergence
time can be realized.

As a model problem for comparison of SOR and LSOR, the numerical solution
of Poisson's equation will be reviewed in Sec. II. In Sec. I1I, wa discuss
the decreased computation time on the National Magnetic Fusion Energy Computer
Center (NMFECC) CRAY computers found with LSOR applied to the itervative

solution of plasma equilibria. In Sec. IV, the conditions for which LS5OR is

most useful are summarized.

II., SOLUTION OF POISSCN'S EQUATION BY SOR AND LSOR

Centered fin.te differenciug of Poisson's eguation
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for a 10x10 cylindrical [r(i),9(j5}) grid leads to
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In the SOR teshnique,
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Here Che residual R(i,j) is
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Varying the SOR parameter ® optimizes converqence time,

the nth iteration of P is calculated from
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In the LsoR? method, we write the set of finite differenced equations for

all points or the (i,j) grid in matrix form

P, Y
L] 02 03 P =235
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fere P = (P,. 92 esneesss) and each vector Pj represents a whole row of grid

points. Each row Pj car be found from
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via 4 tridiagonal matrix inversion., The vector Pg is used to increment the n-

1st vector Pg_1.
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The point SOR method uses the advanced (k+1) values at two neighboring points
{i-1,j) and (i,j=1). Line SOR uses the advanced (k+1) values at three
neighboring points and so slightly improves the convergence rate on 2 scalar
computer.4

To cnmpare the speed of S0R and LSOR on a vectorizing computer, solutions

of Poisson's equation with a nonlinear scurce
v2p . p2 exp(Pz]

were obtained in a cylindrical geometry with cyclic boundary cenditions. The
egquation was solved with tridiagonal sclution for rows at constant radius and
alse for rows at constant © (Fig. 1). Tt was found that LSOR with tridiagonal
solution along 0 (at constant radiuns) was fastest, This converged ten times
faster than SOR when sweeping radial grid points at constant ©. These
conclusions also hold for a staticnary linear source.

In cylindrical coordinates LSOR was siqnificantly faster than SOR for
computations requiring many iterations. With aa error criterion requiring at
least 400 SOR iterations for converqence, LSOR was much faster than SOR (Fig.
1). LSOR and SOR were found to be equally fast when only ten SOR iterations

were needed. Imposed updown symmetry would further speed LSOR convergence.
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When Poisson's equation was solved in a rectangular geometry, optimized SOR
and LSOR were found to have equal running times on the CRAY-1 for both linear
and nonlinear source terms. Increasing the number of iterations required did
not increrse the relative convergence time of LSOR to SOR in rectangular

coordinates.

III. SOR AND LSOR SOLUTIONS OF PLASMA EQUILIBRIA

Replacing SOR and LSOR in *he Princeton eguilibrium code EQ accelerates
convergence for a typical plasma fixed boundary equilibrium. EQ solves the
Grad-Shafranov equatlon5'6 for the poloidal flux function, ¥, which is derived
from the equilibrium force balance between the magretic and kinetic pressures
in tokamak plasmas. This equation has a nonlinear source since th> pressure
and toroidal field functions are dependent on X.

The eguation is solved in magnetic flux coordinates by the method of

? The equation is sslved by iteraticn fo:s the

NeLucia, Jardin, and fTodd.
poloidal flux function. This is used to compute a new magnetic coorwinate
system via the Jacobean constraint as well as by matching the total measured
current. and central plasma pressure. Then the Grad-Shafranov equation is
solved again in the new coordinate system. The coordinate readjustmeni and
the iterative Grad-Shafranov solution continue until the error criterion is no
longer exceeded.

In EQ, the equilibrium solution is obtained in a naonorthogonal
cylindrical geometry ¢9,r) in the poloidal tlzane, The convergence time
required for FQ with SOR was the same whether 9 or r is the direction of
successive sweeps. However, the convergence time for EQ with LSOR is about
three times faster for tridiagonal sclutions along © rather than along r for a

typical Poloidal Divertor Experiment (PDX) plasma simulation.




Fiqure 2 pregents the total cpu time reguired for convergence of EQ as a
function of the relaxation parameter. The results of SOR and LSOR
calculations are shown for a Joint European Torus (JET} simulation. We find
that optimized LSOR reduces cpu time required for convergence. The LSOR JET
simulation convergence 1ls faster than SOR by a factor of four, while a LSOR
PDX simulation (not shown) converged faster by a factor of two. The JET
simulation reprenents a noncircular, low aspect ratio, high current plasma.
This is an equilibriuvam with steeper gradients, a more nonlinear grid, and
requires « more time-consuming calculation. PFor this case LSOR is faster than
SOR at all values of W,

another approach to obtaining a fast accurate two-dimensional plasma MHD
equilibrium is that of Lao, Hirschman, and wieland.8 They developed a
variational moments method which takes about 0.2 seconds of CRAY time to

“3 for three ampli tude

compute an equilibrium with a relative error of 10
functions. For a Princeton PDX simulation, ER with SOR iteration and error

criterion

Max g7 - ¢
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converges in 9 seconds of CRAY time for 80 peoloidal points and imposed up-down
symmetry. ¢ is the torocidal flux function. EQ) with LSOR obtains the same
solution in 4.5 seconds for this nearly circular fixed boundary case.

The LSOR-modified EQ code runs more quickly than E) with SOR. It is
porentially more accurate than the Lao-Hirschman-Wieland moments code for high
beta equilibria having steep gradients, since it computes with all Fourier
amplitude functions. It should more dramatically surpass the SOR EQ code's

convergence speed for noncircular, free boundary equilibria.
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IV. <CONCLUSION

On scalar computing machines, LSOR is only slightly faster than SOR.Q
LSOR converges in fewer iterations than point SOR but each iteration may take
longer because of the implicit tridiagonal solution required. SOR 1s an
adequate iterative method for solution of elliptic equations when the problem R
(a} is cast in rectangular coordinates, (b} does not reguire a great many
iterations, or (c) must be solved on a scalar <omputer. On a vectorizing
machine problems requiring many iterations of a nonlinear elliptic eguation in

cylindrical geometry can be solved faster by LSOR,
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FIGURE CAPTIONS
Cpu convergence time to solve Poissen's eguation by LSOR and SOR
methods as a functicn of over relaxation parameter W. ¥For LSOR-R and
SOR-R the tridiagonal solution is chtained at constant 9. For LSOR-9
and SOR-8 the tridiaqonal solution is obtained at constant radius.

Cpu converqgence time for EQ for a JET simulation for SOR and LSOR as

a function of relaxation parameter .




Symbol Identification:
] lc omega
$  1e psi
X lc chi

8  1lc theta
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